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THE IDZIK TYPE QUASIVARIATIONAL INEQUALITIES
AND NONCOMPACT OPTIMIZATION PROBLEMS

BY

SEHIE PARK (SEOUL) AND JONG AN PARK (CHOONCHUN)

0. Introduction. Around 1930, Schauder conjectured that every com-
pact convex subset of a topological vector space would have the fixed point
property. During the last three decades, this old conjecture was intensively
examined by many mathematicians. However, until now the conjecture is
not resolved.

In an attempt to resolve the conjecture, Idzik [I3], in 1988, obtained
a very remarkable fixed point theorem for not necessarily locally convex
topological vector spaces. His theorem is one of the most general results
and extends a large number of known theorems.

In the present paper, we first obtain a quasivariational inequality equiv-
alent to the Idzik theorem, and then a partial generalization to condensing
maps in the forms of a fixed point theorem and a quasivariational inequal-
ity. Our new results are applied to give simple and unified proofs of the
known variational inequalities of the Hartman–Stampacchia–Browder type.
Finally, as an application of the Idzik theorem, we obtain a solution of a non-
compact infinite optimization problem, which leads us to a generalization of
the Nash equilibrium theorem.

1. Compact maps. Let E be a real Hausdorff topological vector space
(briefly, a t.v.s.). A set B ⊂ E is said to be convexly totally bounded (c.t.b.)
whenever for every neighborhood V of 0 ∈ E, there exist a finite subset
{xi : i ∈ I} ⊂ E and a finite family of convex sets {Ci : i ∈ I} such that
Ci ⊂ V for each i ∈ I and B ⊂

⋃
{xi + Ci : i ∈ I}. See Idzik [I3] and

Weber [W].
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Let δ be the fundamental system of neighborhoods of the origin 0 in E.
We recall that a set K ⊂ E is locally convex if for every x ∈ K and every
V ∈ δ there exists U ∈ δ such that co((x + U) ∩ K) ⊂ x + V . We say
that K ⊂ E is of Z type if for every V ∈ δ there exists U ∈ δ such that
co(U ∩ (K −K)) ⊂ V . See [H].

The following are known [I3]:

(1) Every compact subset of a locally convex t.v.s. is c.t.b.
(2) If E is locally convex, then every subset K ⊂ E is of Z type and is

a locally convex set.
(3) If K ⊂ E is a compact subset which is either locally convex or of Z

type, then it is c.t.b.
(4) If the topological dual E∗ of E separates points, then every compact

convex subset of E is c.t.b. (see [W]).

In this paper, a multifunction or map T : X ( Y is nonempty-valued.
For topological spaces X and Y , a map T : X ( Y is said to be upper

semicontinuous (u.s.c.) iff for each closed set B ⊂ Y , the set T−(B) = {x ∈
X : T (x) ∩B 6= ∅} is a closed subset of X; lower semicontinuous (l.s.c.) iff
for each open set B ⊂ Y , the set T−(B) is open; and continuous iff it is
u.s.c. and l.s.c.

We begin with the following particular form of Idzik’s theorem [I3, The-
orem 4.3]:

Theorem 0. Let X be a nonempty convex subset of a t.v.s. E and T :
X ( X a closed map with convex values. If T (X) is a compact c.t.b. subset
of X, then T has a fixed point x0 ∈ X; that is, x0 ∈ T (x0).

Recall that T is said to be closed iff its graph Gr(T ) is closed in X ×X
and compact iff T (X) is a compact subset of X. Note that every u.s.c. map
T with closed values is closed.

Theorem 0 generalizes earlier results due to Zima, Rzepecki, Himmel-
berg, and Hadžić. For references, see [I3] or [H].

Recall that a real-valued function g : X → R on a topological space X is
lower [resp. upper ] semicontinuous (l.s.c.) [resp. u.s.c.] iff {x ∈ X : g(x) >
r} [resp. {x ∈ X : g(x) < r}] is open for each r ∈ R. If X is a convex set
in a vector space, then g : X → R is quasiconcave [resp. quasiconvex ] iff
{x ∈ X : g(x) > r} [resp. {x ∈ X : g(x) < r}] is convex for each r ∈ R.

The following form of quasivariational inequality is equivalent to Theo-
rem 0:

Theorem 1. Let X be a nonempty convex subset of a t.v.s. E, f : X ×
X → R an u.s.c. function, and S : X ( X a closed compact map such that
S(X) is c.t.b. Suppose that
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(1) the function M defined on X by

M(x) = sup
y∈S(x)

f(x, y) for x ∈ X

is l.s.c.; and
(2) for each x ∈ X, the set {y ∈ S(x) : f(x, y) = M(x)} is convex.

Then there exists an x̂ ∈ X such that

x̂ ∈ S(x̂) and f(x̂, x̂) = M(x̂).

P r o o f. Note that the marginal function M in (1) is actually continuous
by the well-known theorem of Berge [B, Theorem 2, Section 3, Chapter VI].
Define a map T : X ( X by

T (x) = {y ∈ S(x) : f(x, y) = M(x)}
for x ∈ X. Note that each T (x) is nonempty and convex by (2). We show
that the graph Gr(T ) is closed in X ×X. In fact, let (xα, yα) ∈ Gr(T ) and
(xα, yα) → (x, y). Then

f(x, y) ≥ lim
α
f(xα, yα) = lim

α
M(xα) ≥ lim

α
M(xα) ≥M(x)

and, since Gr(S) is closed in X ×X, yα ∈ S(xα) implies y ∈ S(x). Hence
(x, y) ∈ Gr(T ). Since T (X) ⊂ S(X) and S is compact, T (X) is a compact
c.t.b. subset of X. Therefore, by Theorem 0, T has a fixed point x̂ ∈ X;
that is, x̂ ∈ S(x̂) and f(x̂, x̂) = M(x̂). This completes our proof.

R e m a r k s. 1. If f(x, y) ≡ 0 for all x, y ∈ X, then Theorem 1 reduces
to Theorem 0. If f and S are continuous, then condition (1) holds by the
theorem of Berge [B].

2. For a locally convex t.v.s. E, particular forms of Theorem 1 were ob-
tained by Takahashi [T, Theorem 4] and Im and Kim [IK, Theorem 1]. Those
authors applied their results to best approximation problems and optimiza-
tion problems, respectively. See also Park [P2] and Park and Chen [PC].

2. Φ-condensing maps. In this section, we show that Theorem 1 also
holds for condensing maps, instead of compact maps, whenever the domain
X is closed.

Let E be a t.v.s. and C a lattice with a least element, which is denoted
by 0. A function Φ : 2E → C is called a measure of noncompactness on E
provided that the following conditions hold for all X,Y ∈ 2E :

(1) Φ(X) = 0 iff X is compact;
(2) Φ(coX) = Φ(X), where co denotes the convex closure of X; and
(3) Φ(X ∪ Y ) = max{Φ(X), Φ(Y )}.
It follows that X ⊂ Y implies Φ(X) ≤ Φ(Y ).
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The above notion is a generalization of the set-measure γ and the ball-
measure χ of noncompactness defined either in terms of a family of semi-
norms or a norm. For details, see [PF].

If T : X ( E, X ⊂ E, then T is called Φ-condensing provided that if
D ⊂ X and Φ(D) ≤ Φ(T (D)), then D is compact; that is, Φ(D) = 0.

Every map defined on a compact set is Φ-condensing. Note also that
every compact map is Φ-condensing. See [MTY].

The following is recently due to Mehta, Tan, and Yuan [MTY, Lemma 1]
for a locally convex t.v.s., but the proof works also for any t.v.s.

Lemma. Let X be a nonempty closed convex subset of a t.v.s. E, and Φ
a measure of noncompactness on E. If T : X ( X is Φ-condensing , then
there exists a nonempty compact convex subset K of X such that T (K) ⊂ K.

From Theorem 0 and the Lemma, we obtain the following fixed point
theorem for Φ-condensing maps:

Theorem 2. Let X be a nonempty closed convex subset of a t.v.s. E,
and Φ a measure of noncompactness on E. If T : X ( X is a closed
Φ-condensing map with convex values such that T (X) is a c.t.b. subset of
X, then T has a fixed point.

P r o o f. By the Lemma, there exists a nonempty compact convex subset
K of X such that T (K) ⊂ K. Then T |K is a closed map with convex values
such that T (K) ⊂ T (X). Since T (K) is a compact c.t.b. subset of K, T |K
has a fixed point.

Theorem 2 has the following equivalent formulation of a quasivariational
inequality:

Theorem 3. Let X be a nonempty closed convex subset of a t.v.s. E, Φ
a measure of noncompactness on E, f : X ×X → R an u.s.c. function, and
S : X ( X a closed Φ-condensing map such that S(X) is a c.t.b. subset
of X. Suppose that conditions (1) and (2) of Theorem 1 hold. Then there
exists an x̂ ∈ X such that

x̂ ∈ S(x̂) and f(x̂, x̂) = M(x̂).

P r o o f. Define a map T : X ( X as in the proof of Theorem 1. Then
T is a closed map with convex values such that T (X) is a c.t.b. subset of
X. We show that T is also Φ-condensing. In fact, suppose that D ⊂ X
and Φ(D) ≤ Φ(T (D)). Then Φ(D) ≤ Φ(T (D)) ≤ Φ(S(D)). Since S is
Φ-condensing, we have Φ(D) = 0 and hence T is Φ-condensing. Therefore,
by Theorem 2, T has a fixed point. This completes our proof.

R e m a r k. If f(x, y) ≡ 0 for all x, y ∈ X, then Theorem 3 reduces to
Theorem 2.
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3. Applications to variational inequalities. In this section, we
apply Theorems 1 and 3 to give simple proofs of the variational inequalities
of the Hartman–Stampacchia–Browder type.

(i) (Hartman and Stampacchia [HS, Lemma 3.1]) Let K be a compact
convex set in Rn and B : K → Rn a continuous map. Then there exists
u0 ∈ K such that

〈B(u0), v − u0〉 ≥ 0 for all v ∈ K.

Put X = K, f(x, y) = 〈B(x),−y〉, S(x) = K for x, y ∈ K, and apply
Theorem 1 or 3.

(ii) (Browder [B1, Theorem 3; B2, Theorem 2]) Let E be a t.v.s. on
which its topological dual E∗ is equipped with a topology such that the pairing
〈 , 〉 : E∗ × E → R is continuous. Let K be a compact convex c.t.b. subset
of E, and T : K → E∗ continuous. Then there exists a u0 ∈ K such that

〈T (u0), v − u0〉 ≥ 0 for all v ∈ K.

Apply Theorem 1 as in (i).
(iii) (Lions and Stampacchia [LS], Stampacchia [S], and Mosco [M, p.

94]) Let V be an inner product space, X a compact convex subset of V , and
a : V × V → R a continuous bilinear form on V . Then for every v′ ∈ V ∗,
there exists a (unique) vector u ∈ X such that

a(u, u− w) ≤ 〈v′, u− w〉 for all w ∈ X.

Put X = K, V = E, S(x) = K for x ∈ X,

f(u,w) = a(u,−w)− 〈v′,−w〉 for u,w ∈ X,
and apply Theorem 1.

(iv) (Karamardian [K, Lemma 3.2]) Let X be a compact convex c.t.b.
subset of a t.v.s. E, F a topological space, g : X → F a function, and
ψ : X × F → R a function. If for each y ∈ F , ψ(·, y) is quasiconvex on
X and the function (u, v) 7→ ψ(u, g(v)) is continuous on X ×X, then there
exists an x ∈ X such that

ψ(x, g(X)) ≤ ψ(x, g(x)) for all x ∈ X.

Put S(x) = X, f(x, y) = −ψ(y, g(x)) for x, y ∈ X, and apply Theorem 1.
Note that Karamardian [K] applied (iv) to obtain a variational inequality

(v) below, Fan’s best approximation theorem, and a solution of the gener-
alized complementarity theorem [K, Theorem 3.1].

(v) (Karamardian [K, Corollary 3.1], Juberg and Karamardian [JK,
Lemma], Park [P1, Corollary 1.3]) Let X be a compact convex c.t.b. sub-
set of a t.v.s. E, F a topological space, and 〈 , 〉 : F × E → R a function
which is linear in the second variable. Suppose that g : X → F is a function
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such that (x, y) 7→ 〈g(x), y〉 is continuous on X × E. Then there exists an
x ∈ X such that

〈g(x), y − x〉 ≥ 0 for all y ∈ X.

Put S(x) = X, f(x, y) = 〈g(x),−y〉 for x, y ∈ X, and apply Theorem 1.
(vi) (Parida, Sahoo, and Kumar [PSK, Theorem 3.1], Behera and Panda

[BP, Theorem 2.2], Siddiqi, Khaliq, and Ansari [SKA]) Let X be a compact
convex c.t.b. subset of a t.v.s. E on which E∗ is equipped with a topology
such that the pairing 〈 , 〉 : E∗ × E → R is continuous, T : X → E∗ and
θ : K ×K → E continuous maps such that

(1) 〈T (y), θ(y, y)〉 ≥ 0 for all y ∈ X; and
(2) for each y ∈ X, the function 〈T (y), θ(·, y)〉 : X → R is quasiconvex.

Then there exists an x0 ∈ X such that

〈T (x0), θ(y, x0)〉 ≥ 0 for all y ∈ X.

Put S(x) = X, f(x, y) = −〈T (x), θ(y, x)〉 for x, y ∈ X, and apply Theo-
rem 1.

R e m a r k s. 1. Note that (ii) and (iv)–(vi) are stated in more general
forms than the original ones.

2. In the framework of the KKM theory, some of (i)–(vi) can be obtained
without assuming the property of c.t.b. However, in this section, we wanted
to show the applicability of the Idzik theorem.

4. A noncompact infinite optimization problem. As another
application of the Idzik theorem, we consider a noncompact infinite opti-
mization problem for a non-locally convex t.v.s.

Let I be any index set and, for each i ∈ I, Ei be a t.v.s. For subsets
Xi ⊂ Ei, we use the notation

X =
∏
i∈I

Xi and Xi =
∏

j∈I,j 6=i

Xj .

For each x ∈ X, xi ∈ Xi denotes its ith coordinate and xi ∈ Xi the
projection of x in Xi. Let x = (xi, xi).

From Theorem 0, we deduce the following:

Theorem 4. Let I be an index set , and for each i ∈ I, Xi be a convex
subset of a t.v.s. Ei, Di be nonempty compact subsets of Xi such that
D =

∏
i∈I Di is a c.t.b. subset of E =

∏
i∈I Ei. For each i ∈ I, let fi : X =∏

i∈I Xi → R be an u.s.c. function, and Si : Xi ( Di a closed map such
that
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(1) the function Mi defined on Xi by

Mi(xi) = sup
y∈Si(xi)

fi(xi, y) for xi ∈ Xi

is l.s.c.; and
(2) for each xi ∈ Xi, the set

Ti(xi) = {y ∈ Si(xi) : fi(xi, y) = Mi(xi)}
is convex.

Then there exists an x ∈ D such that for each i ∈ I,
xi ∈ Si(xi) and fi(xi, xi) = Mi(xi).

P r o o f. As in the proof of Theorem 1, the map Ti : Xi ( Di is a closed
compact map. Define T : X ( D by

T (x) =
∏
i∈I

Ti(xi) for x ∈ X.

Then T is also a closed compact map with convex values by [F, Lemma 3]
and the assumption (2). Since T (X) ⊂ D is c.t.b., by Theorem 0, T has a
fixed point x ∈ D; that is, xi ∈ Ti(xi) ⊂ Si(xi) and fi(xi, xi) = Mi(xi) for
all i ∈ I. This completes our proof.

R e m a r k s. 1. If each Ei is locally convex and each fi and Si are
continuous, then Theorem 4 reduces to Idzik [I1, Theorem 7], which includes
later works of Im and Kim [IK, Theorem 2] and Kaczyński and Zeidan [KZ].
In [I2, Theorem 7], a related result has been proved for a general t.v.s.

2. Instead of the compactness of Si, as in Theorem 3, we may obtain a
result for Φ-condensing maps Si.

From Theorem 4, we obtain the following infinite version of the Nash
equilibrium theorem:

Theorem 5. Let I be an index set , and for each i ∈ I, Xi be a nonempty
compact convex subset of a t.v.s. Ei such that X =

∏
i∈I Xi is a c.t.b. subset

of E =
∏

i∈I Ei. For each i ∈ I, let fi : X → R be a continuous function
such that for each given point xi ∈ Xi, xi 7→ f(xi, xi) is a quasiconcave
function on Xi. Then there exists an x ∈ X such that

fi(x) = fi(xi, xi) = max
yi∈Xi

fi(xi, yi) for each i ∈ I.

P r o o f. Let Di = Xi and Si(xi) = Xi for each xi ∈ Xi and each
i ∈ I. Then Si is a continuous map. Since each fi and Si are continuous
with compact values, condition (1) of Theorem 4 is satisfied by the theorem
of Berge [B]. Note that condition (2) holds by the quasiconcavity of fi.
Therefore, the conclusion follows from Theorem 4 immediately.
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R e m a r k s. 1. Note that Ma [M, Theorem 4] already established Theo-
rem 5 without assuming that X is c.t.b. A generalization of Ma’s theorem
was given in [I2, Theorem 7].

2. Nash’s original theorem is the case Ei are Euclidean spaces and I is
finite. See [N].
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