C OLLOQUIUM MATHEMATICUM
 VOL. 71

CHARACTERIZATIONS OF COMPLEX SPACE FORMS BY MEANS OF GEODESIC SPHERES AND TUBES

BY
J. GILLARD (LEUVEN)

We prove that a connected complex space form $\left(M^{n}, g, J\right)$ with $n \geq 4$ can be characterized by the Ricci-semi-symmetry condition $\widetilde{R}_{X Y} \cdot \widetilde{\varrho}=0$ and by the semi-parallel condition $\widetilde{R}_{X Y} \cdot \sigma=0$, considering special choices of tangent vectors X, Y to small geodesic spheres or geodesic tubes (that is, tubes about geodesics), where $\widetilde{R}, \widetilde{\varrho}$ and σ denote the Riemann curvature tensor, the corresponding Ricci tensor of type $(0,2)$ and the second fundamental form of the spheres or tubes and where $\widetilde{R}_{X Y}$ acts as a derivation.

1. Introduction. In a previous article [1] the following question was stated: which are the Riemannian manifolds all of whose small geodesic spheres or geodesic tubes are semi-symmetric? In fact, one investigated the weaker Ricci-semi-symmetry condition $\widetilde{R}_{X Y} \cdot \widetilde{\varrho}=0$ and also the semi-parallel condition $\widetilde{R}_{X Y} \cdot \sigma=0$ for these hypersurfaces, in view of the strong similarities shown in [2], [4] between the intrinsic geometry determined by the Ricci tensor $\widetilde{\varrho}$ and the extrinsic properties related to the second fundamental form σ of the geodesic sphere or tube. The main result was that a connected Riemannian manifold (M^{n}, g) with $n \geq 4$ is a real space form if and only if its small geodesic spheres are Ricci-semi-symmetric or semi-parallel, where for small geodesic tubes it was sufficient that these conditions are satisfied for the so-called horizontal tangent vectors X, Y to the tube. As a consequence, these properties cannot hold for complex space forms, except when they are flat.

In this paper we look for a special class of tangent vectors X, Y to the tubes or spheres which makes each of the two conditions $\widetilde{R}_{X Y} \cdot \widetilde{\varrho}=0$ and $\widetilde{R}_{X Y} \cdot \sigma=0$ characteristic for complex space forms. It will turn out that the appropriate tangent vectors are the horizontal ones (in the sense of Section 3 and 4), where in the case of geodesic tubes one has additionally to restrict to special points (see Section 2).

1991 Mathematics Subject Classification: 53C20, 53C25, 53C40, 53C55.

The author wishes to express his gratitude to Dr. E. Boeckx and Prof. L. Vanhecke for their support and many useful suggestions.
2. Preliminaries. Let (M, g) be an n-dimensional, connected, smooth Riemannian manifold, with $n \geq 4$. Denote by ∇ the Levi-Civita connection and by R and ϱ the corresponding Riemannian curvature tensor and Ricci tensor, respectively. We use the sign convention

$$
R_{X Y}=\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right]
$$

for tangent vector fields X, Y on M.
Next, we treat some general aspects of complex space forms. Suppose that (M, g, J) is a Kähler manifold, that is, J is a $(1,1)$-tensor field on M such that

$$
\begin{equation*}
J^{2}=-I, \quad g(J X, J Y)=g(X, Y), \quad \nabla J=0 \tag{1}
\end{equation*}
$$

for all tangent vector fields X, Y on M. The holomorphic sectional curvature $H(u)$ for a unit tangent vector $u \in T_{x} M, x \in M$ is the sectional curvature of the plane spanned by $\{u, J u\}$. So, $H(u)=R_{u J u u J u}=g\left(R_{u J u} u, J u\right)$. If $H(u)$ is independent of u then it is independent of x, i.e., $H(u)=c, c \in \mathbb{R}$ and then (M, g, J) is called a space of constant holomorphic sectional curvature c or a complex space form. Further, a Kähler manifold of constant holomorphic sectional curvature c is characterized by the following curvature tensor:

$$
\begin{align*}
R_{X Y} Z= & \frac{c}{4}\{g(X, Z) Y-g(Y, Z) X \tag{2}\\
& +g(J X, Z) J Y-g(J Y, Z) J X+2 g(J X, Y) J Z\}
\end{align*}
$$

(See for example [11].) We also have another useful characterization:
Theorem 2.1 [8]. Let $\left(M^{n}, g, J\right)$ be a connected Kähler manifold with dimension $n \geq 4$. Then M is a complex space form if and only if $R_{X J_{X} X}$ is proportional to $J X$ for any vector X tangent to M.

Now, let m be a point in an arbitrary Riemannian manifold M and γ a geodesic parametrized by arc length such that $\gamma(0)=m$. Denote $u=\gamma^{\prime}(0)$. Next, let $\left\{E_{1}, \ldots, E_{n}\right\}$ be the parallel orthonormal frame field along γ with $E_{1}(0)=u$. Let $G_{m}(r)$ denote the geodesic sphere centered at m and with radius $r<i(m)$, the injectivity radius at m. For a point $p=\gamma(r)=$ $\exp _{m}(r u) \in G_{m}(r)$ we have the following expansions for the curvature tensor \widetilde{R}, the Ricci tensor $\widetilde{\varrho}$ and the second fundamental form σ of $G_{m}(r)$ with respect to $\left\{E_{1}, \ldots, E_{n}\right\}$:
(3) $\quad \widetilde{R}_{a b c d}(p)=\frac{1}{r^{2}}\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right)$

$$
+\left\{R_{a b c d}-\frac{1}{3}\left(R_{u b u d} \delta_{a c}+R_{u a u c} \delta_{b d}-R_{u b u c} \delta_{a d}-R_{u a u d} \delta_{b c}\right)\right\}(m)+O(r),
$$

$$
\begin{align*}
\widetilde{\varrho}_{a b}(p)= & \frac{n-2}{r^{2}} \delta_{a b}+\left(\varrho_{a b}-\frac{1}{3} \varrho_{u u} \delta_{a b}-\frac{n}{3} R_{u a u b}\right)(m) \tag{4}\\
& +r\left(\nabla_{u} \varrho_{a b}-\frac{1}{4} \nabla_{u} \varrho_{u u} \delta_{a b}-\frac{n+1}{4} \nabla_{u} R_{u a u b}\right)(m) \\
& +r^{2}\left(\frac{1}{2} \nabla_{u u}^{2} \varrho_{a b}-\frac{1}{10} \nabla_{u u}^{2} \varrho_{u u} \delta_{a b}-\frac{n+2}{10} \nabla_{u u}^{2} R_{u a u b}\right. \\
& +\frac{1}{9} R_{u a u b} \varrho_{u u}-\frac{1}{45} \sum_{\lambda, \mu=2}^{n} R_{u \lambda u \mu}^{2} \delta_{a b} \\
& \left.-\frac{n+2}{45} \sum_{\lambda=2}^{n} R_{u a u \lambda} R_{u b u \lambda}\right)(m)+O\left(r^{3}\right),
\end{align*}
$$

$$
\begin{equation*}
\sigma_{a b}(p)=\frac{1}{r} \delta_{a b}-\frac{r}{3} R_{u a u b}(m)+O\left(r^{2}\right) \tag{5}
\end{equation*}
$$

for $a, b, c, d=2, \ldots, n$, where $R_{a b c d}=g\left(R_{E_{a} E_{b}} E_{c}, E_{d}\right)$ and similarly for the other tensors. We refer to [2], [5], [6], [9] for more details.

Since we are working in a Kähler manifold we can make a specific choice for E_{2} by means of the initial condition $E_{2}(0)=J u=J \gamma^{\prime}(0)$. Hence, $E_{2}=J E_{1}=J \gamma^{\prime}$. When $\left(M^{n}, g, J\right)$ is a space of constant holomorphic sectional curvature c, we can write down complete formulas for $\widetilde{R}, \widetilde{\varrho}$ and σ. Using the technique of Jacobi vector fields [9] we find

$$
\begin{equation*}
\sigma=\lambda g+\mu \eta \otimes \eta \tag{6}
\end{equation*}
$$

This together with (2) and the Gauss equation yields

$$
\begin{align*}
\widetilde{R}_{X Y Z W}= & \left(\frac{c}{4}+\lambda^{2}\right)\{g(X, Z) g(Y, W)-g(X, W) g(Y, Z)\} \tag{7}\\
& +\frac{c}{4}\{g(J X, Z) g(J Y, W)-g(J Y, Z) g(J X, W) \\
& +2 g(J X, Y) g(J Z, W)\} \\
& +\mu \lambda\{g(X, Z) \eta(Y) \eta(W)+g(Y, W) \eta(X) \eta(Z) \\
& -g(X, W) \eta(Y) \eta(Z)-g(Y, Z) \eta(X) \eta(W)\} .
\end{align*}
$$

By contraction we then obtain
(8) $\widetilde{\varrho}=\left\{(n-2) \lambda^{2}+(n+1) \frac{c}{4}+\mu \lambda\right\} g+\left\{(n-3) \mu \lambda-\frac{3 c}{4}\right\} \eta \otimes \eta$,
where g denotes the induced metric and $\lambda=\frac{\sqrt{c}}{2} \cot \frac{\sqrt{c}}{2} r, \mu+\lambda=\sqrt{c} \cot \sqrt{c} r$ for $c>0, \eta(X)=g\left(X, E_{2}(r)\right)$ and X, Y, Z, W are tangent vectors to $G_{m}(r)$. When $c<0$ one has to replace cot by coth and the formulas for $c=0$ are obtained by taking the limit as $c \rightarrow 0$.

Now, we will consider geodesic tubes, that is, tubes about a geodesic curve. We refer to [4], [5], [7], [9], [10] for more details. Let $\sigma:[a, b] \rightarrow M$ be a smooth embedded geodesic curve and let P_{r} denote the tube of radius r about σ, where we suppose r to be smaller than the distance from σ to its nearest focal point. In that case, P_{r} is a hypersurface of M. Let σ be parametrized by the arc length and denote by $\left\{e_{1}, \ldots, e_{n}\right\}$ an orthonormal basis of $T_{\sigma(a)} M$ such that $e_{1}=\dot{\sigma}(a)$. Further, let E_{1}, \ldots, E_{n} be the vector fields along σ obtained by parallel translation of e_{1}, \ldots, e_{n}. Then $E_{1}=\dot{\sigma}$ and $\left\{E_{1}, \ldots, E_{n}\right\}$ is a parallel orthonormal frame field along the geodesic σ. Next, let $p \in P_{r}$ and denote by γ the geodesic through p which cuts σ orthogonally at $m=\sigma(t)$. We parametrize γ by arc length such that $\gamma(0)=m$ and take $\left(E_{2}, \ldots, E_{n}\right)$ such that $E_{2}(t)=\gamma^{\prime}(0)=u$. Finally, let $\left\{F_{1}, \ldots, F_{n}\right\}$ be the orthonormal frame field along γ obtained by parallel translation of $\left\{E_{1}(t), \ldots, E_{n}(t)\right\}$ along γ.

For the hypersurface P_{r} one then has the following expansions with respect to this parallel frame field [4], [10]:

$$
\begin{align*}
\widetilde{R}_{1 a b c}(p)= & \left(R_{1 a b c}-\frac{1}{2} R_{1 u b u} \delta_{a c}+\frac{1}{2} R_{1 u c u} \delta_{a b}\right)(m) \tag{9}\\
& +r\left(\nabla_{u} R_{1 a b c}-\frac{1}{3} \nabla_{u} R_{1 u b u} \delta_{a c}+\frac{1}{3} \nabla_{u} R_{1 u c u} \delta_{a b}\right)(m) \\
& +r^{2}\left(\frac{1}{2} \nabla_{u u}^{2} R_{1 a b c}+\frac{1}{6} R_{1 u b u} R_{a u c u}-\frac{1}{6} R_{1 u c u} R_{a u b u}\right. \\
& -\frac{1}{8} \nabla_{u u}^{2} R_{1 u b u} \delta_{a c}+\frac{1}{8} \nabla_{u u}^{2} R_{1 u c u} \delta_{a b} \\
& -\frac{1}{8} R_{1 u 1 u} R_{1 u b u} \delta_{a c}+\frac{1}{8} R_{1 u 1 u} R_{1 u c u} \delta_{a b} \\
& -\frac{1}{24} \sum_{\lambda=3}^{n} R_{1 u \lambda u} R_{b u \lambda u} \delta_{a c} \\
& \left.+\frac{1}{24} \sum_{\lambda=3}^{n} R_{1 u \lambda u} R_{c u \lambda u} \delta_{a b}\right)(m)+O\left(r^{3}\right),
\end{align*}
$$

$$
\begin{align*}
\widetilde{R}_{a b c d}(p)= & \frac{1}{r^{2}}\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right)+R_{a b c d}(m) \tag{10}\\
& -\frac{1}{3}\left(R_{b u d u} \delta_{a c}-R_{b u c u} \delta_{a d}+R_{a u c u} \delta_{b d}-R_{a u d u} \delta_{b c}\right)(m) \\
& +O(r),
\end{align*}
$$

$$
\begin{align*}
\widetilde{\varrho}_{11}(p)= & \varrho_{11}(m)-(n-1) R_{1 u 1 u}(m)+O(r), \tag{11}\\
\widetilde{\varrho}_{1 a}(p)= & \varrho_{1 a}(m)-\frac{n-1}{2} R_{1 u a u}(m) \tag{12}\\
& +r\left(\nabla_{u} \varrho_{1 a}-\frac{n}{3} \nabla_{u} R_{1 u a u}\right)(m) \\
& +r^{2}\left(\frac{1}{2} \nabla_{u u}^{2} \varrho_{1 a}-\frac{n+1}{8} \nabla_{u u}^{2} R_{1 u a u}+\frac{1}{6} \varrho_{u u} R_{1 u a u}\right. \\
& \left.-\frac{3 n-5}{24} R_{1 u 1 u} R_{1 u a u}-\frac{n+1}{24} \sum_{\lambda=3}^{n} R_{1 u \lambda u} R_{a u \lambda u}\right)(m) \\
& +O\left(r^{3}\right), \\
\widetilde{\varrho}_{a b}(p)= & \frac{n-3}{r^{2}} \delta_{a b}+\left(\varrho_{a b}-\frac{n-1}{3} R_{a u b u}\right. \\
& \left.-\frac{1}{3} \varrho_{u u} \delta_{a b}-\frac{2}{3} R_{1 u 1 u} \delta_{a b}\right)(m)+O(r), \\
\sigma_{11}(p)= & O(r), \tag{14}\\
\sigma_{1 a}(p)= & -\frac{r}{2} R_{1 u a u}(m)+O\left(r^{2}\right), \tag{15}\\
\sigma_{a b}(p)= & \frac{1}{r} \delta_{a b}+O(r) \tag{16}
\end{align*}
$$

for $a, b, c, d \in\{3, \ldots, n\}$.
Now, suppose that $\left(M^{n}, g, J\right)$ is a Kähler manifold. Then, a point $p=$ $\exp _{m}(r u)$ on the geodesic tube P_{r} will be called a special point when $u=$ $J \dot{\sigma}(t)$, that is, $F_{2}=J F_{1}$. For complex space forms of holomorphic sectional curvature c, computing the second fundamental form of P_{r} by means of the technique of Jacobi vector fields at such a special point yields [7]

$$
\begin{equation*}
\sigma(p)=\lambda g+\mu \eta \otimes \eta \tag{17}
\end{equation*}
$$

where g denotes the induced metric and $\lambda=\frac{\sqrt{c}}{2} \cot \frac{\sqrt{c}}{2} r, \mu+\lambda=-\sqrt{c} \tan \sqrt{c} r$ for $c>0$. The values for $c<0$ are obtained as usual by replacing the trigonometric functions by the corresponding hyperbolic functions and for $c=0$ one has to take the limit $c \rightarrow 0$. The tensor η in this case is determined by $\eta(X)(p)=g\left(X, F_{1}(r)\right)$ for tangent vectors X to P_{r} at the special point p. Since σ has the same form as in (6), proceeding in the same way results in formally the same expressions for \widetilde{R} and $\widetilde{\varrho}$ as in (7) and (8), respectively. One only has to keep in mind that in the case of geodesic tubes, these formulas are only valid for the special points.
3. Horizontally Ricci-semi-symmetric and horizontally semiparallel geodesic spheres. A vector $X \in T_{p} G_{m}(r)$ is called horizontal if
X is orthogonal to $J \gamma_{\mid p}{ }_{\mid p}$, where γ denotes the unit speed geodesic connecting m and p. This means that $\eta(X)=0$. Moreover, the space of horizontal tangent vectors to $G_{m}(r)$ at p is spanned by $E_{3}(r), \ldots, E_{n}(r)$.

Then a small geodesic sphere $G_{m}(r)$ is said to be horizontally Ricci-semisymmetric if $\widetilde{R}_{X Y} \cdot \widetilde{\varrho}=0$ for all horizontal tangent vectors on $G_{m}(r)$.

The notion of horizontally semi-parallel geodesic spheres is defined in a similar way by means of the condition $\widetilde{R}_{X Y} \cdot \sigma=0$.

First, we prove the following result for complex space forms.
Theorem 3.1. Let $\left(M^{n}, g, J\right)$, $n \geq 4$, be a complex space form. Then the small geodesic spheres in M are horizontally Ricci-semi-symmetric and horizontally semi-parallel.

Proof. Using (8) it is easy to see that

$$
-\left(\widetilde{R}_{X Y} \cdot \widetilde{\varrho}\right)(W, W)=2 \mu_{2} \eta\left(\widetilde{R}_{X Y} W\right) \eta(W),
$$

where $\mu_{2}=(n-3) \mu \lambda-3 c / 4$. But $\eta\left(\widetilde{R}_{X Y} W\right)=-g\left(\widetilde{R}_{X Y} E_{2}, W\right)$. So, we have to show that

$$
\begin{equation*}
\widetilde{R}_{X Y} E_{2}=0 \tag{18}
\end{equation*}
$$

for horizontal tangent vectors to $G_{m}(r)$.
Using (6) we see in the same way that (18) implies $\widetilde{R}_{X Y} \cdot \sigma=0$.
By means of (7) it is easy to verify that (18) is indeed satisfied for horizontal tangent vectors.

Next, we prove the converse theorems.
Theorem 3.2. Let $\left(M^{n}, g, J\right)$, $n \geq 4$, be a Kähler manifold such that its small geodesic spheres are horizontally semi-parallel. Then (M, g, J) is a complex space form.

Proof. Using (3) and (5) and considering the coefficient of r^{-1} in the power series expansion of

$$
\left(\widetilde{R}_{a b} \cdot \sigma\right)_{c d}=0
$$

for $a, b=3, \ldots, n$ and $c, d=2, \ldots, n$ yields

$$
-\delta_{a c} R_{d u b u}+\delta_{b c} R_{d u a u}-\delta_{a d} R_{c u b u}+\delta_{b d} R_{c u a u}=0
$$

Next, take $a=d \neq b$ and $c=J u$ (that is, $c=2$). Then we also have $a \neq c, b \neq c$ since $a, b \geq 3$, and we get $R_{\text {Juubu }}=0$ for $b \geq 3$. This implies that $R_{u J u u x}=0$ for x orthogonal to $J u$. Hence, Theorem 2.1 yields that (M, g, J) is a complex space form.

Theorem 3.3. Let $\left(M^{n}, g, J\right), n \geq 4$, be a Kähler manifold such that its small geodesic spheres are horizontally Ricci-semi-symmetric. Then (M, g, J) is a complex space form.

Proof. The assumption in the theorem yields $\left(\widetilde{R}_{a b} \cdot \widetilde{\varrho}\right)_{c d}=0$ for $a, b=$ $3, \ldots, n$ and $c, d=2, \ldots, n$. Using the power series expansions (3) and (4) and considering the coefficient of r^{-2}, r^{-1} and r^{0} gives three conditions in which we make the choice $b=d \neq a$ and $c=J u$ (that is, $c=2$). This leads to the following conditions:

$$
\begin{align*}
\varrho_{a J u}= & \frac{n}{3} R_{a u J u u}, \tag{19}\\
\left(\nabla_{u} \varrho\right)_{a J u}= & \frac{n+1}{4}\left(\nabla_{u} R\right)_{a u J u u}, \tag{20}\\
0= & \frac{1}{2}\left(\nabla_{u u}^{2} \varrho\right)_{a J u}-\frac{n+2}{10}\left(\nabla_{u u}^{2} R\right)_{a u J u u} \tag{21}\\
& +\frac{1}{9} R_{a u J u u} \varrho_{u u}-\frac{n+2}{45} \sum_{\lambda=2}^{n} R_{\lambda u J u u} R_{\lambda u a u}
\end{align*}
$$

for a orthogonal to $\operatorname{span}\{u, J u\}$.
These three conditions are exactly those needed in the proof of Theorem 12 of [3, pp. 198-201]. Applying the same method (polarization and summation procedures) therefore leads to the required result.
4. Horizontally Ricci-semi-symmetric and horizontally semiparallel geodesic tubes. In [1] a tangent vector X to a small geodesic tube P_{r} is said to be horizontal if X is orthogonal to F_{1}, the parallel translate of $\dot{\sigma}$ along γ.

Now, if $\left(M^{n}, g, J\right)$ is a Kähler manifold, for special points $p \in P_{r}$ we see that $X \in T_{p} P_{r}$ is horizontal if X is orthogonal to $J \gamma_{\mid p}^{\prime}$. Hence, a horizontal vector X at a special point p is determined by the condition $\eta(X)=0$ and the spaces of horizontal vectors at p are spanned by F_{3}, \ldots, F_{n} at p.

Next, a small geodesic tube P_{r} will be called horizontally Ricci-semisymmetric for special points if $\widetilde{R}_{X Y} \cdot \widetilde{\varrho}=0$ for all horizontal tangent vectors X, Y at special points, and similarly P_{r} is said to be horizontally semiparallel for special points if $\widetilde{R}_{X Y} \cdot \sigma=0$ for the same choice of vectors X, Y.

We then have
Theorem 4.1. Let $\left(M^{n}, g, J\right), n \geq 4$, be a complex space form. Then the small geodesic tubes in M are horizontally Ricci-semi-symmetric and horizontally semi-parallel for special points.

Proof. In the same way as in Theorem 3.1 we find that $\widetilde{R}_{X Y} F_{1}=0$ implies $\widetilde{R}_{X Y} \cdot \widetilde{\varrho}=0$ and $\widetilde{R}_{X Y} \cdot \sigma=0$ for X, Y tangent to P_{r}. So, we have to show that

$$
\begin{equation*}
\widetilde{R}_{X Y} F_{1}=0 \tag{22}
\end{equation*}
$$

for horizontal tangent vectors at special points. But at special points \widetilde{R} has the same form as in (7). Using the horizontality of X, Y, it is easy to see that (22) holds.

Finally, we consider the converse theorems.
Theorem 4.2. Let $\left(M^{n}, g, J\right), n \geq 4$, be a Kähler manifold all of whose geodesic tubes are horizontally semi-parallel for special points. Then (M, g, J) is a complex space form.

Proof. The assumption yields $\left(\widetilde{R}_{a b} \cdot \sigma\right)_{1 c}=0$ for $a, b, c=3, \ldots, n$. Using the power series expansions (9), (10), (14)-(16) and considering the coefficient of r^{-1} yields $R_{1 \text { cab }}=0$. Now, take $b=c=J a$. Then, since $F_{1}(0)=-J u$, we get $R_{\text {JuJaaJa }}=0$ and hence $R_{u a J a a}=0$, for a orthogonal to the plane $(u, J u)$. Since this must hold for all tubes, the result follows from Theorem 2.1.

Theorem 4.3. Let $\left(M^{n}, g, J\right), n \geq 4$, be a Kähler manifold all of whose geodesic tubes are horizontally Ricci-semi-symmetric for special points. Then (M, g, J) is a complex space form.

Proof. Using (9)-(13) we can write down the power series expansion for $\left(\widetilde{R}_{a b} \cdot \widetilde{\varrho}\right)_{1 a}=0, a, b=3, \ldots, n$.

Considering the coefficient of r^{-2} and taking $b=J a$ results in $\varrho(u, a)=$ $R_{\text {aJuuJu }}+(n-3) R_{\text {uJaaJa }}$ for any unit tangent vectors a, u on M, with a orthogonal to u and $J u$. Switching a and u and subtracting the equations obtained yields, for $n \neq 4$ and a, u as above, that $\varrho(u, a)=(n-4) R_{u J a a J a}$ and hence $\varrho(a, J u)=(n-4) R_{\text {auJuu }}$. Although the coefficient of $R_{\text {auJuu }}$ in this expression is different from the one in (19), using a similar polarization and summation procedure as in the first part of the proof of Theorem 12 in [3, p. 198] gives the result for $n \neq 4$. (We omit the details.)

For $n=4$ we consider the coefficient of r^{0}. In this expression we regroup equal terms and use the identity $\nabla_{u u}^{2} \varrho_{1 a}=\nabla_{u u}^{2} R_{1 u a u}+\nabla_{u u}^{2} R_{1 b a b}$. Finally, taking $b=J a$ results in

$$
\begin{aligned}
0= & \left(2 R_{u a J a a}+R_{a u J u u}\right)\left(R_{J u u J u u}-R_{\text {JuaJua }}\right) \\
& +R_{\text {auJau }}\left(2 R_{u J a a J a}-R_{a J u u J u}\right)
\end{aligned}
$$

for a, u unit tangent vectors on M, with a orthogonal to u and $J u$.
First, we replace a and u by $a /\|a\|$ and $u /\|u\|$ respectively. Then we obtain a homogeneous expression which is also valid for non-unit vectors a and u.

Next, we polarize this expression, replacing a by $\alpha a+\beta u$, which we may do, since $\alpha a+\beta u$ is orthogonal to $u, J u$ if a is orthogonal to $u, J u$. Writing down the coefficient of $\alpha^{3} \beta^{2}$ and β^{5} yields

$$
\begin{equation*}
A B+D C=0, \quad D B-A C=0 \tag{23}
\end{equation*}
$$

where

$$
\begin{array}{ll}
A=2 R_{u a J a a}+R_{\text {auJuuu }}, & C=R_{\text {auJau }}, \\
B=R_{\text {JuuJuu }}-R_{\text {auau }}, & D=R_{a J u u J u}-2 R_{u J a a J a} .
\end{array}
$$

Since (23) is a homogeneous system of linear equations with determinant different from zero if $A \neq 0$, we always get $A B=0$. Explicitly, this means

$$
\begin{equation*}
\left(2 R_{\text {uaJaa }}+R_{\text {auJuu }}\right)\left(R_{\text {JuuJuu }}-R_{\text {auau }}\right)=0 \tag{24}
\end{equation*}
$$

for unit tangent vectors a, u on M, with a orthogonal to $u, J u$.
Again, we homogenize (24) and polarize, replacing a by $\alpha a+\beta u$ and u by $\beta a-\alpha u$. Writing down the coefficients of the polynomial obtained by this procedure gives

$$
\left\{\begin{array}{l}
(2 H+G) X=0, \\
2(2 H+G) E+3 K X=0, \\
(2 H+G) Z+24 K E-(G-H) X=0, \\
2(2 H+G) F+3 K(Z+X)-2(G-H) E=0, \\
(2 H+G) Y+24 K(F+E)-(G-H) Z-(2 G+H) X=0, \tag{25}\\
2(2 G+H) E-3 K(Z+Y)+2(G-H) F=0, \\
(2 G+H) Z-24 K F+(G-H) Y=0, \\
2(2 G+H) F-3 K Y=0, \\
(2 G+H) Y=0,
\end{array}\right.
$$

where

$$
\begin{aligned}
& X=R_{\text {JuuJuu }}-R_{\text {auau }}, \\
& Y=R_{\text {JaaJaa }}-R_{\text {auau }}, \\
& Z=2 R_{\text {JuuJaa }}+4 R_{\text {JuaJua }}-2 R_{\text {auau }}, \\
& E=R_{\text {aJuuJu }}, \quad F=R_{u J a a J a}, \\
& G=R_{\text {auJuu }}, \quad H=R_{\text {uaJaa }}, \quad K=R_{\text {auJau }} .
\end{aligned}
$$

First we suppose that $2 H+G=0$. The last two equations in (25) then yield that $H F=0$. On the contrary, if $2 H+G \neq 0$, we can use the first four equations to derive that $F=0$. So, in both cases we obtain $H F=0$, which means that $R_{u a J a a} R_{u J a a J a}=0$ for all a, u tangent to M with a orthogonal to $u, J u$. Replacing u by $u+J u$ in this condition eventually leads to $R_{u a J a a}=0$. Then the result for $n=4$ follows by Theorem 2.1.

REFERENCES

[1] E. Boeckx, J. Gillard and L. Vanhecke, Semi-symmetric and semi-parallel geodesic spheres and tubes, Indian J. Pure Appl. Math., to appear.
[2] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67.
[3] M. Djorić and L. Vanhecke, Almost Hermitian geometry, geodesic spheres and symmetries, Math. J. Okayama Univ. 32 (1990), 187-206.
[4] L. Gheysens and L. Vanhecke, Total scalar curvature of tubes about curves, Math. Nachr. 103 (1981), 177-197.
[5] A. Gray, Tubes, Addison-Wesley, Reading, 1989.
[6] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198.
[7] -, 一, The volumes of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. 44 (1982), 215-243.
[8] S. Tanno, Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep. 25 (1973), 190-201.
[9] L. Vanhecke, Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73-176.
[10] L. Vanhecke and T. J. Willmore, Interaction of tubes and spheres, Math. Ann. 263 (1983), 31-42.
[11] K. Yano and M. Kon, Structures on Manifolds, Ser. in Pure Math. 3, World Sci., Singapore, 1984.

Department of Mathematics
Katholieke Universiteit Leuven
Celestijnenlaan 200B
B-3001 Leuven, Belgium
E-mail: jurgen.gillard@wis.kuleuven.ac.be

