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SUM AND DIFFERENCE FREE PARTITIONS OF VECTOR SPACES

BY

KRZYSZTOF C IES IELSK I (MORGANTOWN, WEST WIRGINIA)

1. Preliminaries. In this paper V will stand for a vector space over
the rationals Q and S for a subset of V . All the partitions P of a set
S ⊆ V will be countable, i.e., |P| ≤ ω. They will often be identified with
colorings f : S → ω of S, via P = {f−1(n) : n < ω}. For a cardinal
κ > 0 and a partition P of S ⊆ V we say that P is κ sum free if for
every a ∈ V the equation x + y = a has less than κ solutions with x and
y from the same element of the partition P, i.e., such that f(x) = f(y).
We consider the solutions 〈x, y〉 and 〈y, x〉 identical and ignore the solution
〈x, y〉 = 〈a/2, a/2〉. We say that a set S is κ sum free if P = {S} is κ sum
free. In particular, if a partition P of S ⊆ V is κ sum free then P partitions
S into κ sum free sets. Thus, a partition P = {Pn ⊆ S : n < ω} of a set
S ⊆ V is κ sum free if

(∀a ∈ V )
∣∣∣ ⋃

n<ω

{{x, y} ∈ [Pn]2 : x + y = a}
∣∣∣ < κ,

while P partitions S into κ free sets if

(∀a ∈ V )(∀n < ω) |{{x, y} ∈ [Pn]2 : x + y = a}| < κ.

Similarly, we say that a partition P of S is κ difference free if for every
a ∈ V , a 6= 0, the equation x− y = a has less than κ solutions 〈x, y〉, with x
and y from the same element of P. A set S is κ difference free if P = {S}
is κ difference free.

These notions lead in a natural way to the following cardinal invariants,
in which P is a countable partition:

σ̂(κ) = min{|V | : there is no κ sum free partition P of V },
σ(κ) = min{|V | : there is no partition P of V into κ sum free sets},
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δ̂(κ) = min{|V | : there is no κ difference free partition P of V },
δ(κ) = min{|V | : there is no partition P of V into κ difference free sets}.

Note that the above minima are taken over non-empty sets by (1) and the
facts that

(a) if λ → (κ + 1)2ω then σ(κ) ≤ λ;
(b) if

(
λ
λ

)
→

(
κ
2

)1,1

ω
then δ(κ) ≤ λ.

(See [4] for the definitions and basic facts concerning the above partition
relations.) The proofs of these implications are similar to the proofs of
Theorems 2.2 and 2.4, respectively.

Clearly, for any cardinal numbers λ < κ,

(1) σ̂(κ) ≤ σ(κ) & δ̂(κ) ≤ δ(κ)

and

(2) σ̂(λ) ≤ σ̂(κ) & σ(λ) ≤ σ(κ) & δ̂(λ) ≤ δ̂(κ) & δ(λ) ≤ δ(κ).

Note also that if κ ≥ cf(κ) > ω then σ̂(κ) = σ(κ) and δ̂(κ) = δ(κ).
In our studies we will concentrate on these cardinals in the cases when

2 ≤ κ ≤ ω.

2. σ̂(ω) = σ(ω) = (2ω)+ and δ̂(ω) = δ(ω) = ω2. The equality σ(ω) =
(2ω)+ has been proved by Komjáth in [5, Thm. 2] and the inequality σ̂(ω) ≥
(2ω)+ by Ciesielski and Larson in [1, Thm. 1.1].

More precisely, the equality σ̂(ω) = σ(ω) = (2ω)+ follows from the
inequalities (2ω)+ ≤ σ̂(ω) ≤ σ(ω) ≤ (2ω)+. The inequalities σ̂(ω) ≤ σ(ω),
(2ω)+ ≤ σ̂(ω) and σ(ω) ≤ (2ω)+ follow from (1) and the next two theorems,
respectively.

Theorem 2.1 (Ciesielski and Larson [1, Thm. 1.1]). If |V | ≤ 2ω then
there is a countable ω sum free partition of V .

Theorem 2.2 (Komjáth [5, Thm. 2(b)]). If |V | > 2ω then V is not a
countable union of ω1 sum free sets.

Next we turn our attention to the equality δ̂(ω) = δ(ω) = ω2. Once
again, by (1), it is enough to prove only two inequalities: δ̂(ω) ≥ ω2 and
δ(ω) ≤ ω2. They are proved in the next two theorems. Notice that the
equality δ(ω) = ω2 has been proved by Komjáth in [5, Thm. 1].

Theorem 2.3. If |V | ≤ ω1 then there is a countable ω difference free
partition of V.

P r o o f. Represent V as the union of a continuous increasing sequence
{Vα : α < ω1} of countable subspaces. In particular, Vλ =

⋃
α<λ Vα for

every limit ordinal λ < ω1. For convenience we also assume that V0 = ∅.
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Thus, {Vα+1 \ Vα : α < ω1} is a partition of V into countable sets. For
α < ω1 let {pα

n : n < ω} be an enumeration of Vα+1 \ Vα.
A coloring function f : V → ω generating the desired partition is con-

structed by defining, by induction on α < ω1, its one-to-one restrictions
f |(Vα+1 \ Vα) : Vα+1 \ Vα → ω such that the following inductive condition
holds:

f(pα
n) ∈ ω \ {f(p) : p ∈ Vα & p = pα

n ± pα
j for some j ≤ n}.

To show that the partition generated by f is ω difference free choose an
arbitrary a = pα

n 6= 0 and consider the pairs 〈x, y〉 satisfying x− y = a and
such that f(x) = f(y). It is enough to show that {x, y} ∩ {pα

j : j ≤ n} 6= ∅.
Let x = pβ

m and y = pγ
k . Then pβ

m − pγ
k = pα

n. Notice that δ =
max{α, β, γ} must be equal to at least two of α, β and γ since otherwise the
number p associated with the index δ would belong to Vδ. Moreover, β 6= γ,
since otherwise f(pβ

m) = f(x) = f(y) = f(pβ
k), contradicting the fact that f

is one-to-one on Vα+1 \ Vα.
We are left with two cases.
If α = β > γ then pα

m − pα
n = x− a = y = pγ

k ∈ Vα. So, f(pα
m) = f(x) =

f(y) = f(pα
m − pα

n) implies that m ≤ n and y = pα
m ∈ {pα

j : j ≤ n}.
If α = γ > β then pα

k + pα
n = y + a = x = pβ

m ∈ Vα. So, f(pα
k ) = f(y) =

f(x) = f(pα
k + pα

n) implies that k ≤ n and x = pα
k ∈ {pα

j : j ≤ n}.
Theorem 2.4. If |V | = κ ≥ ω2 and cf(κ) > ω1 then V is not a countable

union of κ difference free sets.

P r o o f. For κ = ω2 this has been proved by Komjáth in [5, Thm. 1(b)].
The proof of the general case is essentially identical and follows from the
following partition theorem

(
κ
ω1

)
→

(
κ
2

)1,1

ω
of Erdős and Hajnal [2, p. 129]:

if f : κ × ω1 → ω then there are η < ξ < ω1 and K ∈ [κ]κ such that
f(α, η) = f(β, ξ) for every α, β ∈ K.

It is interesting how important is the assumption cf(κ) > ω1 in the last
theorem. It certainly cannot be completely removed, since for |V | = κ with
cf(κ) = ω the space V is a countable union of κ difference free sets as V can
be partitioned into countably many sets of size < κ each.

Problem 2.1. Let |V | = κ > cf(κ) = ω1. Does this imply that V is
not a countable union of κ difference free sets, or at least that there is no κ
difference free partition of V?

Problem 2.2. Let |V | = κ > cf(κ) = ω. Does this imply that there is no
κ difference free partition of V?

3. δ(n) = ω2 and δ̂(n) = ω1 for 2 ≤ n < ω. To see that δ(n) = ω2

notice that the inequality δ(n) ≤ δ(ω) ≤ ω2 follows from condition (2)
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and Theorem 2.4. The inequality δ(n) ≥ ω2 follows immediately from the
following theorem of Erdős and Kakutani [2]. (See also [5, Thm. 1(a)].)

Theorem 3.1. If |V | ≤ ω1 then V is a union of countably many bases.

To see that δ̂(n) = ω1 notice first that the inequality δ̂(n) ≥ ω1 is
obvious, since any countable V can be partitioned into singletons, and such
a partition is clearly 1 difference free. The inequality δ̂(n) ≤ ω1 follows from
the next theorem.

Theorem 3.2. If |V | ≥ ω1 then there is no k difference free partition of
V for any k < ω.

P r o o f. Let f : V → ω be a coloring generating a partition P. We will
show that P is not k difference free for any k < ω.

Take a linear base H of V over Q and choose disjoint sets A0 ∈ [H]ω1

and B ∈ [H]ω. Let B = {b1, b2, . . .}. Define a sequence 〈An ∈ [A0]ω1 : 0 <
n < ω〉 such that for all n > 0,

f(a + bn) = f(a′ + bn) for all a, a′ ∈ An,

and that An+1 ⊆ An for all n < ω. The set An+1 can be chosen to be one
of the sets {a ∈ An : f(a + bn) = i} for i < ω.

Now, for k < ω pick different a, a′ ∈ Ak. Then f(a+bn) = f(a′+bn) and
(a+ bn)− (a′+ bn) = a−a′ for every n ≤ k. So, the equation x− y = a−a′

has at least k different solutions with x and y from the same element of the
partition.

4. ω2 ≤ σ̂(m) ≤ σ(n) = min{ωk+2, (2ω)+} for 2k < n ≤ 2k+1 ≤ m <
2k+2 and k < ω. The equality σ(n) = min{ωk+2, (2ω)+} will be proved by
showing that for every k < ω,

min{ωk+2, (2ω)+} ≤ σ(2k + 1) ≤ σ(2k+1) ≤ min{ωk+2, (2ω)+}.

The inequalities

σ(2k + 1) ≤ σ(2k+1) ≤ σ(ω) ≤ (2ω)+

are consequences of (2) and Theorem 2.2. The remaining two inequalities:
σ(2k+1) ≤ ωk+2 and σ(2k + 1) ≥ min{ωk+2, (2ω)+} follow respectively from
the following two theorems.

Theorem 4.1. If |V | ≥ ωk+2 for k < ω then there is no partition P of
V into 2k+1 sum free sets.

P r o o f. The argument is included implicitly in the proof of [6, Thm. 5].

Theorem 4.2. If |V | ≤ min{ωk+1, 2ω} for k < ω then there is a
countable partition P of V into 2k + 1 sum free sets.
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P r o o f. For k = 0 this follows immediately from Theorem 3.1. The
proof of the general case, presented below, is essentially due to Baumgartner
(private communication).

Let |V | = min{ωk+1, 2ω}. Using induction on k < ω, if necessary, we
can assume that |V | = ωk+1 ≤ 2ω. We will construct a coloring f : V → R
into a countable set R which will generate the right partition.

So, let H be a linear base of V over Q. Thus, for every v ∈ V there
exists a unique mapping h 7→ qv

h from a finite set Hv ⊂ H into Q \ {0} such
that v =

∑
h∈Hv

qv
hh.

Now, let e : H → {0, 1}ω be a one-to-one mapping and for every S ⊂ H
choose a bijection wS : S → |S|. Thus, wS establishes a well ordering ≤S of
S in order type |S| by h1 ≤S h2 if and only if wS(h1) ≤ wS(h2). Moreover,
choose lv < ω such that e(h1)|lv 6= e(h2)|lv for all different h1, h2 ∈ Hv.

We define f(v) as a sequence 〈sv
i : i < |Hv|〉 by induction on i <

|Hv| as follows. Let hv
0 be the ≤H -maximal element of Hv and put sv

0 =
〈e(hv

0)|lv , qv
hv
0
, 0〉. Moreover, let Sv

0 = {h ∈ H : h <H hv
0}. Thus, |Sv

0 | ≤ ωk.
Now, if i + 1 < |Hv| is such that sv

i and Sv
i are already defined, we de-

fine sv
i+1 and Sv

i+1 as follows. Let hv
i+1 be the ≤Sv

i
-maximal element of

Hv \ {hv
j : j ≤ i}. If |Sv

i | ≤ ω we put sv
i+1 = 〈e(hv

i+1)|lv , qv
hi+1

, wSv
i
(hv

i+1)〉
and Sv

i+1 = Sv
i . If |Sv

i | > ω we put sv
i+1 = 〈e(hv

i+1)|lv , qv
hv

i+1
, 0〉 and

Sv
i+1 = {h ∈ Sv

i : h <Sv
i

hv
i+1}.

Thus, the range R of f is a subset of a countable set {0, 1}<ω ×Q× ω.
It is enough to show that f has the desired properties.

So, fix a ∈ V and let x, y ∈ V be different such that x + y = a and
f(x) = f(y), i.e., 〈sx

i : i < |Hx|〉 = 〈sy
i : i < |Hy|〉 = 〈si : i < n〉 for some

σ = 〈si : i < n〉 ∈ R. First notice that

Hx ∪Hy = Ha.

The inclusion Ha ⊂ Hx ∪Hy is obvious, since
∑

h∈Ha
qa
hh =

∑
h∈Hx

qx
hh +∑

h∈Hy
qy
hh. To see the other inclusion let h ∈ Hx ∪ Hy. If h 6∈ Hx ∩ Hy,

then clearly h ∈ Ha. So, assume that h ∈ Hx ∩Hy. Then h = hx
i = hy

j for
some i, j < n and e(hx

i )|lx = e(hy
j )|ly = e(hx

j )|lx . Hence, j = i by the choice
of lx. But then qx

hx
i
hx

i + qy
hy

j
hy

j = 2qx
hx

i
h, i.e., h ∈ Ha, as 2qx

hx
i
6= 0.

Next notice that

(3) if hx
i = hy

i for i ≤ k then x = y.

To see this, it is enough to show that if hx
i = hy

i for i ≤ k then hx
i = hy

i

for all i < n. If n ≤ k + 1 then there is nothing to prove. So, assume that
n > k + 1. It is easy to see by our construction that |Sx

i | > |Sx
i+1| provided

|Sx
i | > ω. This easily implies that |Sx

k | ≤ω and Sx
i = Sy

i for every i <n. So,

wSx
k
(hx

k+1) = wSy
k
(hy

k+1) = wSx
k
(hy

k+1)
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and, since wSx
k

is one-to-one, hx
k+1 = hy

k+1. Continuing this by induction,
we obtain hx

i = hy
i for every i < n. This finishes the proof of (3).

Now, for fixed σ = 〈si : i < n〉 = 〈〈ei, qi,mi〉 ∈ {0, 1}l × Q × ω : i < n〉
and for every i < n there are at most two h ∈ Ha such that e(h)|l = ei,
one from each Hx and Hy. Thus, for x + y = a and f(x) = f(y) = σ each
hx

i can be chosen in at most two ways. So, we have at most 2k+1 possible
sequences 〈hx

i : i ≤ k〉. Since, by (3), each such sequence determines x, we
have at most 2k+1 numbers x satisfying the equation. So, the number of
different pairs cannot exceed 2k. This finishes the proof.

To argue for the inequalities ω2 ≤ σ̂(m) ≤ min{ωk+2, (2ω)+} for 2k+1 ≤
m < 2k+2 and k < ω notice first that σ̂(m) ≤ σ̂(ω) ≤ (2ω)+ follows from
(1) and Theorem 2.2. The inequalities σ̂(m) ≥ ω2 and σ̂(m) ≤ ωk+2 follow
from the next two theorems, respectively.

Theorem 4.3 (Komjáth and Shelah [6, Thm. 5]). If |V | ≥ ωk+2 for
k < ω then there is no 2k+2 − 1 sum free partition P of V.

Theorem 4.4 (Komjáth and Shelah [6, Thm. 3]). If |V | ≤ ω1 then there
is a 2 sum free partition P of V.

The proof of Theorem 4.4 can also be easily obtained by a slight modi-
fication of the proof of Theorem 4.2.

The above inequalities give us, in particular, the following equalities.

Corollary 4.5. σ̂(2) = σ̂(3) = ω2.

Problem 4.1. Find the exact values of σ̂(n) for 3 < n < ω.

Note that it is consistent with ZFC that σ̂(2k+1) = ωk+2 = (2ω)+ for
every k < ω. This can be deduced from the next theorem in the same way
as [6, Thm. 5] was deduced from [6, Thm. 4].

Theorem 4.6 (Komjáth and Shelah [7, Thm. 1]). For 1 ≤ n < ω it is
consistent that 2ω = ωn and there is a function F : [ωn]<ω → ω such that
for every A ∈ [ωn]<ω there are at most 2n − 1 solutions of A = H0 ∪ H1

with H0 6= H1 and F (H0) = F (H1).

5. Sum and difference free partitions of subsets of V . This
section is motivated by the following theorems that deal with partitioning
subsets of V into sum or difference free sets. We will try to examine their
analogs for sum or difference free partitions.

Theorem 5.1 (Erdős [3]). If |V | ≥ ω2 then there exists a 3 sum free set
S ∈ [V ]ω2 which does not admit a countable partition into 2 sum free sets.

Theorem 5.2 (Komjáth [5, Thms. 3 and 4]). (1) If S ∈ [V ]≤ω2 is ω2

difference free then S can be partitioned into countably many 2 difference
free sets.
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(2) If |V | ≥ (2c)+ then there is a 3 difference free set S ⊆ V which
cannot be partitioned into countably many 2 difference free sets.

Theorem 5.3 (Komjáth [5, Thm. 6]). If S ⊂ V is ω2 difference free then
S can be partitioned into countably many ω difference free and ω sum free
sets.

Theorem 5.1 has the following corollary.

Corollary 5.4. The following conditions are equivalent.

(i) |V | ≥ ω2.
(ii) There exists a 3 sum free set S ⊆ V which does not admit a countable

partition into 2 sum free sets.
(iii) There exists a 3 sum free set S ⊆ V which does not admit a countable

2 sum free partition.
(iv) V does not admit a countable 2 sum free partition.

P r o o f. (i)⇒(ii) follows from Theorem 5.1. (ii)⇒(iii) and (iii)⇒(iv) are
obvious. (iv)⇒(i) follows from Theorem 4.4.

Since σ(2) = σ̂(2) = ω2 Corollary 5.4 suggests the following conjecture.

Conjecture 5.1. Let 1 < κ < λ be cardinal numbers.

(a) |V | ≥ σ(κ) if and only if there exists a λ sum free set S ⊆ V which
does not admit a countable partition into κ sum free sets.

(b) |V | ≥ σ̂(κ) if and only if there exists a λ sum free set S ⊆ V which
does not admit a countable κ sum free partition.

Notice that the implications from right to left are obvious. The following
part of the conjecture follows from the results of Section 4.

Theorem 5.5. For k < ω such that 2ω ≥ ωk+1 the following conditions
are equivalent :

(i) |V | ≥ σ(2k+1) = ωk+2.
(ii) There exists 2k+1 + 1 sum free set S ⊆ V which does not admit a

countable 2k+1 sum free partition.

P r o o f. (ii)⇒(i) follows by contraposition from Theorem 4.2.
To see (i)⇒(ii) take a subspace V0 of V of cardinality ωk+2. Then, by

Theorem4.2, there exists a countable partition of V0 into 2k+1 + 1 sum free
sets. At least one of these sets must satisfy (ii) by Theorem 4.1.

The difference free analog of Corollary 5.4 related to Theorem 5.2 reads
as follows.

Theorem 5.6. The following conditions are equivalent :

(i) |V | ≥ ω1.
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(ii) There exists a 3 difference free set S ⊆ V which does not admit a
countable 2 difference free partition.

P r o o f. (ii)⇒(i) is obvious, since every countable set can be partitioned
into singletons.

To see the other implication, let {s, t} ∪ X be a linearly independent
subset of V of cardinality ω1 such that s, t 6∈ X and s 6= t. Define

S = {s− x : x ∈ X} ∪ {x− t : x ∈ X}.
To see that S is 3 difference free take a 6= 0. Consider all possible

solutions of x − y = a with x, y ∈ S. They must be of one of the following
forms:

(1) a = (s− x1)− (y1 − t) = −x1 − y1 + s + t for some x1, y1 ∈ X;
(2) a = (y2 − t)− (s− x2) = x2 + y2 − s− t for some x2, y2 ∈ X;
(3) a = (s− x3)− (s− y3) = −x3 + y3 for some x3, y3 ∈ X;
(4) a = (x4 − t)− (y4 − t) = x4 − y4 for some x4, y4 ∈ X.

By linear independence of {s, t}∪X, if a can be represented in the form (1)
or (2) than it cannot be represented in any other form. Moreover, such an
a can be obtained in at most two ways: by exchanging xi with yi. If a is
in the form (3) or (4) then its representation is unique in each form. Thus,
such an a can be represented in at most two ways: one in the form (3) and
one in the form (4). So, S is 3 difference free.

To see that there is no countable 3 difference free partition of S let
f : S → ω. Define F : X → ω×ω by F (x) = 〈f(s−x), f(x− t)〉 and let X0

be an uncountable subset of X on which F is constant. Thus, for different
a, b ∈ X0 we have f(s− a) = f(s− b) and f(a− t) = f(b− t). However,

(a− t)− (b− t) = a− b = (s− b)− (s− a).

Therefore the equation x− y = a− b has two different solutions 〈a− t, b− t〉
and 〈s− b, s− a〉 that agree with f .

Problem 5.1. Find conditions analogous to Theorems 5.2 and 5.6 for
n + 1 difference free subsets of V without any n difference free partition, or
a partition into n difference free sets.
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[5] P. Komj á th, Vector sets with no repeted differences, Colloq. Math. 64 (1993), 129–
134.
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