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On the category of modules of second kind
for Galois coverings

by

Piotr Dowbor (Torun)

Abstract. Let F' : R—R/G be a Galois covering and mod; (R/G) (resp. moda(R/G))
be a full subcategory of the module category mod(R/G), consisting of all R/G-modules of
first (resp. second) kind with respect to F. The structure of the categories (mod(R/G))/
[mod; (R/G)] and moda(R/G) is given in terms of representation categories of stabilizers
of weakly-G-periodic modules for some class of coverings.

0. Introduction. The covering technique in representation theory was
introduced and developed for the investigation of representation-finite alge-
bras and computing their representations (see [G], [Gr], [BG], [R]). It has
been generalized and applied to the study of representation-infinite algebras
(see [DS1], [DLS], [DS2], [P]).

The covering methods in representation theory of algebras over a field k
are based on interpretation of modules over the algebra as representations
of some quiver with relations, or more generally modules over a locally
bounded category. Following [BG] a k-category R is called locally bounded
if all objects of R have local endomorphism rings, the different objects are
nonisomorphic, and both sums } 5 dimy R(z,y) and >_ pdimy R(y, x)
are finite for each € R. R-modules are then contravariant k-linear functors
from R to the category of k-vector spaces. An R-module M is locally finite-
dimensional (resp. finite-dimensional) if dimy, M (z) is finite for each z € R
(resp. >, cp dimy M (x) is finite). We denote by MOD R the category of all
R-modules, by Mod R (resp. mod R) the full subcategory of all locally finite-
dimensional (resp. finite-dimensional) R-modules and by Ind R (resp. ind R)
the full subcategory of indecomposable objects of Mod R (resp. mod R). For
any M € MOD R, M* is the R°?’-module dual to M, given by M*(z) =
Homy (M (z), k) for x € R. The contravariant functor ( )* : MODR —

1991 Mathematics Subject Classification: Primary 16G60.
Supported by Polish KBN Grant 1221/2/91.

(31]



32 P. Dowbor

MOD R°P mapping M to M* induces an equivalence of categories Mod R ~
(Mod R°P)°P,

Let A be a finite-dimensional algebra over an algebraically closed field
k. Then the category of finite-dimensional right A-modules is equivalent
to mod R, for some uniquely determined (up to isomorphism), finite, lo-
cally bounded k-category R,. Assume that R, is of the form R/G, where
R is some locally bounded k-category and G some group of k-linear au-
tomorphims of R, acting freely on objects. This occurs for example if R4
admits some nice group grading (see [Gr]). Then the Galois covering functor
F: R — R/G induces a pair of functors

F
MOD R = MOD(R/G),

Fo
where F, is the pull-up functor given by Fe(M) = M - F for M € MOD R,
and F) is the push-down functor, the left adjoint to F, (see [BG]). If ad-
ditionally G acts freely on (ind R)/~, then F) induces an injection from
the set ((ind R)/~)/G of G-orbits of (ind R)/~ into (ind(R/G))/~ (see [G;
3.5]). In some cases the study of the module category for the algebra A

completely reduces to an analogous problem for the cover category R of R4
(see [G], [DS1], [DS2], [DLS]).

Let R be a locally bounded k-category and G a group of k-linear au-
tomorphisms of R acting freely on the isoclasses of indecomposable finite-
dimensional R-modules. Assume that for any x € R the set R, consisting
of all y € R such that there exists an indecomposable finite-dimensional
R-module M with nonzero M(x) and M(y), is finite. Then the push-down
functor F\ : mod R — mod(R/QG) associated with the Galois covering F :
R — R/G induces a bijection between the G-orbits of isoclasses of indecom-
posable finite-dimensional R-modules and the isoclasses of indecomposable
finite-dimensional R/G-modules.

In the general case the category mod(R/G) of finite-dimensional R/G-
modules does not necessarily coincide with its full subcategory mod; (R/G)
formed by all modules of the form F\M, M € modR. It was observed
in [DS2] that the structure of the remaining indecomposable R/G-modules
strongly depends on weakly-G-periodic R-modules, i.e. indecomposable
locally finite-dimensional R-modules B such that supp B is contained in
finitely many G p-orbits and G is infinite, where Gg = {g € G : 9B ~ B}
is the stabilizer of the isoclass of B and supp B = {z € R : B(x) # 0} is the
support of B.

The main aim of this paper is to give a description of the full subcategory
moda(R/G) of mod(R/G) consisting of all modules having no direct sum-
mands from mod; (R/G), for some class of Galois coverings. The elements
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from mods(R/G) (resp. mod; (R/G)) are usually called modules of the sec-
ond (resp. first) kind with respect to the Galois covering F'. The descrip-
tion is given in terms of the factor category mod(R/G)/[mod; (R/G)]. This
category carries essential information about the structure of the category
mods(R/G), namely has the same indecomposable objects and irreducible
maps (see [AR]).

Recall that for any subcategory Vy of an additive category V, V/[V]
denotes the factor category of ¥V modulo the ideal [Vy] of all morphisms in V
factorizing through a direct sum of some objects of V. If additionally V is a
Krull-Schmidt category and V) is closed under direct sums and summands,
then for any v,v" € V without direct summands in Vo, [Vo](v,v’) is contained
in the square of the Jacobson radical of the category V, and there exists a
natural bijection between indecomposables from V \ V, and from V/[V].

The first result describing the category of modules of the second kind
was the reduction theorem proved in [DS2]:

Let R be a locally bounded k-category and G a group of automorphisms
of R which acts freely on the isoclasses of finite-dimensional indecomposable
modules. Assume that there exists a G-invariant family S of subcategories
of R with the following properties:

(i) for each L € S and each G-orbit O of R, O N L is contained in
finitely many Gp-orbits in R, where G, is the stabilizer of L in G,
(i) for any two different L, L' € S, LN L’ is locally support-finite,
(iii) for each weakly-G-periodic R-module B there exists L € S containing
supp B.

Then for any fized set Sy of representatives of the G-orbits of S there
erists an equivalence of factor categories

H (mod(L/G))/[mod;(L/GL)] ~ (mod(R/G))/[mod; (R/G)].

LeSy

The above reduction theorem has very interesting consequences in situ-
ations similar to those when the supports of all weakly-G-periodic modules
have linear ordinary quivers. In this case the family of all supports of weakly-
G-periodic modules satisfies the assumptions of the theorem and the cate-
gories L/G, are simply the path categories of quivers of euclidean type A,,.
Moreover, the supports of any two nonisomorphic weakly-G-periodic mod-
ules are different, and for each weakly-G-periodic R-module B the group
G p coincides with Ggupp p and is an infinite cyclic group. Therefore F)\B
has the structure of a kG p-R/G-bimodule and induces a functor

@B = — ®k[£7£—1} F)\B : InOd k[g,f_l] - mOd(R/G)7
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where mod k[¢,£71] is the category of finite-dimensional modules over the
algebra of Laurent polynomials in the variable £ over k.

Let W denote the set of all weakly-G-periodic modules and Wy a fixed
set of representatives of the isoclasses representing G-orbits in W. Then by
the description of the module category for quivers of euclidean type A,,, the
functors (@) geyy, induce equivalences

(¥)z mod k[¢,€7"] = (mod(L/GL))/[modi (L/GL)],

and the theorem yields the equivalence

[T mod kg, €] = (mod(R/G))/[mods (R/G)].
Wo

The above equivalence allows us to understand better the structure of
the module category for special biserial algebras. It has many applications
(see [S1]-[S3]). Some generalization of this theorem has been given in [P].

In spite of many applications the reduction theorem is useless in the case
when there exists a weakly-G-periodic R-module with support R, since then
S has to be equal to {R}. This often happens when G is the infinite cyclic
group. The simplest example of this situation is the Z cover R of the algebra
klz,yl/(2®,y?, zy).

In the general case many weakly-G-periodic modules can have the same
support L and we cannot expect that the equivalence (*)r holds. The de-
scription of the category mods(R/G) in this situation cannot depend so
strongly on the properties of supports of weakly-G-periodic modules and
therefore some different approach is necessary. In this paper we propose
a new strategy. It relies on a direct reduction to representation theory of
stabilizers of weakly-G-periodic modules, without intermediate steps of the
form L/G and any knowledge of the module categories mod(L/GL). The
conditions imposed on weakly-G-periodic modules are expressed in terms of
their tensor products and homomorphisms. We prove the following result
(see Theorem 4.1):

Let R be a locally bounded k-category, where k is algebraically closed, G
a group of automorphisms of R acting freely on the isoclasses of indecom-
posable finite-dimensional R-modules, VW the set of all weakly-G-periodic
R-modules and Wy a fized set of representatives of the G-orbits in W up to
isomorphism. Assume that R satisfies the following two conditions:

(i) for each B € W the stabilizer Gp is an infinite cyclic group and the
endomorphism ring Endg(B) is isomorphic to k,

(ii) for any two different By, By € W such that Gp, N Gp, is nontrivial
the tensor product B1®r B35 of By and the k-dual of By is a finitely generated
free module over the group algebra k(Gp, N Gp,).
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Then the functors

37 - mod k[, 6] 25 mod(R/G) — (mod(R/Q))/[mody (R/G)],
B € W, are full and faithful, the functor

@: J] modk[¢,&7"] — (mod(R/G))/[mod: (R/G)]
BeWy

induced by (P8)pew, is dense, and ® admits a left quasi-inverse

7 : (mod(R/G))/[mod (R/G)] — [] modkl¢, &)
BeW,y

whose kernel Ker W is an ideal contained in the Jacobson radical of the cat-
egory (mod(R/G))/[mody(R/G)]. In particular, ¢ and ¥ induce a decom-
position

(mod(R/G))/[mody (R/G)] ~ [] modk[¢, &' & Ker®
BeWy
and a bijection between the corresponding sets of isomorphism classes of

indecomposable objects, and Ker W restricted to the image of P is zero for
each B € W.

The class of examples covered by this theorem is not essentially larger
than that covered by the previous one. The simplest example illustrating
the theorem is the covering of the algebra k[z,y]/(23, y?, ry) with the group
Z x 7. In a subsequent publication a more general version of the above result
without so strong restrictions on endomorphism rings of weakly-G-periodic
R-modules will be proved.

The paper is organized as follows. Section 1 contains notations, terminol-
ogy and the basic facts concerning Galois coverings of representation-infinite
algebras. In Section 2 the operations on R-modules with R-actions of groups
are studied and later applied to the description of the functors #? and their
adjoints in terms of R-modules. In Section 3 some technique for verifying
whether certain representations of the infinite cyclic group are free is intro-
duced. The whole Section 4 is devoted to the proof of the Theorem.

The methods we use here are very elementary. We assume the basic
results on Galois coverings proved in [G] and [DS2], elementary properties
of adjoint functors [M], the Krull-Warfield decomposition theorem [W], the
description of indecomposable finitely generated modules over principal ideal
domains and an elementary knowledge of representations of groups [L].

Some of the results have been obtained during the author’s visit at FB
17 Uni-GH Paderborn. The author whishes also to express his gratitude to
Daniel Simson for his constant support during the work on this topic. Finally,
he would like to thank Mr. Stupski for careful typing of this manuscript.
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1. Basic definitions and facts

1.1. Throughout this paper we denote by k an algebraically closed field,
by R a locally bounded k-category (see [BG], [G]) and by G a group of
k-linear automorphisms of R. Then G acts on MOD R by translations 9(—)
which assign to each M € MOD R the R-module 9M = M o g~!. For each
M € MOD R we denote by Gy the stabilizer {g € G : 9M ~ M}. Through-
out this paper we assume that G acts freely on (ind R)/~.

By MODYR we denote the category of R-modules with an R-action of
G. The objects of MODY R are pairs (M, ), where M € MOD R and p is a
family of R-homomorphisms (pg : M — 9 'M),eq such that 9 jug, - 1y, =
Kgrq for all gi,g2 € G. The set of morphisms from (M, ) to (M',y) in
MODC R, denoted by Hom% (M, M), consists of all f € Hompg(M, M’) such
that pg - f = 9t g for all g € G.

ModfGR is the full subcategory of MODYR formed by all (M,u) €
MODCY R such that M € Mod R and (supp M)/G is finite. Then the pull-
up functor Fy : MOD(R/G) — MOD R associated with a Galois covering
F: R — R/G induces an equivalence of categories [G; p. 94]

mod(R/G) = ModfR.

The group G can also be interpreted as a group of k-linear automor-
phisms of R°P. Then the functor F°P : R°? — (R/G)°P is also a Galois cov-
ering since (R/G)°® = R°?/G. The corresponding pull-up and push-down
functors are briefly denoted by FJ¥ and F\".

The group G°P opposite to G is isomorphic to G via the map ( )~
G°P — (. Therefore G°P can also be regarded as a group of k-linear auto-
morphisms of R and G°P acts on MOD R by translations 971(—), g € G°P.

1.2. Let ind; (R/G) be the full subcategory of the category ind(R/G) of
indecomposable finite-dimensional R-modules consisting of all objects iso-
morphic to FxM for some M € ind R, and let inds(R/G) be the full subcat-
egory of ind(R/G) formed by the remaining indecomposables. It is known
[DS; 2.2] that a module X € ind(R/G) belongs to ind; (R/G) if F¢X has
a finite-dimensional direct summand. Since each module M € Mod R has a
decomposition into a direct sum of indecomposables (with local endomor-
phism rings), therefore a module X € mod(R/G) belongs to mods(R/G) if
there exists a decomposition Fo X = @z’e ; Bi in Mod R with all B; weakly-
G-periodic (see [DS2; 2.3]).

1.3. For any k-algebra A we denote by MOD A the category of all left
A-modules and by mod A the full subcategory of MOD A formed by all
finite-dimensional A-modules. By A°P we denote the algebra opposite to A
and by ()* the standard duality Homy(—, k) : MOD A — MOD A°P.

1.
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2. A description of the functors 2 and their adjoints. Let H be
a subgroup of G and B = (B,v) € MOD® R. Then for each orbit Gz € R/G,
F\B(Gz) = @, ¢, B(y) carries via v the structure of a free module over the
group algebra kH of H, which is finitely generated in case (GxNsupp B)/H is
finite and B € Mod R. In fact, F)\ B has the structure of a k H-R/G-bimodule
and induces a functor

&8 = — @y F\B : MODEH — MOD(R/G)
(see [DS2; 3.6]). If additionally B € Mod{’ (R/G) then the restriction of ¢%
to mod kH factors through mod(R/G). In case H = G p we write $% = &F .

In this section we will study these functors and their adjoints in terms of
the category MODYR.

2.1. Let A be a k algebra, C a k-category and @ : C — MOD A°P an A-
C-bimodule. Then we denote by @4 : C°° — MOD A the A°P-C°P-bimodule
defined by Q4 (z) = Q(x)?, where Q(z)* = Hom4(Q(z), A). In particular,
if A= Fk then Q4 = Q*.

For any subgroup H of G denote by ( )~! : MOD kH — MOD(kH)°P
the canonical isomorphism of categories given by V~=! =V and h-v = vh~!
for V€ MODKH, h € H, v € V. The inverse functor is denoted in the same
way. We set

()®=()"to()" :MODkH — MOD kH.

Analogously we denote by ( )7L MOD#R — MOD®™R the iso-
morphism given by (M,u)~! = (M,p~ ') for (M,n) € MODY R, where
(u=Y)p = pp—1 for h € H. The inverse functor will be denoted in the same
way.

The usual duality ( )* induces the contravariant functor ( )* : MOD” R
— MOD#” R°P mapping M = (M, ) € MOD#R to M* = (M*, u*) €
MODH ™ RoP where (u*), : M* — M(M*) for cach h € H is given by the
R-homomorphism

M* = h(h M*) " ((un)") h(M*)
We set
()®=()"to()": MOD”R — MOD" R°P,
The composed functor ( )® maps M = (M,u) € MOD”R to M® =
(M*, u®), where pf for each h € H is the R-homomorphism
M* — Bt (hM)* h_l((ﬂh—l)*) h*IM*'

LEMMA. Let B € Modf' R. Then the R/G-kH-bimodules Fy*B* and
F\B*H gre isomorphic.



38 P. Dowbor

Proof. For any a € R/G fix a set W, of representatives of the H-orbits
in aNsupp B. Then there exists a sequence of natural isomorphisms of right
kH-modules

F)\BkH(a) = HomkH(FAB(a),kH) ~ Homy g (ka‘H@k( @ B(I‘)),kH)
{EEWa

zHomk< e B(x),HomkH(kaH,kH)) zHomk( @ B(a:),k:HkH)

~( @ B) @ kH = FPB(a). »
.’,IZ‘EW&

COROLLARY. The three functors

— ®pryq F\B,Homp,(F\B*", —), Homy,y (FyP B*, —) :
mod kH — mod(R/QG)

are isomorphic.

Proof. Since, for each a € R/G, F\B(a) is a finitely generated free
kH-module, using Lemma 2.1 for any V' € mod kH we obtain a sequence of
natural isomorphisms of R/G-modules

Homy, ;7 (FYPB*,V)(a) ~ Homg g (Fy\B*# (a), V)
= Homy g (FxB(a)*, V) ~ V @rg (FxB(a)*)*H
~V @k FxB(a) = (V ®xm FAB)(a). =

2.2. Let (M, ) € MOD® R and V € MOD (kH)°P. Then we denote by
V ®r M the object (V ®, M,V ®) u) € MODY R defined as follows:
(VerM)(z)=V e, M) ifzeR, (VM) (a)=idy @M(a) if ais a
morphism in R, and (V @ p)n : V @x M — " (V @4 M) for each h € H
is the R-homomorphism given by ((V ® pu)n(x))(v @ m) = hv ® (up(x))(m)
forr e R,me M(z)and veV.

Let (N,v) € MOD” R°P and V € MOD (kH)°P. Then by Homy (N, V)
we mean the object (Homy(N,V),Homy(v,V)) € MODYR defined as
follows: Homy(N,V)(z) = Homg(N(z),V) if x € R, Homg(N,V)(a) =
Homy (N («v), V) if o is a morphism in R, and Homy (N, v), : Homg (N, V) —
"™ (Homy(N,V)) for each h € H is the R-homomorphism given by
(Homy (N, v)p(2))(fz) = fo - vp—1(hx) for x € R and f € Homy (N (z), V).

LEMMA. Let B € Mod® R. Then the two functors
— ® B,Homy(B®, —) : MOD (kH)°® — MOD”R

are isomorphic. If B € Modf{R then the functor — ®y B restricted to
mod(kH)°P factors through Mod{ R.
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Proof. Since, for each z € R, B(z) is finite-dimensional, it follows that
V @ B(z) ~ V ® B(z)** ~ Homy(B(x)*,V) = Homy(B®,V)(x) for any
V € MOD (kH)P.

2.3. Consider the restriction functor
Ry : MODYR — MOD? R

mapping N = (N,v) € MODYR to (N,v|H) € MOD" R. Instead of R (N)
we will simply write N. We give an explicit formula for its adjoint, the
induction functor

Oy : MOD” R — MODR.
Denote by Sp a fixed set of representatives of the left cosets G mod H.
We define Oy (M, n) = (B, s, M, i) f?r M = (M,u) € MOD” R. Here
the maps fig : D, cs, "M — D,es, 9 "92)M, g € G, are the R-homomor-
—1
phisms defined by the family 92uy, : 9*M — 9 92M | g1 € Sy, where g2 € Sy
and h € H are determined by the equality gg1 = go2h.

LEMMA. Let M = (M, ) € MOD R and N = (N,v) € MODYR. Then
there exists a natural isomorphism Hom% (M, N) ~ Hom%(Oy (M), N).
Moreover, if (supp M) /H s finite then also the isomorphism Homg(N, M)
~ Hom$ (N, O (M)) holds.

Proof. Take M, N as above. Then for any f € Homg(N, M) denote by
f:p 0 NM — N the R-homomorphism defined by the family

g1 Vgy

oy ooy N g e Sy

It is easy to check that f € Hom%(@H(M),N) and that the map [ — f
gives the required natural isomorphism. If now (supp M)/H is finite then
D,,cs, M = 11, cs, "M (see [DS2; 2.3]). For any f € Hom% (N, M)

denote by }:: N — & 91M the R-homomorphism defined by the family

g1€ESH

N_ oy o g e Sy

It is easy to check that ]Nf € Hom% (N, Oy (M)) and that the map f — ]N”
gives the second isomorphism. m

PROPOSITION. Let B be an object in ModlyR.
(i) The two functors
Fo(— @1 FaB),0u((—)"' @ B) : mod kH — Mod{' R

are isomorphic.
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(ii) The two functors
Fy Homy i (F\B*, —), O (Homy(B®, (—)71)) : mod kH — Mod¥ R
are isomorphic.

Proof. (i) By Lemma 2.3 it is enough to construct a natural family of
morphisms fy : V@B — Fo(V@rug FAB), V € mod kH in MOD* R, and
to show that all R-homomorphisms ]?V 10 (V1 ®r B) = Fo(V @iy FrB)
are isomorphisms.

Take any V' € modkH and = € R. Define the k-linear map fy(z) :
Ve Bx) — V @ (Dyeq, B(y) by setting fy(z)(v ®b) = v @b,
where v € V and b € B(x). It is easy to verify that for each V the family
(fv(z))zer defines a morphism fy in MODY R, the family (fv)vemod ki
induces a natural transformation of functors and all R-homomorphisms
fv :Ou(V ®; B) — Fo(V @,u F>B) induced by families (9'g, - 9f) g, e85
are isomorphisms, where p for each V denotes the standard R-action of G
on Fo(V @k F)\B).

(ii) The proof is analogous. m

Remark. The above isomorphisms are compatible with those from
Lemma 2.2 and Corollary 2.1.

2.4. In order to interpret the right and left adjoint functors
Homp,q(FAB,—),— ®g/c F\'B* : mod(R/G) — MOD kH

to % in terms of MOD®R, we first have to endow the homomorphism
space and the tensor product of two modules from MOD* R with the struc-
ture of a left kH-module. Given (M, p),(N,v) € MOD” R the map H x
Homp (M, N) — Hompg(M, N), (h, f) — "y -"f - -1, defines the structure
of a kH-module on Homp(M, N) with a corresponding H-action denoted
by Hompg(p, v).

Recall that for given M € MOD R and N € MOD R°P the tensor product
of M and N over R is the factor space M @ g N = (M ®; N)/I, where
M@rN =@, cpM(z)®r N(x) and I = I(M, N) is the subspace of M @, N
generated by all vectors of the form M («)(my) ® ngy —my ® N(a)(ng), for
all @ € R(z,y), ny € N(z), my € M(y).

Let now M = (M, ;) € MOD” R and N = (N, v) € MOD® R°P. Then
the maps up(z) @k vp(x) : M(xz) @ N(z) — M(hz) @, N(hz), h € H,
x € R, furnish an action of H on M ®; N denoted by p ® v. The subspace
I remains H-invariant under this action so p ®j v induces an H-action
uw®pvon M ®g N and in consequence the structure of a left kH-module
on M ®pr N.
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Remark. M ®; N is a free kH-module and can serve for a projective
cover of M ®pr N, usually not minimal. Moreover, it is finitely generated if
M e Mod? R and N e Mod{* Ro».

LEMMA. (i) Let M € MODY R, N € MOD" R°P and V € MOD (kH)°P.
Then there exist canonical natural isomorphisms of left kH-modules
Homy (M ®pr N,V) ~ Homp(M,Homy(N,V)) and (V ®; M) @p N =~
V @ (M ®g N). In particular, there exists a natural isomorphism of left
kH-modules (M ®g N)® ~ Hompg(M, N®).

(ii) Let M € MOD"R and V € MOD (kH)°". Then there exists a
canonical natural isomorphism of left kH-modules Homg(V @), M, N) =
Homy (V,Hompg (M, N)).

Proof. (i) Use the isomorphisms
Homy (M (x) @4 N(x), V) = Homy(M (z), Homy (N(z), V')
and
(V @ M(z)) @ N(z) ~ V @ (M(z) @ N(z)), =z €R.
(ii) Use the isomorphism
Homy(V ®k M(x), N(z)) ~ Homy(V, Homg(M(z),N(z))), x€R. =

COROLLARY. (i) Let M € MOD”R and N € MOD” R°P. Then there
erists a canonical natural embedding of kH-modules M ®rp N —
Hompg(M, N®)®.

(ii) Let M € MOD” R and N € MOD® R. Then there exists a natu-
ral isomorphism of kH-modules Homg(M,N) ~ (M ®@r N®)® and an
embedding M ®r N® < Hompg(M,N)®, which is an isomorphism if
dimg Hompg (M, N) is finite.

Proof. Use the standard embedding V—V®® for V € MOD (kH)°P. m

2.5. PROPOSITION. Let MeMOD? R, NeMOD®” R°P, X € mod(R/G)
and Y € MOD (R/G)°P. Then the following natural isomorphisms of left
kH-modules hold.

(i) Hompc(FsM, X)~" ~ Homp(M, F\ X).
(11) F\M ®R/G Y ~MQ®g F:)pY.
(ifi) (X ®pje FPN) '~ FuX @ N1,

Proof. (i) This is a simple verification of H-invariance of the adjointness
formula for the pair of functors (Fj, F,) (see [BG; 3.2]).
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(ii) Take M and Y satisfying the assumptions. Then the canonical iso-
morphisms

FAM(Gar) &1 Y (Gr) = ( ® M(y)) @ Y (Ga) ~ @ Mly) &1 Y (Ga)

= @ M(y) @ FJPY (y)

yeGx

are H-invariant and induce an isomorphism of kH-modules f : M ®j FoY =
FXM®RY . Since f(I(M,F,X)) C I(F\xM,Y) the homomorphism f induces
an epimorphism f : M ®g F,Y — F\M ®pr/c Y. By Corollary 2.4(i) and
(i), f has to be an isomorphism.

(iii) Follows immediately from (ii). m

COROLLARY. Let B = (B, v) be an object in Modf’ R.
(i) The two functors
Homp,q(FAB, —), (Homg(B, Fo(=)))™!' : mod(R/G) — MOD kH
are isomorphic.
(ii) The two functors
(— @rje FABH), (Fo(=) ®z B®)™! : mod(R/G) — MOD kH
are isomorphic.

Proof. (i) Obvious by Proposition 2.5(i).
(ii) Follows from Proposition 2.5(ii) and Lemma 2.1. =

3. Free representations of an infinite cyclic group

3.1. In this section we will find some sufficient condition for a finitely
generated module over the group algebra of an infinite cyclic group to be
free.

Let ¢ : W — W be a k-linear automorphism of a vector space W. Then
to any decomposition W = P jed W; into a direct sum of subspaces we
attach an oriented graph I'(¢, J) of components of ¢ defined as follows. The
set of points of I'(¢, J) is J. The arrow j; — jo in I'(¢, J) exists if and only
if pj,&(W;,) # 0, where p; : W — W; denotes the standard projection for
each j € J.

PROPOSITION. Let H be an infinite cyclic group and U be a finitely
generated left kH-module. If for some h € H there exists a k-vector space
decomposition U = ®jEJ U; such that I'(h-, J) has no oriented cycles, then
U is a finitely generated free kH-module.

For the proof we need the following elementary facts.

LEMMA. Let ¢ : W — W be a k-linear automorphism.
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(i) If ¢ has a nonzero eigenvalue then so has each ¢™, n € N.
(ii) If W admits a decomposition W = @jej W; such that I'(¢,J) has

no oriented cycles then ¢ has no nonzero eigenvalue.

Proof. (i) ¢(w) = Aw implies ¢"(w) = A"w.

(ii) The assumption of (ii) implies that J is partially ordered with respect
to the relation =<, where j; =< jo if and only if j; = jo or there exists
an oriented path from j; to j in I'(¢,J). Assume now that ¢(w) = Aw,
where A € k and 0 # w = Zjejwj e W = @jeJ W;. The nonempty,
finite set Jo = {j € J : w; # 0} has some minimal element j;. Then
2w = p(w) € @,c;, Wy, where Ji is the set of direct successors of elements
from Jy. Since I'(¢, J) has no oriented loops the minimality of jo yields
A=0.m

Proof of the Proposition. Since kH is a principal ideal domain
and k is algebraically closed, a module U in mod (kH)°P is free if and only
if it has no simple submodule isomorphic to kH/(hg — A) for some X € k*,
where hg is any fixed generator of H. In other words, U is free if and only if
the map hg- : U — U has no nonzero eigenvalue. Now given h € H satisfying
the assumptions, we choose a generator hg of H such that h = hy for some
n € N. Then by the Lemma, h- : U — U and hg- : U — U have no nonzero
eigenvalues, and therefore the kH-module U is free. m

3.2. Let I be a set. We denote by Sy(I) the set of all finite subsets of
I. Then to any subset A C Sp() and any map f : [ — I we attach the
oriented graph I'(f, A) of intersections of A via f defined as follows. The
set of points of I'(f,A) is just A. For any A, B € A there exists an arrow
A — Bin I'(f, A) if and only if f(A) N B is nonempty.

PROPOSITION. Let H be an infinite cyclic group and U be a finitely gener-
ated left kH-module. Assume that the k-vector space U has a decomposition
U= @je, Uj, and there ezists a function s : J — Sy(I) and a free action
o: HxI— 1T of Hon the set I with the following properties:

(1) there exists a nontrivial subgroup H' C H such that s(J) is H'-stable
and s(J)/H' is finite,
(ii) for each h € H, s induces an oriented graph morphism
s:I'(h,J) — I'(he,s(J)).
Then U is a finitely generated free kH-module.

Proof. The proof follows immediately from Proposition 3.1 and the
lemma below. =

LEMMA. Let o : H' x I — I be a free action of an infinite cyclic group
H' on some set I, and A be an H'-stable subset of So(I) such that A/H' is
finite. Then there exists h € H' such that I'(he, A) has no oriented cycle.
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Proof. Without loss of generality we can assume H' = Z. Since A/H’
is finite there exists a finite subset D’ C I such that for any A € A, h' e A
is contained in D’ for some A’ € H'. Denote by D the union of all sets
h' e« D', where h/ € H' is such that h’ ¢ D'’ N D’ # (). Since D is finite the
set H| consisting of all A’ € H’ such that h' e DND # () is finite. Let h
be the smallest element of H' = Z such that h > |h/| for all A’ € Hj. In
order to prove that I'(he,.A) has no oriented cycles it is enough to show
that for any Ag, A1,..., A, € A, n € N, such that Ag N A; #0,A; N Ay #
0,...,A,_1NA, #0 we have A, Nnhe Ay = (.

Take Ag, A1, ..., A, as above. Then there exist hg, h1,...,h, € H' such
that A; C h; ¢ D’ for each ¢ = 0,1,...,n. Since A; N A;y1 # 0, both A;,
A; 41 are contained in h; ¢ D, and h;11 — h; € Hy for any i =0,1,...,n— 1.
Without loss of generality we can assume hg = 0. Then AgUA;U...UA, C
Uh’eHé h' @ D, where Hy = {h’ € H' : (1 —n)h < h’ < (n — 1)h}. Therefore
A, Nnh e D and consequently A, N nh e Ay are empty, and the proof is
finished. m

3.3. Let M € Mod R, N € Mod R°?, H be a subgroup of G and (up, :
M — h_lM)heH and (v, : N — h_lN)heH be families of R-homomorphisms.
For any h € H we denote by p, ®p vy, the composed homomorphism

M @p NHEORERT N o WIN ~ M @ g N.

Observe that in case (up)nen and (vp)pepn are both R-actions of H, for
any h € H the map up ®g vy is equal to the value of the action u ®g v on
M ®pr N at h (see 2.4).

PROPOSITION. Let H be an infinite cyclic group, (N,v) € Mod Rop
and M € Mod R a module such that Gy contains H. Assume that M has
a decomposition M = @, My with the following properties:

(i) for each t € T, all indecomposable direct summands of M, are iso-
morphic,

(ii) for any two different t1,to € T the modules My, and My, have no
isomorphic direct summand,

(iii) for each t € T such that supp M;Nsupp N is nonempty and G pr, "H
is nontrivial there exists an R°P-action v' of Gy, N\H on N and an R-action
ut of Gy, NH on My such that My g N with the action p* @gpvt is a finitely
generated free k(Gpr, N H)-module.

—1

Then for any family of R-homomorphisms (un : M — " M)nen such
that (un @R Vh)hen gives rise to an H-action on M ®pr N, the finitely
generated kH-module M Qg N 1is free.
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This proposition is crucial for the main result of this paper. The rest of
this section will be devoted to the preparation for the proof of Proposition 3.3
and the proof itself (given in 3.7).

34.Let m:V - U = @jeJ U, be a k-linear map. For any subspace V'
of V' denote by t(V’) the set consisting of all j € J such that p;(7(V)) #
0, where p; : U — U; denotes the canonical projection for each j € J.
Observe that t.(V’) is a finite set if dimy V' is finite. Assume that V' has
a decomposition V' = P, ; V; into a direct sum of subspaces. Then for any
J € J we denote by o,(U;) the set of all ¢ € I such that p;(7(V;)) # 0. More-
over, observe that if 7 is surjective then for any finite-dimensional subspace
U’ C U there exists a finite subset Iy of I such that U" C ., w(V;).
The following simple fact explains the role of the above notation.

LEMMA. Let m: @,c; Vi = @, U and o'+ P,
be a surjective homomorphism of k-vector spaces, ¢ : @,c; Vi per Vi
be the k-linear homomorphism induced by a family p; : Vi — Vi), i € I,
where f : I — I' is some function, and 1) : @jeJ U, — ®j’eJ’ U, be the
homomorphism induced by a family of linear maps ¥ jy : Uj — U;/, jed,
j e J'. Assume that v = w'@. Then for any j € J, 7' € J and Iy C I
such that ¥ jy #0 and Uy C 32, w(Vi), the intersection f(Io) N o (U})
18 nonempty.

Proof. Obvious. =

35.Let V=kH®,V, U=kH®,U and 7 :V — U be a kH-
homomorphism, where V. = @, _, Vo and U = @j_, Us are k-vector
spaces with some fixed decompositions into a finite direct sum of subspaces.
Let us fix the notation I = H x {1,...,r}, J = H x {1,...,s}, Vo) =
kh @) Vo and Uy, gy = kh ®y Ug for (h, ) € I and (h, 3) € J. The group
H acts on I and J in an obvious way compatible with multiplication by
elements of H.

LEMMA. Let m: @, Vi — @ ; U; be as above.

(i) If the free kH-module V is finitely generated then all sets o, (Uj),
J € J, are finite and 0, (Up;) = h - 0(U;) for any j € J and h € H.

(i) If the free kH-module U is finitely generated and 7 is surjective then
there exists a finite subset Iy C I such that U, gy C 3 icpy, (Vi) for any
he Hand 3=1,...,s.

Proof. (i) The assumption of (i) is equivalent to dimy V, being finite
for any aw = 1,...,7. Therefore all sets t.(V;), i € I, are finite. Take any
j € J and suppose o,(U;) is infinite. Then there exists a € {1,...,r} and
an infinite sequence of pairwise different elements h,, € H, n € N, such that

PiT(Vih, a)) # 0. Since hym(Vie,a)) = m(Vin,, a)), we have p,—1,7(Vie,a)) # 0
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for each n € N and thus t(V{c,q)) is infinite. This is a contradiction and
therefore all sets o, (U;), j € J, are finite. The second part of (i) is obvious.
The proof of (ii) is easy and we leave it to the reader. m

3.6. LEMMA. Let Hy and Hy be subgroups of G, L1 be an Hi-invariant
subset of R, and Lo an Ha-invariant subset of R, such that Hy N Hy = {e}
and Ly/H, Ly/H are finite. Then Ly N Ly is finite.

Proof. Suppose L1 N Ly is infinite. Since L;/H; is finite there exists
x € L1 N Ly such that Hiz N Ly N Lo is infinite. Analogously there exists
y € Hox N L1 N Ly such that Hiz N Hoy N Ly N Ly is infinite. Hence there
exists z € L1 N Ly and nontrivial elements h; € H; and hy € Hs such that
h1z = hoz and we get a contradiction. Therefore L1 N Lo has to be finite. m

Let now (N,v) € Modf R°? and M € Mod R be modules such that
(supp M) /Gy is finite, where H is an infinite cyclic group. Denote by H;
the intersection H N Gj; and by L the intersection supp M N supp N. The
free kH;-module M @, N = @, M (i) ®) N(i) is finitely generated for
any R-action of H; on M, if H; is nontrivial. Assume that M admits some
R-action py of Hy on itself such that p; ® r v induces the structure of a free
kHi-module on M ®g N. Then for the subspace U spanned by the set of
free kHq-generators of M ®r N we obtain a k-vector space decomposition
M ®gr N = GaheHl Uy, where U, = h - U for each h € H;. Therefore the
canonical projection 7 : M ®x N — M ®r N can be viewed as a linear map

T D,er M(z) @k N(2) = Dpcp, Un-

COROLLARY. With the notation above, for any U there exists a finite
subset s(U) of L such that Up, C ;) m(M(hi) @ N(hi)) and o(Up) C
hs(U) for each h. In particular, if Hy is trivial then U = M ®p N and one
can take the whole L for s(U).

Proof. In case Hy is nontrivial, the free kH-module M ®; N is finitely
generated since (supp V)/H is finite and H; has a finite index in H. There-
fore the assertion follows immediately from Lemma 3.5. In case H; is trivial
the assertion follows from Lemma 3.6. m

3.7. Proof of Proposition 3.3. In order to show that for given M
and N satisfying the assumptions the finitely generated kH-module M®p N
is free we shall apply Proposition 3.2. Therefore we have to define a decompo-
sition M@prN = P, ; Uj, an action e : HxI — Iandamap s : J — So(I)
satisfying the required conditions.

Let M = @teT M; be a decomposition as in the assumption of the
proposition. Denote by T” the set of all t € T such that supp M;Nsupp N # ().
The group H acts on T” by the action * : H x T — T given by the formula
hxt =t where t' is the unique element of 7" such that "M, ~ M, . Since
(supp N/H) is finite, M € Mod R and H is an infinite cyclic group, the
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H-invariant subset Ty C T consisting of all elements with trivial stabilizers
H; = HNGyy, in H consists only of finitely many H-orbits and 77 = 7"\ Tj
is finite. By assumption (iii) and Lemma 3.6 all M; @ N, t € T’, are
finitely generated kH;-modules. Therefore for each ¢t € T’ there exists a
finite-dimensional subspace U; C M; ® g N such that the k-vector space
M;®gr N has a decomposition M;@r N = GaheHi Ut,ny, where Uy )y = h-Uy
for any h € H;. Then the k-vector space M Rz N = @teT, M; ®gr N has
a decomposition M @r N = @ .. ; U;, where J is the disjoint union of Hy,
teT.

We now set I = suppN. Then H acts on I in an obvious way. We
define a function s : J — Sy(I) by setting s(t,h) = h - s(U;) if t € Ty and
s(t,h) = supp M;NI if t € T} (see Corollary 3.6). Observe that the nontrivial
intersection H' = (),cp, H; satisfies the assumption (i) of Proposition 3.2,
because H' has a finite index in H and in all Hy, t € Ty. In order to verify the
assumption (ii) of Proposition 3.2 one has to show that, for any ji,j2 € J,
h e H, if the (jl,jg)th component (,uh @R Z/h)(jz,ﬁ) . Ujl — Uj2 of Hh ®R Vp
is nonzero then hs(ji) N s(j2) is nonempty. For any t1,t2 € T denote by
,ugb’tl) s My, — h_lMt2 the (t2,t1)th component of uy : M — h™'M. Fix any
elements j; = (t1,h1), j2 = (t2, ha) of J and assume (up @r Vi) (j,,5,) 7 0-
Then (ur®RVK)(jy,5,) is the (ha, h1)th component of the (t2, t1)th component
u&?’tl) Qprvp: My, g N — My, g N of puj, @g v, Now we set

b= Bru: @ Uy — @ Uy

JjeJ

hy€Hy, hy € He,

and

o=@ W () oy vn(z) : @ My, () @) N(z) — @ My, (ha) @4 N(hz).
rER TER TER

Then by Lemma 3.4 and Corollary 3.6, hs(j1) N s(j2) is nonempty. It fol-
lows that both assumptions of Proposition 3.2 are satisfied and the finitely
generated kH-module M ®r N is free. m

4. The Main Theorem. In this section we first explain some technical
details concerning the formulation of the main theorem and then we give a
full proof.

4.1. We need the following fact.

LEMMA. (i) Let M € MOD R be such that Gy is an infinite cyclic group
with a generator g. Then (pg)gcay — Kg defines a bijective correspondence
between the set of all R-actions of Gy on M and the set of all isomorphisms
f € Homp(M,9 M).

(ii) Let H be an infinite cyclic group and let (M, p), (M, /) € MOD? R
and (N,v), (N,v") € MOD? RP be such that Endg(M) ~ k ~ Endges (N).
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Then the left kH-module (M ®r N,u ®g v) is free if and only if so is
(M@R N,/Ll XRnr l//).

Proof. Obvious. =

Let W be the set of all weakly-G-periodic R-modules, Wy a fixed subset
of nonisomorphic modules from VW whose isoclasses form a set of representa-
tives of the G-orbits of isoclasses of VW, and W* the subset of W consisting of
all B € W such that Gp is an infinite cyclic group; let Wi = W' N Wj. For
each B € W& fix some R-action v® of Gz on B, some generator g of Gp
and some set Sp of representatives of left cosets G mod G, containing the
unit element e of G. Thus F) B is endowed with the structure of a left free
kG p-module, in fact a kGp-R/G-bimodule. We can also identify kG and
k[¢,€71] by mapping ¢gp onto £. Denote by mod(R/G) the residue category
(mod(R/G))/[mod;(R/G)] and by S

&8 : mod kG — mod(R/G)

the functor induced by #¥ = — @, FAB : MOD kGp — MOD(R/G) (see
Section 2). Let

$: [[ modk[¢,¢ ") — mod(R/G)
BeWw;

be the functor induced by the family (&) Bewy, which maps the object
(VB)pew to the finite direct sum Breo PP (Vp), where 2 = {B € Wy :
Vi # 0}.

THEOREM. Let R be a locally bounded k-category, where k is algebraically

closed, G a group of k-linear automorphisms of R acting freely on (ind R)/~,
and W, Wy as above. Assume that

(i) for each B € W, G is an infinite cyclic group and Endg(B) ~ k,

(ii) for any two different By, By € W such that Gg, N Gp, is nontrivial
the tensor product B1 Qg BgE of By and the k-dual BSB of By with the
structure defined above is a free left finitely generated module over k(Gp, N

Gpg,).
Then for any B € W the functor

&8 : mod kG — (mod(R/G))/[mod;(R/G)]
is full and faithful. The functor

@: J] modk[£,&7"] — (mod(R/G))/[mod: (R/G)]

BeW,y
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induced by (DB)peyy, is dense, and ® has a left quasi-inverse
¥ : (mod(R/G))/[mod; (R/G)] — H mod k[¢, ¢
BeWy

with kernel contained in the Jacobson radical of (mod R/G)/[mod; (R/G)].
In particular, ® and ¥ induce a decomposition

(mod(R/G))/[mody (R/G)] ~ H mod k[¢, €71 @ Ker ¥
BeWy
and a bijection of the two corresponding sets of isoclasses of indecomposable
objects, and Ker ¥ restricted to the image of ®F is zero for each B € Wj.

COROLLARY. (i) The functor @ : [[geyy, mod k€, 671 — moda(R/G)
induced by the family of functors (PB)peyw, vyields a bijection between the
sets of indecomposable objects of both categories.

(ii) The Auslander—Reiten quiver I'r;c of R/G (see [AR]) is isomorphic
to a disjoint union of translation quivers I'r;a U (11 gew, Trie.c-1)), where
I'r (resp. Iyie¢-1) is the Auslander—Reiten quiver of R (resp. of K[E, €71)).

4.2. The proof of the Theorem will be done in several steps. For the rest
of this section we will assume that

(i’) for each B € W', Endg(B) ~ k,

(ii’) for any two different By, By € W! the left finitely generated k(G p, N
G ,)-module B; ® BY is free.

Remark. (i) If W = W?!, then by Lemma 3.6 the conditions (ii) and
(ii") are equivalent.

(ii) The condition (i) implies by Corollary 2.4(ii) that for any (B,vp)
with B € W!, the kG g-module B ® g B® is isomorphic to the trivial kG p-
module k.

Given V € MOD kG g we denote by t(V') the maximal torsion submodule
of V.

Let now B € W}. Then we define the functor

7P mod(R/G) — MOD kGp
by setting U8 (X) = t(X ®p e FAB*“?), where X € mod(R/G).
LEMMA. For each B € W} the functor WP induces a functor
7P mod(R/G) — mod kG p.

Proof. The functor ¥® factors through mod kG, since F)\B is a finitely
generated left kG p-module. Let now X € mod;(R/G) be any module.
Since by [DS2; 2.2], FoX is a direct sum of finite-dimensional R-modules,
Corollary 2.5 and Proposition 3.3 yield ¥5(X) = ¢(X ®r/c F\B"GB) ~
t((FoX ®g B®)™1) = 0 and therefore ¥F is well defined. m
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4.3. LEMMA. Let B, B’ € W}. Then

7B B idmodeB ZfB = B/7
T {0 ifB+B.

Proof. Take any V € mod kGp. If B = B’ then by the formulas of
Section 2, Remark 4.2(ii) and Proposition 3.3 we obtain a sequence of natural
isomorphisms of right kG p-modules

TEPE(V) = t((V @rap FAB) ®p/g FAB")
~ t((Fo(V @iy FAB) @ B®)™1)
~ t<<V‘1 ekB® @ IV le B)) ®r B®)7
gE€SE, g#e
~ (V'@ (BerB®) ' (V1 iepk) t V.

1

Now if B # B’ then using analogous arguments we show that
w?oP (V) =t( @ (V7' @y B)2r (B)) =0.
g€SE
Let
¥ :mod(R/G) — H mod kG p
Bew}

be the functor defined by the family of functors (¥5) Bew; and

I: ]_[ mod kGp — H mod kG g
BeWw} Bew;

be the canonical embedding.
COROLLARY. The functors I and ¥® are isomorphic.

4.4. PROPOSITION. (i) @B is full for each B € W;.
(i) If W = W?!, then ¥ factors through HBEW& mod kGg and P is
dense.

Proof. First we show that for any indecomposable X € mods(R/G)
such that all weakly-G-periodic direct summands of Fo X € MOD R belong
to W', ®BUB(X) is a nonzero direct summand of X for some B € W;. Take
X € mods(R/G) as above. Then there exists B € W/} such that F, X has a
decomposition Fo X ~ B™" @& M in Mod R, where M has no direct summand
isomorphic to B. Denote by u the induced R-action of G on B" & M, by H
the group Gz and by v the action vZ. Then the results of Section 2 yield

B (X) = t(X ®r/e NB*) ~ (X @R/ F\’B*)
~t((Fo X ®r B®)™Y) ~t(((B"® M) @ B®)™1).
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Observe that B" ® B® is an H-invariant subspace of (B" & M) ®g B®, since
for any h € H the component

pME @pu®  B"@p B2 M o " 'B®
of the map up®pr 1/h® is zero by Corollary 2.4 and the assumption Endg(B) ~
k. Denote by Vx the kH-module B" @ g B® by i : Vx — (B"®M)®r B®
the canonical embedding and by Py the cokernel Cokeri’ = M ®r B®. By
Proposition 3.3, Px is a free finitely generated left kH-module. Therefore
i’ admits a retraction p = (p1,p2) : (B® M) ®r B® — Vx and VB (X) =
Vgl. Denote by px : X — HomkH(F,\BkH,V_;l) the map adjoint to the
composed map
Px : X @pjq FABM 5 ((B" @ M) @ B®) ' LVl

We shall prove that px, or equivalently Fo(px), has a section. To this
end, consider the canonical embedding j : B®g (B")®—B ®gr (B"® M)®.
As above, B @p (B™)® is an H-invariant subspace with respect to the
action v ®r u® and j has an H-equivariant retraction. Applying ® we
conclude by Corollary 2.4 that the kernel of the canonical projection p’ :
Homp(B,B™ & M) — Hompg(B,B") is H-invariant with respect to the
action Homp(v, 1) and p’ has an H-invariant section i = (2) Denote by
ix : Homg (B, B")™! @1y F\B — X the R/G-homomorphism adjoint to
the composed map

ix : Homg(B, B")~' 5 Homp(B, B & M)~' = Homp,q(F)\B, X).

Now we prove that Fe(px) o Fe(ix) is an invertible R-homomorphism.
Observe that via the isomorphisms FoX ~ B" & M,

F,Homy i (FxB* (B @ B®)™ ')~ @ 9(Hom(B®,B" ®r B®))
geSB
and
F.((Homg(B,B™")) ™ @y FaB) ~ @ 9(Hompg(B,B")®; B)
geSB

(see Proposition 2.3), the morphisms F,(ix) and Fe(px) are defined by the
families of morphisms

0y 9(Homp(B, B") ® B) L9(B e M) B & M, ge€G,
and
by B*® M 2L 9(B@ M) 22 9(Homy(B®, B” @ B®)), g€G,

where

i= <11> :Homg(B,B")®y B — B"® M
22
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and
ﬁ: (ﬁl,ﬁg) :B"o M — Homk(B®,B" QR B®)
are the maps adjoint to ¢ and p.

By [DS2; 2.1(iii)], it remains to show that all maps ¥4, = 9(pi), g € Sp,
are invertible. Since Endg(B) ~ k, by Lemma 2.2 the map Pais is zero. Both
i1 and p; are identity maps, therefore the map Prig Hompg(B, B") @ B —
Homy (B®, B" @ B®) is given by (p1i1(2)(f ® b2))(72) = f(2)(bz) ® Va,
where z € R, b, € B(z), 7. € B®(z), f € Homg(B, B™), and moreover it
is invertible because Endg(B) ~ k. Therefore pi is invertible, F, (px) is a
splittable epimorphism and consequently #P¥B X is a direct summand of
X. Now (ii) follows immediately.

For the proof of (i), for each B € W3 denote by I the full subcategory
of mod(R/G) consisting of all X such that all weakly-G-periodic summands
belong up to isomorphism to the G-orbit of B. Since ¥ factors through I
we shall prove that the restriction @B|IB : I — modkH of B to I is a
quasi-inverse for 2. For this purpose it is enough to check that the homo-
morphisms px : X — #@BUBX, X € Ig, produce a natural transformation
of functors id;, — ®BWPB|Ip, since px is an isomorphism for each X € Ip.
Take any X,Y € Ip and f € Homp,c(X,Y). One has to show that the map

u = Homyp (FAB™ WP (f))opx) —py o f : X — Homy (FAB"™, 0" (Y))
belongs to the ideal [mod;(R/G)]. But u corresponds to the morphism
v=0B(f)opx — Py o (f @r FAB*) : X @/ FAB* — wP(Y).
Since v restricted to ¥B(X) = V_;l is zero, v factors through P);l and
in consequence u factors through Homp /G(F,\BkH , P)}l) which is isomor-
phic to F)\B™ for some m € N. Therefore by the Lemma below the residue

class of u in mod(R/G) is zero and the functors # and ¥B|Ip are quasi-
inverse. m

LEMMA. For any module X € Ip each homomorphism f € Hompg,q(X,
F\B) factors through a module from mod;(R/G).

Proof. Take any X € Ip. Then there exists V € mod(kH)?, where
H = G, such that X ~ V! @,y F\B. Using the results of Section 2 and
[G; 3.2] we obtain

Homp (X, FAB) ~ Hom%(Fo (V™' ®g FAB), F.FA\B)

~ Hom¢ ( @ (Vi B), ® gB) ~ Hom? <V on B, @ 93)
gESE geG geG

= Hom®% <V ®r B, @ ( ) hng)),

g1€Up “heH
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where Up is a fixed set of representatives of the right cosets G mod H.
By Lemma 2.3 it is enough to prove that for each f € Homg(V ®r B,
@916UB(®h h9B)), given by the family f, : V ®, B — 9B, g € G, the

subobject B e Im fy = D, cv, (Brep Im frg,) of D, cq B in MOD?R,
containing Im f, is a direct sum of finite-dimensional R-modules. Fix such

an f. Then the left kH-module B, ., 5 V ® B(z) is finitely generated and
free. Therefore there exist g1,...,9, € Up such that f,, =0 for all h € H
and g € Ug \ {91,.--,9r}, and hence @geG Im f, = @;Zl(@heH Im frg,)-

Now it remains to prove that dimIm f; or equivalently supp(Im f,) is
finite for each g € G. This is obvious in case Gag N H = {e} since then
supp B N supp 9B is finite by Lemma 3.6. Assume that Gag N H # {e} and
suppose supp(Im fy) is infinite. Since (supp B)/(Gsp N H) is finite there
exists z € supp B and an infinite sequence h,,, n € N, of pairwise different
elements of H N Gyp such that h,x € supp(Im f;). Then fp, 4 # 0 for all
n € N, and we get a contradiction with the fact that dimy(V ®; B(z)) is
finite. Therefore all spaces Im f,, g € G, have finite dimension. This finishes
the proof of the Lemma and of the main Theorem. =

Remark. In fact, we proved that if R satisfies only the conditions (i’)
and (ii’) then all functors ®2, B € W}, are full and faithful and @ induces
an injection on the isomorphism classes of indecomposable objects.

4.5. Proof of Corollary 4.1. The first assertion is obvious. To
prove the second recall that by [G; 3.6] the indecomposable modules of the
first and the second kind are contained in different components of I'g g and
that the union (I'r/g)1 of components containing indecomposable modules
of the first kind has the form I'r/G.

It remains to show that the functor @7 preserves Auslander-Reiten se-
quences for any B € W,. The functor # is exact and by Lemma 4.3 sends
nonsplittable exact sequences into nonsplittable ones, therefore we only need
to substantiate the preserving of the lifting property.

Denote by Jgr/c (resp. J) the Jacobson radical of the category
mod(R/G) (resp. mod k[¢, £71]). Observe that if X € ind(R/G) belongs to
mod; (R/G) or to the image of 5, where B’ € W, and B’ # B, then the
functor Jg/q(X, PP (—)) coincides with Homp (X, ®"(—)), which by the
results of Section 2 and Proposition 3.3 is exact. Moreover, if X = ®5(V) for
some indecomposable V € mod k[¢, €] then by Theorem 4.1 the functor
&8 induces an isomorphism of functors

Tr/6(X, 27 () = [modi (R/G)|(X, 27 (=) & T (V. -).

The observation implies that &7 preserves the lifting property for exact
sequences and in consequence Auslander—Reiten sequences, and the proof is
finished. =
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