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Selections that characterize topological completeness

by

Jan v a n M i l l (Amsterdam), Jan P e l a n t (Praha) and
Roman P o l (Warszawa)

Abstract. We show that the assertions of some fundamental selection theorems for
lower-semicontinuous maps with completely metrizable range and metrizable domain ac-
tually characterize topological completeness of the target space. We also show that certain
natural restrictions on the class of the domains change this situation. The results provide
in particular answers to questions asked by Engelking, Heath and Michael [3] and Gutev,
Nedev, Pelant and Valov [5].

1. Introduction. Let Y be a completely metrizable space. Michael [12]
proved that for any 0-dimensional (in the sense of the covering dimension
dim) metrizable space X, any lower-semicontinuous map X → F(Y ) has a
continuous selection (here F(Y ) denotes the collection of nonempty closed
subsets of Y ).

We shall show that a metrizable space Y satisfying the assertion of
Michael’s Theorem must be completely metrizable. This is a consequence
(see Corollary 3.2) of Theorem 1.1 below, which is the main result of this
paper.

Let M be a metric space. We denote by C(M) the collection of all closed
discrete D ⊆M for which there exists a Cauchy sequence (di)∞i=1 in M with
D={d1, d2, . . .}. Roughly speaking, C(M) consists of all finite nonempty sub-
sets of M together with all the Cauchy sequences that have no limit. We shall
consider C(M) with the Hausdorff distance with respect to the metric on M .

1.1. Theorem. f : M → N be continuous, where M is metric and N
is Hausdorff. Assume that all fibers of f are topologically complete. If there
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exists a continuous map s : C(M) → N such that s(D) ∈ f [D] for every
D ∈ C(M) then M is completely metrizable.

Actually, the proof of Theorem 1.1 shows that if C(M) is endowed with
any “reasonable” topology (such as the Vietoris topology) then the existence
of a “selection” for f implies that M is topologically complete. This allows
us to answer a question of Engelking, Heath and Michael [3] in the affir-
mative. They asked whether a metrizable space which admits a continuous
selection on the space of all of its nonempty closed subsets, endowed with
the Vietoris topology, must always be completely metrizable. Let us recall
that they constructed a continuous selection for the Vietoris hyperspace of a
0-dimensional completely metrizable space M by defining a topological well-
ordering on M (i.e. a compatible ordering on M with the additional property
that each closed subset of M has a least element). So by our results, the
existence of a topological well-ordering on a 0-dimensional metrizable space
M is equivalent to the existence of a topological (i.e. continuous) selection.

The existence of a continuous selection for closed subsets is a rather
special property: among compacta, those which admit such selections are the
orderable ones only (van Mill and Wattel [14]). One can, however, relax the
continuity condition, obtaining a characterization of completeness in terms
of selections. This is demonstrated in §6, by a modification of the proof of
Theorem 1.1. Yet another modification of this proof yields a characterization
of complete metrizability in terms of compact-valued upper-semicontinuous
selections, presented in §7.

We shall also discuss (leaving some natural problems open) the following
question. Let Y be metrizable and let Z be a natural class of 0-dimensional
metrizable spaces. When does the assumption that Y has the “Z-selection
property”, i.e. each lower-semicontinuous map X → F(Y ) with X ∈ Z has
a continuous selection, imply that Y is completely metrizable? Our main
result provides a positive answer in case Z is the class of 0-dimensional
spaces of density equal to the density of Y .

Using an example due to Stone from [15] we shall show (Corollary 4.2)
that there exist non-absolutely Borel spaces Y of weight ℵ1 with the “sepa-
rable selection property” (i.e., Z is the class of all separable 0-dimensional
spaces).

We also show, using some results of Kanovĕı and Ostrovskĭı [8], that
the statement “all analytic spaces with the Cantor selection property (i.e.,
Z = {Cantor set}) are completely metrizable” is independent of the usual
axioms for set theory. On the other hand, the case of coanalytic spaces is
much simpler. By Hurewicz’s classical result, a coanalytic space which is not
completely metrizable contains a closed copy of the rationals Q. However, Q
does not have the Cantor selection property (not being Baire [5]), hence the
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Cantor selection property for coanalytic spaces is equivalent to topological
completeness.

Finally, assuming Martin’s Axiom, we construct a subset of the real line
not belonging to the σ-algebra generated by the analytic sets but with the
Cantor set selection property.

These results answer some questions of Gutev, Nedev, Pelant and
Valov [5].

We are grateful to the referee for his careful reading of the paper and for
detecting some inaccuracies in the original version.

2. Preliminaries. We denote by F(X) the collection of all nonempty
closed subsets of the topological space X. If X and Y are topological spaces
then F : X → F(Y ) is called lower-semicontinuous (for short: l.s.c.) pro-
vided that for every open subset U ⊆ Y the set {x ∈ X : F (x) ∩ U 6= ∅}
is open in X. A (continuous) selection for F : X → F(Y ) is a (continuous)
function f : X → Y such that f(x) ∈ F (x) for every x ∈ X.

The Vietoris topology on F(X) is generated by the sets {A ∈ F(X) :
A ∩ U 6= ∅} and {A ∈ F(X) : A ⊆ U} with U an arbitrary open subset
of X.

We shall state in Lemma 2.1 a criterion for complete metrizability (close
to some “complete covers” characterizations originated by Z. Froĺık) which
we shall use in the proof of Theorem 1.1. The criterion is based on the classi-
cal theorem of Montgomery [10, §30, X.3] that locally Gδ-sets in metrizable
spaces are Gδ.

Let us call a disjoint family S of subsets of a metrizable space X an
M-family (cf. [10, §30, X(1)]) if there exists a transfinite sequence G0, G1, . . .
. . . , Gξ, . . ., ξ < κ, of open sets in X such that S is equal to the collection

{⋃
S ∩Gξ \

⋃

η<ξ

Gη : ξ < κ
}
.

(In Hansell [6] such an S is called a scattered family.) Evidently, S is anM-
family in X if and only if S is anM-family in its union

⋃S. Montgomery‘s
Theorem implies (by transfinite induction) that the union of an M-family
of Gδ-sets is a Gδ-set.

2.1. Lemma. Let S0,S1, . . . be disjoint families of Gδ-sets in a metric
space M satisfying the following conditions:

(A) S0 = {M}, Sn+1 refines Sn and diamS ≤ 1/n for S ∈ Sn, n ≥ 1;
(B) if S ∈ Sn then S(S) = {T ∈ Sn+1 : T ⊆ S} is an M-family and

G(S) = S \⋃S(S) is an absolute Gδ-set;
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(C) if S1 ⊇ S2 ⊇ . . . , Sn ∈ Sn, then
⋂
n Sn ⊆ M , where the closure is

taken in the completion M∗ of M .

Then M is completely metrizable.

P r o o f. One readily sees that given anM-family S of Gδ-sets in M , each
S ∈ S can be extended to a Gδ-set S∗ in the completion M∗ contained in
S so that S∗ = {S∗ : S ∈ S} is anM-family in M∗. Using this observation,
one can get subsequently disjoint families S∗n = {S∗ : S ∈ Sn} of Gδ-sets in
M∗ such that S∗n+1 refines S∗n and for each S∗ ∈ S∗n, {T ∗ ∈ S∗n+1 : T ∗ ⊆ S∗}
is an M-family.

Let

Gn =
⋃
{G(S) : S ∈ Sn}, Hn =

⋃
S∗n.

By the remark preceding Lemma 2.1, one checks inductively for i=0, 1, . . . , n
that for each S∗ ∈ S∗n−i, the sets Gn ∩ S∗ and Hn ∩ S∗ are Gδ in M∗. For
i = n this means that Gn and Hn are Gδ-sets in M∗. It is therefore enough
to check that

M =
⋂
n

(G0 ∪ . . . ∪Gn−1 ∪Hn).

Since Gn ⊆ M we have to consider an arbitrary point x ∈ ⋂nHn. There
are S∗i ∈ S∗i with x ∈ ⋂i≥1 S

∗
i . Then S1 ⊇ S2 ⊇ . . . and, by (C), x ∈M .

3. Proof of Theorem 1.1. In this section we prove our main result
and derive from it some consequences. The proof given in 3.1 below will be
slightly modified in the forthcoming §6. Having this in mind, we shall deal
with collections of locally closed sets (Engelking [2]), i.e. sets that are the
intersection of an open and a closed set, rather than with Gδ-sets.

3.1. P r o o f o f T h e o r e m 1.1. Let M,N, f and s be as in Theo-
rem 1.1. Let Cf be the subspace of C(M) consisting of all C ∈ C(M) on
which f is injective. We shall define inductively disjoint families S0,S1, . . .
of nonempty locally closed sets in M satisfying the conditions (A) and (B)
in Lemma 2.1, associating in addition with each S ∈ Sn, n ≥ 1, a finite set
F (S) ∈ Cf such that

(1) f [F (S)] ∩ f [S] = ∅ and if C ∈ Cf , C ⊆ S then s(F (S) ∪ C) ∈ f [C],
(2) if S ∈ Sn, T ∈ Sn+1, T ⊆ S, then F (T )\S = F (S) and F (T )∩S 6= ∅.
To show that M is completely metrizable, it is enough to verify that

(1) and (2) imply that property (C) in Lemma 2.1 holds. To this end, let
S1 ⊇ S2 ⊇ . . . with Sn ∈ Sn, let Fn = F (Sn) and A =

⋃
n Fn. By (1) and

(2), F1 ⊆ F2 ⊆ . . . , A ∩ Sn 6= ∅ for all n, f is injective on A, and since
A \ Fn ⊆ Sn and diamSn → 0, A is the range of a Cauchy sequence. To
check that

⋂
n Sn ⊆M we make sure that this sequence converges in M .
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For suppose otherwise, i.e. A ∈ Cf . By (1), f [A] ∩ ⋂n f [Sn] = ∅. But
then s(A) 6∈ f [Sn] for some n, and letting C = A \ Fn ⊆ Sn we get C ∈ Cf
and s(Fn ∪ C) 6∈ f [C], which contradicts (1).

It remains to construct the families Sn and the assignments F (S) for
S ∈ Sn. Suppose that Sn is defined, fix an arbitrary element T ∈ Sn and let
F = F (T ). For n = 0, we put T = M and F = ∅.

We apply a standard exhaustion procedure. We define a sequence ∅ =
G0 ⊆ G1 ⊆ . . . ⊆ Gξ ⊆ . . . of relatively open sets in T with Gξ =

⋃{Gλ :
λ < ξ} for limit ξ, while moreover

(3) Sξ = Gξ+1 \Gξ is nonempty and has diameter ≤ 1/(n+ 1);
(4) Fξ ∈ Cf is a finite subset of T \ Sξ which is associated with Sξ (1);
(5) the pair S = Sξ, F (S) = F ∪ Fξ satisfies (1).

This process terminates at some λ, providing the elements of Sn+1 con-
tained in T and the associated finite sets. We only have to check that
G(T ) = T \Gλ is an absolute Gδ-set.

Striving for a contradiction, assume that it is not. Then G(T ) is not
contained in a fiber of f (since the fibers of f are topologically complete), and
so there are a, b ∈ G(T ) with f(a) 6= f(b). By (1), s(F∪{a, b}) ∈ {f(a), f(b)}
and we may assume without loss of generality that s(F ∪{a, b}) = f(b). Let
V be a neighborhood of f(b) the closure of which misses f [F ∪ {a}]. By
continuity of s, there exists a neighborhood W of b in T with diamW ≤
1/(n + 1) and f [W ] ⊆ V such that for all C ∈ Cf contained in W , s(F ∪
{a}∪C) ∈ V , i.e., s(F ∪{a}∪C) ∈ f [C]. But then, setting Gλ+1 = W ∪Gλ,
Sλ = Gλ+1 \ Gλ, Fλ = {a}, we would extend the procedure beyond the
ordinal λ at which the process terminated.

3.2. Corollary. Let Y be a metrizable space. The following statements
are equivalent.

(1) Y is completely metrizable.
(2) For every 0-dimensional metrizable space X, every lower-semiconti-

nuous function F : X → F(Y ) admits a continuous selection s : X → Y .
(3) For every 0-dimensional metrizable space X with density X ≤ density

Y , every lower-semicontinuous function F : X → F(Y ) admits a continuous
selection s : X → Y .

P r o o f. As observed in the introduction, the implication (1)⇒(2) is
a result due to Michael [12]. Since (2)⇒(3) is trivial, it suffices to con-
sider (3)⇒(1). Fix a 0-dimensional space X which admits a perfect map

(1) In fact, Fξ is a singleton in this proof. But in the modification in §6, Fξ can contain
more elements.
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f : X → Y . (That such a map exists is well known. For a simple construc-
tion of f , see Remark 6.2.) The density of X does not exceed the density of
Y . Let d be a metric on X with the property that the completion (X∗, d∗)
of (X, d) is again 0-dimensional. We will show that the Hausdorff metric
with respect to this metric induces a 0-dimensional topology on C(X) with
density not exceeding the density of X. Identifying C ∈ C(X) with its clo-
sure in X∗, we embed C(X) topologically in the space K(X∗) of compact
subsets of X∗ with the Vietoris topology. Since K(X∗) is 0-dimensional, the
densities of X and X∗ agree, and the densities of X∗ and K(X∗) agree,
this will establish our claim. That K(X∗) is 0-dimensional is probably well
known, but for the reader’s convenience we provide a simple proof of this
fact. Let Un (n ∈ N) be a sequence of clopen partitions of X∗ such that (1)
for every n, Un+1 refines Un, and (2) every U ∈ Un has diameter at most
1/n. For every finite subcollection V ⊆ Un, the set

〈V〉 = {K ∈ K(X∗) : (K ⊆ ⋃V) ∧ (∀V ∈ V : V ∩K 6= ∅)}
is an open and closed subset of K(X∗). In addition, the collection

U∗n = {〈V〉 : V ⊆ Un finite}
is a partition of K(X∗). Moreover,

⋃∞
n=1 U∗n is easily seen to be a base for

K(X∗). We conclude that K(X∗) is 0-dimensional.
Now the function F : C(X)→ Y defined by F (D) = f [D] is l.s.c. So, F

admits a selection. By Theorem 1.1, X is completely metrizable, and so is
Y by [2, 4.5.13(e)].

3.3. R e m a r k. Let X and Y be metrizable spaces and let f : X →
Y be an open surjection. Hausdorff’s Theorem from [7] says that if X is
completely metrizable then so is Y . We will now sketch a new proof of this
fact within the framework of selections. Let M be a 0-dimensional space
and let F : M → F(Y ) be l.s.c. The function Φ : M → F(X) defined by
Φ(m) = f−1[F (m)] is also l.s.c. To see this, simply observe that for an open
subset U ⊆ X we have

Φ(m) ∩ U 6= ∅ ⇔ F (m) ∩ f [U ] 6= ∅.
Since X is complete, by Michael’s Theorem, Φ has a continuous selection s.
But then f ◦ s is a continuous selection for F . By Corollary 3.2 we conclude
that Y must be completely metrizable.

3.4. R e m a r k. Let us remark that in the proof of Theorem 1.1 we
only used the following fact about the topology on C(M):

• If F ⊆ M is finite, x ∈ F and s(F ) = f(x) then for every neighborhood
U of s(F ) there exists a neighborhood V of x with (F \{x})∩V = ∅ such
that for every C ∈ C(M) with C ⊆ V we have s(C ∪ (F \ {x})) ∈ U .
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This fact also holds true for the Vietoris topology on C(M). So by taking
M = N and f the identity on M , as a corollary to the proof of Theorem 1.1,
we deduce that the existence of a continuous selection for the space of all
nonempty closed subsets of M , endowed with the Vietoris topology, implies
that M is completely metrizable. This answers a question of Engelking,
Heath and Michael [3] in the affirmative. For a stronger result in this direc-
tion, see Theorem 6.1.

3.5. Corollary. Let X be a metrizable space and let F(X) denote the
collection of all nonempty closed subsets of X endowed with the Vietoris
topology. If there is a continuous function s : F(X)→ X such that s(A) ∈ A
for every A ∈ F(X), then X is completely metrizable.

4. A non-Borel space with the “separable selection property”.
We shall show in this section that by removing a “free sequence of type ω1” of
closed sets from a complete space we get a space with the “separable selection
property”. Then, using Stone’s space S from [15], we get an example with
the properties stated in the title.

4.1. Theorem. Let X be a complete metric space and let 〈Fξ : ξ < ω1〉
be a family of closed subsets of X such that for every limit ordinal γ < ω1

we have ⋃

α≤γ
Fα ∩

⋃
α>γ

Fα = ∅.

Put E = X \ ⋃α<ω1
Fα. Then for every lower-semicontinuous map ϕ :

T → F(E) defined on a 0-dimensional separable metrizable space T , ϕ has
a continuous selection.

P r o o f. Let d be a complete metric on X. By the 0-dimensionality of T
it is enough to check that each t0 ∈ T has a neighborhood W such that the
l.s.c. map ϕ¹W has a continuous selection.

Let Γ denote the set of limit ordinals in ω1. For γ ∈ Γ we let

Zγ =
⋃

α≤γ
Fα.

Then Z =
⋃
γ∈Γ Zγ is closed in X, being the union of an increasing sequence

of type ω1 of closed sets in the metric space X.
For each ξ < ω1 we list the countable collection {F0, . . . , Fξ} as {Fnξ :

n ∈ N}.
Now fix an arbitrary element x0 ∈ ϕ(t0). If x0 6∈ Z then in a neighbor-

hood of t0, ϕ(t) intersects the open subset X \Z of X, and then we can use
Michael’s Theorem to get a selection for ϕ in this neighborhood. We shall
assume therefore that x0 ∈ Z.
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We shall define inductively continuous functions gi : T → X, ordinals
α1 < α2 < . . . < ω1, disjoint open covers Vi of T with Vi+1 refining Vi, and
for each V ∈ Vi, positive numbers ε(V ), such that

(1) if t ∈ V and V ∈ Vi then d(gi(t), gi+1(t)) ≤ 1
3ε(V );

(2) if V ∈ Vi, U ∈ Vi+1 and U ⊆ V then ε(U) < 1
3ε(V );

(3) gi(t) ∈ ϕ(t), gi(t0) = x0, gi(T ) ∩ Z ⊆ Zαi ;
(4) if U ∈ Vi+1 then

ε(U) < 1
3 dist(gi+1[U ], Li),

where Li =
⋃{F jαk : j, k ≤ i};

(5) if t ∈ V , V ∈ Vi and gi+1(t) 6= gi(t), then

dist(gi+1(t), gi[T ] ∩ Z) < ε(V ).

We start with any continuous selection g1 for the l.s.c. map t 7→ ϕ(t)
satisfying g1(t0) = x0, we set V1 = {T}, ε(T ) = 1 and we pick α1 so that
g1(T ) ∩ Z ⊆ Zα1 .

Assume that gi, Vi, αi and ε(V ) for V ∈ Vi have been defined.
Fix V ∈ Vi. Let H be a clopen neighborhood of g−1

i [Z]∩ V contained in
the open set {

t ∈ V : dist(gi(t), gi[T ] ∩ Z) < 1
2ε(V )

}
.

For each t ∈ V \H we let gi+1(t) = gi(t). Consider G = X \⋃{F jαk : j, k ≤ i}
and define the l.s.c. map Ψ : H → F(G) by the formula

Ψ(t) =
{
x ∈ ϕ(t) : d(x, gi(t)) < 1

3ε(V )
} ∩G.

Since G is open in X and hence is completely metrizable, we can find a
continuous selection gi+1 : H → G for Ψ with gi+1(t0) = x0. Split H and
H \ V into pairwise disjoint open sets U such that dist(gi+1[U ], Li) > 0,
where Li is defined by (4). These sets form the part of Vi+1 that refines V .
For each of these sets U choose ε(U) > 0 satisfying (4) and (2).

Finally, αi+1 > αi is chosen so that gi+1[T ] ∩ Z ⊆ Zαi+1 .
By (1) and (2) the sequence (gi)∞i=1 converges uniformly to a continuous

function g : T → X. By (3),

(6) g(t) ∈ ϕ(t), g(t0) = x0.

Let us check that

(7) g[T ] ∩ Z ⊆ Zγ , where γ = sup{αi : i = 1, 2, . . .}.
Suppose g(t) = limi→∞ gi(t) ∈ Z. If gi(t) ∈ Z, then by (3), gi(t) ∈ Zαi ,

so we are done if this happens for infinitely many i. Otherwise, for infinitely
many i, gi+1(t) 6= gi(t) and, using (5) and (3), we can pick for each such
i a point zi ∈ Zαi with d(gi+1(t), zi) ≤ ε(Vi), where t ∈ Vi, Vi ∈ Vi. Since
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ε(Vi) → 0, by (2), and all accumulation points of the sequence {zi} are in
Zγ , we obtain (7).

Conditions (1) and (4) guarantee that g[T ] is disjoint from
⋃∞
i=1 Li =⋃

α<γ Fα, i.e. by (7),

g[T ] ∩
⋃
α<ω1

Fα ⊆ Fγ .

By (6), g(t0) = x0 6∈ Fγ . Therefore, W = T \ g−1[Fγ ] is a neighborhood of
t0 such that g[W ] ⊆ E. From (6) we get g(t) ∈ ϕ(t) for t ∈W .

Let us recall a construction due to A. H. Stone. Let B(ℵ1) be the count-
able product of the set of countable ordinals with the discrete topology. For
each limit ordinal γ ∈ Γ choose a sequence sγ = {γi} in ω1 with γi ↗ γ.
Stone [15] proved that the set S = {sγ : γ ∈ Γ} is non-Borel in B(ℵ1).
Setting Fγ = {sγ} we get a sequence in B(ℵ1) such as in Theorem 4.1.
Therefore we obtain

4.2. Corollary. Let S ⊆ B(ℵ1) be Stone’s set. Then the non-Borel
space E = B(ℵ1) \ S has the property that each lower-semicontinuous map
ϕ : T → F(E) defined on a 0-dimensional separable metrizable space T has
a continuous selection.

4.3. R e m a r k. If in Theorem 4.1, “ω1” is replaced by a regular cardinal
κ, and we demand that the union

⋃{Fα : α ≤ γ} is Fσ for γ < κ, then the
proof shows that the assertion of the theorem is true for all T of density
less than κ. Using this fact, and axiom E(κ) (cf. Fleissner [4, Definition
3.10]), one can supplement Corollary 4.2 with the following statement: it
is consistent with the usual axioms for set theory that for each regular
cardinal κ there exists a metrizable non-Borel space of density κ which has
the selection property with respect to all 0-dimensional spaces of density
less than κ.

4.4. R e m a r k. Let E be a metric space with completion E∗ such that
E∗ \E does not contain any Cantor set. Then for every l.s.c. map ϕ : X →
F(E) there exists an l.s.c map ψ : X → F(E) for which ψ(x) is separable
and contained in ϕ(x) for every x ∈ X (this cannot always be done, even
for the spaces E considered in Theorem 4.1). This result can also be used to
prove Corollary 4.2, or its extension described in Remark 4.3. In general, the
“shrinking theorem” and Theorem 4.1 have different areas of applications.
This alternative approach will be discussed in detail elsewhere.

5. Analytic spaces with the “compact selection property”. A
separable metrizable space X is called analytic if it is a continuous image
of the space P of irrational numbers. In this section we are interested in the
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question whether all analytic spaces with the Cantor selection property are
completely metrizable.

The cardinality of the continuum is denoted by c throughout. We denote
Martin’s Axiom by MA (see Kunen [9] for more information). Let us recall
that MA guarantees that in any separable completely metrizable space the
intersection of fewer than c dense open sets is dense.

5.1. Theorem. (MA) Let X be an uncountable separable completely
metrizable space and let A ⊆ X be of cardinality less than c. Then Y = X\A
has the Cantor selection property.

P r o o f. Let K denote the Cantor set and let F : K → F(Y ) be l.s.c. The
function ϕ : K → F(X) defined by ϕ(x) = F (x) is l.s.c. as well. Let C(K,X)
denote the collection of all continuous functions from K to X endowed with
the compact-open topology. As is well known, C(K,X) is separable and
completely metrizable. Define

A = {f ∈ C(K,X) : f is a selection for ϕ}.
It is easily seen that A is a closed subset of C(K,X), whence A is separable
and completely metrizable as well. For every a ∈ A put

Aa = {f ∈ A : a 6∈ f [K]}.
It is clear that Aa is an open subset of A and we claim that it is also
dense. To see this, pick an arbitrary element f ∈ A and let ε > 0. Fix an
open neighborhood U of a of diameter less than ε. The set V = {x ∈ K :
F (x) ∩U 6= ∅} is open in K since F is l.s.c. Put Z = X \ {a}. Let us define
ψ : K → F(Z) by

ψ(x) =
{
F (x) ∩ U \ {a} if x ∈ V ,
{f(x)} if x ∈ K \ V .

Then ψ is l.s.c. The space Z is topologically complete and hence we can use
Michael’s Theorem to get a selection t for ψ. Evidently, t is ε-close to f .

Now by MA, the set B =
⋂
a∈AAa is dense in A. Clearly, every f ∈ B is

a selection for F .

5.2. R e m a r k. Let us now consider the question of whether all analytic
spaces with the Cantor selection property are completely metrizable. The
standard Cantor set will be denoted by K throughout. By Martin and Solo-
vay [11, 3.1 and 3.2], it is consistent with MA +¬CH that K \A is analytic,
for every subset of A of cardinality ℵ1. Now let A be any subset of K of
cardinality ℵ1. Then clearly K \A is not complete since otherwise A would
either be countable or of cardinality c. So in this model K \A is an example
of an analytic space which is not topologically complete but yet has the
Cantor selection property. On the other hand, Kanovĕı and Ostrovskĭı [8]
showed that there is also a model of set theory in which every analytic space
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which is not complete contains a closed copy of Q, the space consisting of
all rational numbers. In this model, every analytic space with the Cantor
selection property is complete by [5, Theorem 1].

5.3. R e m a r k. Let X be an uncountable compact metrizable space and
let A be a family of fewer than c closed nowhere dense sets. With the same
proof as in Theorem 5.1 it follows that under MA the space X \⋃A has the
Cantor selection property. This allows us to use a Bernstein type argument
to construct in the unit interval I under MA a pair A,B of disjoint dense
sets with the Cantor selection property. By [5, Theorem 1] both A,B are of
second Baire category at each point of I, and therefore they are not open
modulo a first category set (and so, they do not belong to the σ-algebra
generated by the analytic sets). Let us sketch the argument.

We endow F(I) with the Vietoris topology. Since every l.s.c. function
ϕ : K → F(I) is a Borel map, there are only c such maps. List them as
{ϕα : 1 ≤ α < c}. Let A0 and B0 be disjoint countable dense subsets
of I. By transfinite induction on 1 ≤ α < c, applying the above modified
Theorem 5.1 at every step of the construction, it is now possible to construct
compact subsets Aα and Bα such that

(1)
⋃
ξ≤αAξ ∩

⋃
ξ≤αBξ = ∅;

(2) if for every t ∈ K, ϕα(t)\⋃ξ≤αBξ is dense in ϕα(t), then there exists
a continuous selection sα : K → Aα for ϕα;

(3) if for every t ∈ K, ϕα(t)\⋃ξ≤αAξ is dense in ϕα(t), then there exists
a continuous selection tα : K → Bα for ϕα.

Then A =
⋃
α<cAα and B =

⋃
α<cBα are disjoint dense subsets of I

both having the Cantor selection property. Indeed, if e.g. ψ : K → F(A) is
l.s.c., then ϕ : K → F(I) defined by ϕ(t) = ψ(t) is listed as some ϕα which
satisfies (2).

6. Selections for F(M) that characterize topological complete-
ness of M . In this section we shall consider the space F(X) of closed
nonempty subsets of X with the Vietoris topology. We denote by D(X) the
subspace of F(X) consisting of discrete subsets.

Given A ⊆ F(X) we say that s : A → X is a selection for A if s(A) ∈ A
for A ∈ A (cf. [3, p. 150]).

Engelking, Heath and Michael [3] proved in Corollary 1.2 that for each
completely metrizable 0-dimensional spaceM , there is a continuous selection
for F(M). Combined with Corollary 3.5 this provides a characterization of
complete metrizability in the realm of 0-dimensional spaces.

But, as was mentioned in the introduction, only for linearly ordered
compacta there is a continuous selection for the collection of two-point sets,
so there is no continuous selection for the family of all two-point sets in the
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unit circle. There is also no continuous selection for the family D(R), where
R is the real line (see [3], the remark following the proof of Proposition 5.1).

To characterize completeness in the general situation we are therefore
forced to impose a weaker continuity property on the selection.

6.1. Theorem. For a metrizable space M the following conditions are
equivalent :

(1) M is completely metrizable.
(2) There exists a selection for D(M) such that its restriction to each

set of the form F(Z)∩D(M), with Z closed in M , has a dense set of points
of continuity.

P r o o f. (1)⇒(2). Let p : X →M be a continuous one-to-one map from a
completely metrizable 0-dimensional space X onto M such that the inverse
map p−1 : M → X has the property that its restriction to each closed subset
of M has a point of continuity. (Since we did not find a convenient reference
for p in the nonseparable case, we briefly comment on this in Remark 6.2.)
By the result of Engelking, Heath and Michael there exists a continuous
selection f : F(X)→ X for F(X). Let s : F(M)→M be defined by

s(A) = p(f(p−1(A))).

Let Z be an arbitrary closed subset of M , let C be the set of all continuity
points of p−1 restricted to Z and let A be the collection of all finite subsets
of C. One readily checks that s restricted to F(Z) is continuous at each
point A ∈ A, and since A is dense in F(Z) ∩ D(M), we get (2).

(2)⇒(1). We shall slightly modify the proof of Theorem 1.1 in §2. Let
us adopt the notation from this proof, setting f = the identity on M , and
replacing the collection Cf by D(M). Then we follow the reasoning until
the last step, where we have to check that G(T ) = T \ Gλ is topologically
complete. We shall show that in our case, it is at most a singleton. Assume
to the contrary that G(T ) contains two distinct points a, b. The set G(T )
being locally closed in M , we can find disjoint closed sets K,L in M , with
a ∈ K, b ∈ L, K ∪ L ⊆ G(T ), such that both K,L are regularly closed in
the space G(T ). Let

Z = F ∪K ∪ L
and let U be the collection of all D ∈ D(M) such that F ⊆ D ⊆ Z and D
intersects both K and L. Then U is a nonempty open set in F(Z)∩D(M) and
by (2), there is E ∈ U such that s restricted to F(Z)∩D(M) is continuous at
E. Let s(E) = c. Then c ∈ K ∪L (see (1) in §3.1). We may assume without
loss of generality that c ∈ L. Let V be a neighborhood of c in Z the closure of
which misses the remaining points of E. By the continuity of s at E we can
choose a finite set H ⊆ (K∪L)\V , H∩K 6= ∅, and a neighborhood W of c in
L contained in V such that for all D ∈ D(M) with D ⊆W , s(F∪H∪D) ∈ V ,
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i.e., s(F ∪H∪D) ∈ D. Since L is regularly closed in G(T ), W has nonempty
interior relative to G(T ), and there consequently exists an open set U in T
such that ∅ 6= U ∩G(T ) ⊆W . But then we set Gλ+1 = U ∪Gλ, Sλ = Gλ+1 \
Gλ, Fλ = H, obtaining, as in the proof of Theorem 1.1, a contradiction.

6.2. R e m a r k. Let us construct a map p : X →M used in the proof of
the implication (1)⇒(2). Let P be the set of irrationals, J(R) the hedgehog
of density equal to the density of M , and let J(P) be obtained from J(R)
by removing from each spine the rational points different from 0. One can
easily define a continuous one-to-one map u : P → R onto R such that
its inverse u−1 is continuous at each irrational point. The map u applied
to every spine induces a map J(u) : J(P) → J(R) and the product map
q = J(u)∞ : J(P)∞ → J(R)∞ is continuous, one-to-one, onto, and the
inverse q−1 has a point of continuity on each closed set. Since M embeds in
J(R)∞ as a closed set, we can take X = q−1[M ] and p = the restriction of
q to X.

To get a perfect map f such as the one used in the proof of Corollary 3.2,
we can start from a continuous map u : K → I of the Cantor set onto the
unit interval, and then take as f the resulting map p.

7. Compact-valued selections that characterize topological com-
pleteness. A map ψ : X → F(Y ) is upper-semicontinuous (for short: u.s.c.)
if for each open set U in Y , the set {x ∈ X : ψ(x) ⊆ U} is open.

Michael [13] proved that if Y is completely metrizable, then for every
l.s.c. ϕ : X → F(Y ) with metrizable domain, there exists a compact-valued
u.s.c. map ψ : X → F(Y ) with ψ(x) ⊆ ϕ(x) for every x ∈ X (Čoban and
Michael [1] derived this theorem from the theorem of Michael discussed in
the introduction).

We shall show that a metrizable Y satisfying the assertion of this theorem
must be topologically complete. More specifically, adopting the notation
from the introduction, we have the following

7.1. Theorem. If there exists an upper-semicontinuous map s : C(M)→
F(M) such that for any A ∈ C(M), s(A) ⊆ A is finite, then M is completely
metrizable.

P r o o f. We shall follow closely the proof of Theorem 1.1, adopting the
same notation, and setting f = the identity on M ; in particular, Cf = C(M).

We have to replace the second part of condition (1) in 3.1 by

(∗) if C ∈ C(M) and C ⊆ S then s(F (S) ∪ C) ∩ C 6= ∅.
Then the proof in 3.1 runs smoothly also in our case until the last step, with
the following obvious modifications following condition (2): s(A) ⊆ A \ Sn,
for some n, and for C = A \ Fn, s(Fn ∪ C) ∩ C = ∅, contradicting (∗).



140 J. van Mill et al.

In the last step we shall show that G(T ) is a singleton. Striving for a
contradiction, assume that it is not, and consider the family E of all non-
singleton elements of C(M) contained in G(T ), setting for E ∈ E (see (∗))

t(E) = s(F (T ) ∪ E) ∩ E.
If E contains an element E for which t(E) is a singleton then we can end
the proof following the final part of the proof of implication (2)⇒(1) in 6.1
with some evident omissions.

Assume that t(E) is never a singleton, and let a, b be distinct points
of G(T ). Then t({a, b}) = {a, b}. Let V be a neighborhood of b disjoint
from F ∪{a}, where F = F (T ). Using the upper-semicontinuity of s, choose
a neighborhood W of b in T contained in V so that for all C ∈ C(M)
contained in W , s(F ∪ {a} ∪ C) ⊆ F ∪ {a} ∪ V . If, in addition, C ⊆ G(T ),
then E = {a} ∪ C is in E , and t(E), being a non-singleton subset of E,
must intersect C. Therefore, we can reach a contradiction as in the proof of
Theorem 1.1.

References
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