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The Arkhangel’skĭı–Tall problem:
a consistent counterexample

by

Gary G r u e n h a g e and Piotr K o s z m i d e r (Auburn, Ala.)

Abstract. We construct a consistent example of a normal locally compact metacom-
pact space which is not paracompact, answering a question of A. V. Arkhangel’skĭı and
F. Tall. An interplay between a tower in P(ω)/Fin, an almost disjoint family in [ω]ω , and
a version of an (ω, 1)-morass forms the core of the proof. A part of the poset which forces
the counterexample can be considered a modification of a poset due to Judah and Shelah
for obtaining a Q-set by a countable support iteration.

0. Introduction. In 1971, A. V. Arkhangel’skĭı [A] proved that every
perfectly normal, locally compact, metacompact space is paracompact. This
suggests the question, stated in print by Arkhangel’skĭı (see [AP], Chapter
5, p. 309) and Tall [T] three years later, and oft-repeated since then, whether
“perfectly normal” can be reduced to “normal”:

Problem. Is every normal , locally compact , metacompact space para-
compact?

Recall that a space is metacompact if every open cover has a point-finite
open refinement. Standard topological arguments show that if there is a
counterexample to the problem, then there is one which is not collection-
wise Hausdorff (CWH). Bing’s famous Example G [Bi] is a ZFC example
of a normal space which is not CWH, and Michael’s metacompact subspace
of this example (see [Mi]), which is not locally compact, shows that the
assumption of local compactness is essential for this problem.
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S. Watson [W1] obtained the first consistency result on the problem: he
showed that in Gödel’s constructible universe L, normal locally compact
spaces are collectionwise Hausdorff, and so V = L implies that the answer is
“yes”. The answer is also positive in a model obtained by adding supercom-
pact many Cohen or random reals, because there normal locally compact
spaces are collectionwise normal [B]. P. Daniels [D] showed the answer is
positive in ZFC if “metacompact” is strengthened to “boundedly metacom-
pact”, i.e., every open cover has an open refinement such that for some
positive integer n each point is in at most n elements of the refinement. In a
forthcoming paper [GK], the authors show that MAσ-centered(ω1) also implies
a positive answer to the problem, and that MA(ω1) implies that the answer
is positive even if “metacompact” is weakened to “metalindelöf” (i.e., every
open cover has a point-countable open refinement).

In this paper we complete the solution to the problem by showing that,
if ZFC is consistent, then it is consistent with ZFC that there is a normal
locally compact metacompact space which is not paracompact. This result,
as well as the aforementioned MA results, had its origins in the study of a
paper of Watson [W2] in which he constructs consistent examples of normal
locally compact metalindelöf spaces which are not paracompact.

The rough idea of Watson’s examples is to take a normal locally compact
non-collectionwise Hausdorff space of the form D ∪ I, where D is a closed
discrete set and I is a set of isolated points (e.g., the Cantor tree space over
a Q-set), replace the isolated points with copies of suitably chosen compact
spaces, and define a neighborhood of a point in d ∈ D to be a tail of a
suitably chosen sequence of clopen sets in the compact spaces corresponding
to a sequence of isolated points converging to d.

By deciding in advance that the space of the form D∪I that we are going
to use is a space obtained in a standard way from an almost disjoint family
of subsets of ω, so I = ω for our example, and also deciding that we will
replace an isolated point n with the space ω≤n1 of sequences of length ≤ n of
countable ordinals endowed with a natural compact Hausdorff topology, we
are able to reduce the problem of obtaining a counterexample to a certain
combinatorial statement. This is done in Section 1. In Section 2 we prove
these combinatorics relatively consistent with ZFC.

Our proof is rather lengthy, so we give here a brief description of the
key ideas. The set for our example is ω1 ∪

⋃
n<ωKn, where Kn is a copy of

ω≤n1 . The Kn’s are disjoint clopen subsets of the example, and are given the
compact Hausdorff topology generated by sets of the form

V (σ) = {τ ∈ ω≤n1 : σ ⊆ τ}
and their complements. Each α ∈ ω1 is associated with a certain Xα ⊂ ω
such that the collection X = {Xα : α < ω1} is almost disjoint. To define
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a neighborhood of the point α in the closed discrete set ω1, we first choose
σα,n ∈ ω≤n1 for n ∈ Xα. Then the kth basic (cl)open neighborhood of α is
{α} ∪⋃n∈Xα\k V (σα,n), where we consider V (σα,n) as a subset of Kn. The
space is Hausdorff because the Xα’s are almost disjoint. Since the V (σ)’s
are compact and point-finite, the resulting space is locally compact and
metacompact. The set ω1 is an uncountable closed discrete subset of the
space. Since the space has a σ-compact dense subset, every locally finite
collection of open sets must be countable, and it follows that the space
cannot be paracompact.

So it remains to make the space normal somehow. We get the closed
discrete set ω1 to be normalized (i.e., every pair of disjoint subsets of it can be
put into disjoint open sets) by making X “separated” in the following sense:

(∗) ∀A ⊂ ω1 ∃u ⊂ ω [∀α ∈ A (Xα ⊂∗ u) & ∀α ∈ ω1 \A (Xα ∩ u =∗ ∅)].
Separated families can easily be obtained from a Q-set (see, e.g., [vD]), and
in fact condition (∗) implies that X is a Q-set in the Cantor set 2ω, where
a subset of ω is identified with its characteristic function.

Having the closed discrete set normalized is not enough for normality of
the space, however. We must also be able to separate pairs H,K of disjoint
closed sets where H = ω1. This normality turns out to be the more com-
plicated one to analyze and obtain. The way we choose the sequences σα,n
in ω≤n1 is important: we use a family F =

⋃
n<ω Fn of finite subsets of ω1

having the following properties (among others. . .—see Definition 5; F may
be considered a weakening of Velleman’s (ω, 1)-morass [V]):

(i) F is directed and cofinal in ([ω1]<ω,⊆).
(ii) |F | = n for every F ∈ Fn.

(iii) If F,G ∈ Fn and α ∈ F ∩G, then F ∩ α = G ∩ α.
(iv) If F ∈ Fn, G ∈ Fm, α ∈ F ∩G, and n < m, then α ∩ F ⊆ α ∩G.

We then define σα,n to be the increasing enumeration of F ∩ (α + 1),
where α ∈ F ∈ Fn (if there exists F ∈ Fn containing α). It follows from
this definition that:

(a) If β < α and both σβ,n and σα,n are defined, then σβ,n ⊂ σα,n.
(b) The function m(., α) : α→ ω, where m(β, α) is the least m such that

β and α are both contained in some F ∈ Fm, is finite-to-one.
(c) If n ≥ m(β, α) and α ∈ ⋃Fn, then both σβ,n and σα,n are defined

and σβ,n ⊂ σα,n.
(d) If β < δ < α and k ≥ max{m(β, δ),m(δ, α)}, then α ∈ F ∈ Fk

implies β, δ ∈ F .

The properties of this “coloring” m of [ω1]2 are reminiscent of some
colorings of Todorčević (see [To]). The advantage of using the above method
of choosing the σα,n’s is that we can now state just in terms of m and the
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almost disjoint family X the final combinatorial condition needed to make
the space normal (see Proposition 1 and the Reduction Lemma 9):

(∗∗) ∀A ⊆ ω1 ∃B ∈ [A]ω ∀α ∈ A
[
Xα ⊆∗

⋃

β∈B
(Xβ −m(β, α))

]
.

If one translates condition (∗∗) to see what it means for the topology of the
space, it says (a bit more than) “given any collection of neighborhoods of
some subset A of the closed discrete set ω1, some countable subcollection
covers a neighborhood of every point (except for the point itself) of A”. So it
is a kind of “hereditarily Lindelöf” property. The finite-to-one function also
enables one to “chop off” the countable subcollection so that only finitely
many meet any fixed Kn, hence the union has no limit points outside of the
closed discrete set. It is just what is needed for separating pairs of closed
sets, one of which is contained in the closed discrete set and the other disjoint
from it.

Our task then is to build an almost disjoint collection X and a collection
F of finite subsets of ω1 so that (∗) and (∗∗) are satisfied. Now for (∗)
essentially we need a Q-set, but it turns out that the usual methods for
producing a Q-set destroy (∗∗). For example, MA(ω1) destroys (∗∗), and so
does any uncountable finite support iterated forcing. So we turn to a method
due to Judah and Shelah [JS] for forcing a Q-set by a countable support
iteration. The first stage of the Judah–Shelah poset is a countably closed
poset adding a tower (i.e., an almost increasing family) {Yα : α < ω1} of
subsets of ω. Then the “rings” Xα = Yα+1 \ Yα of the tower form an almost
disjoint family. This first stage is followed by an ω2-stage iteration, each
factor of which “separates” this almost disjoint family with respect to some
subset A of ω1 that has appeared by that stage, and so that after ω2 steps
the family has property (∗). Assuming CH, the poset is proper and ω2-c.c.,
so cardinals are preserved. The continuum is ω2 in the extension.

An (ω, 1)-morass, and hence a collection F satisfying the conditions
(i)–(iv) above, exists in ZFC. However, using an F from the ground model
seems not to give us enough control to prove (∗∗). So we add to the first
coordinate of the Judah–Shelah poset another factor which adds a generic
F . Finally, it turns out that the growth of the functions gα : Xα → ω,
where gα(n) is the length of σα,n, needs to be controlled. By (ii) in the list
of properties of F , gα(n) ≤ n. If nothing is done about it, these gα’s will be
unbounded below the identity, and we can show that this destroys (∗∗) (in
this particular forcing extension. . . ; we know of no intrinsic reason why this
should be true in general). So we add a third coordinate to the first factor
of the forcing which essentially makes the gα’s the left half of a Hausdorff
gap. This turns out to give us just enough control over everything to prove
that (∗∗) holds in the final model.
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1. Reduction to combinatorics

Proposition 1. Suppose we have an almost disjoint family {Xα :
α ∈ ω1} of infinite subsets of ω, and for each α ∈ ω1 and n ∈ Xα we
have an assigned σα,n ∈ ω≤n1 such that the following conditions hold :

(i) For every A ⊆ ω1, there is u ⊆ ω such that u∩Xα is finite if α 6∈ A,
and Xα − u is finite if α ∈ A.

(ii) For every n ∈ ω and σ ∈ ω≤n1 , the set {α : σα,n = σ} is finite.
(iii) For every A ⊆ ω1 there is a countable B ⊆ A and a finite-to-one

function f : B → ω such that for every α ∈ A, for sufficiently large n ∈ Xα,
there is β ∈ B with n ∈ Xβ − f(β) and σα,n ⊇ σβ,n.

Then there is a normal locally compact metacompact space which is not
paracompact.

P r o o f. First we define a compact Hausdorff topology on the set ω≤n1 . If
σ ∈ ω≤n1 , let V (σ) = {τ ∈ ω≤n1 : τ ⊇ σ}. The V (σ)’s and their complements
form a subbase for a Hausdorff topology on ω≤n1 .

We show that ω≤n1 is compact. First, ω≤0
1 is a single point. If α ∈ ω1, it is

easy to see that the clopen set V (〈α〉) in ω≤n+1
1 is a copy of ω≤n1 . Also, every

neighborhood of the empty sequence in ω≤n+1
1 contains all but finitely many

V (〈α〉)’s. So ω≤n+1
1 is the one-point compactification of ω1-many copies of

ω≤n1 . It follows by induction that each ω≤n1 is compact.
Let us note that each V (σ) is a clopen, hence compact, subset of ω≤n1 .

Also, τ ∈ V (σ) if and only if σ ⊆ τ , so the collection of all V (σ)’s is
point-finite.

Now we define the space X. Let Kn be a copy of ω≤n1 such that K0,K1,
K2, . . . are disjoint. The set for X is ω1 ∪

⋃
n∈ωKn. Each Kn is a clopen

subspace of X with the topology described above. The kth neighborhood of
the point α ∈ ω1 is the set

U(α, k) = {α} ∪
⋃
{V (σα,n) : n ∈ Xα − k},

where by V (σα,n) we mean the copy of {τ ∈ ω≤n1 : τ ⊇ σα,n} in Kn.
The space X is clearly locally compact, and ω1 is a closed discrete subset

of X. We prove X is not paracompact. Suppose it were. Then ω1 would have
a discrete separation in X, so there would exist a function g : ω1 → ω such
that {U(α, g(α)) : α < ω1} is a closed discrete collection. For each α, find
n(α) ∈ Xα − g(α). There is n ∈ ω and an infinite subset W of ω1 with
n(α) = n for every α ∈ W . Then {V (σα,n) : α ∈ W} is an infinite closed
discrete collection of sets in the compact space Kn, contradiction.

We show X is metacompact. Let U be any open cover of X. For each
α < ω1, let g(α) ∈ ω be such that U(α, g(α)) is contained in some member
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of U . If σ ∈ Kn ∩ U(α, g(α)), then σα,n ⊆ σ. It follows that the collection
V = {U(α, g(α)) : α < ω1} is point-finite. For each n ∈ ω, there is a finite
collection Wn of clopen subsets of Kn refining U and covering Kn. Then
V ∪⋃n∈ωWn is a point-finite clopen refinement of U .

It remains to prove X is normal. Let H and J be disjoint closed sets. By
a standard subtraction argument it suffices to show that H can be covered
by countably many open sets whose closures miss J . Since Kn is a compact
clopen subspace of X, there is a clopen subset of Kn containing H ∩ Kn

and missing J ∩Kn. Thus it remains to cover H ∩ ω1. Let u ⊆ ω be such
that Xα ∩ u is finite for every α ∈ H ∩ ω1, and Xα − u is finite for every
α 6∈ H. For each α ∈ H ∩ ω1, choose g(α) ∈ ω such that g(α) ⊇ Xα ∩ u and
U(α, g(α)) ∩ J = ∅.

Let Am = {α ∈ H ∩ω1 : g(α) = m}. We will finish the proof by showing
that Am is contained in an open set V whose closure misses J . Let B ⊆ Am
and f : B → ω be as in condition (iii) applied with A = Am. For β ∈ B, let
h(β) = max{f(β),m}, and let V = Am ∪

⋃{U(β, h(β)) : β ∈ B}.
To show V is open, consider α ∈ Am. There is k ∈ ω −m such that, for

every n ∈ Xα − k, there is β ∈ B with n ∈ Xβ − f(β) and σα,n ⊇ σβ,n.
Thus the copy of V (σα,n) in Kn is contained in the copy of V (σβ,n), which
in turn is contained in V (since n ≥ max{f(β),m} = h(β)). It follows that
U(α, k) ⊆ V .

Finally, we show that the closure of V misses J . Since h(β) ≥ m = g(β)
for β ∈ B, it is clear that V misses J . Since f is finite-to-one on B, for fixed
n only finitely many U(β, h(β))’s for β ∈ B meet Kn. So Kn ∩ V is clopen.
It remains to prove that if α ∈ J ∩ ω1, then α is not in the closure of V .
There is k ∈ ω such that Xα − k ⊆ u. By the definition of m and since
h(β) ≥ m for β ∈ B, we have(⋃

{Xβ − h(β) : β ∈ B}
)
∩ u = ∅.

It follows that U(α, k) ∩ V = ∅.

2. Proving consistency. By Proposition 1, the following proposition
completes the proof that it is consistent with ZFC for there to be an example
of a normal, locally compact, metacompact, nonparacompact space.

Proposition 2. Assuming the consistency of ZFC , the following state-
ment is consistent with ZFC : There is an almost disjoint family X = {Xα :
α < ω1} of infinite subsets of ω and a family Σ = {σα,n : α ∈ ω1, n ∈ Xα}
of finite sequences of countable ordinals such that :

(i) For every A ⊆ ω1 there is u ⊆ ω such that u∩Xα is finite if α 6∈ A,
and Xα − u is finite if α ∈ A.

(ii) Each σα,n ∈ ω≤n1 , and σα,n 6= σα′,n′ for α 6= α′.
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(iii) For every A ⊆ ω1 there is a countable B ⊆ A and a finite-to-one
function f : B → ω such that for every α ∈ A, for sufficiently large n in Xα

there is β ∈ B with n ∈ Xβ − f(β) and σα,n ⊇ σβ,n.

We will call the property of X expressed in (i) the Q-set property , and
the property of Σ and X expressed in (iii) the hereditary Lindelöf property.

The rest of this section is devoted to proving Proposition 2. This is done
using the method of iterated forcing. In what follows we first define forcing
notions we will be dealing with, then we begin establishing their properties
and finally we prove that the families as in Proposition 2 exist in the generic
extension obtained by using previously examined forcing notions.

We assume that the ground model satisfies CH. First we force with a
countably closed forcing P . We call this forcing the initial forcing. This forc-
ing has two groups of coordinates, the first one denoted by P1. Then we force
with an iteration with countable supports denoted by Qω2 = (Qα, Qα)α<ω2 .
The entire forcing P ∗Qω2 will be denoted by R.

The first group of coordinates of P , which is itself a forcing notion de-
noted by P1, forces the family {Xα : α < ω1}. The conditions are of the form
p = (Xp,Yp, αp), where αp < ω1 is a limit ordinal, Xp = {Xp

α : α < αp},
Yp = {Y pα : α < αp} and the following hold:

(1) All Xp
α’s and Y pα ’s are infinite and co-infinite subsets of ω.

(2) The Xp
α’s form an almost disjoint family of subsets of ω.

(3) The Y pα ’s form a strictly almost increasing family of subsets of ω.
(4) For every β < α ≤ αp we have Xβ ⊆∗ Yα and Xα is almost disjoint

from Yβ for β < α < αp and Xα ∩ Yα = ∅.
The order is given by p ≤ q if and only if Xp ⊇ Xq, Yp ⊇ Yq, and

αp ≥ αq.
Fact 3. (CH ) P1 is σ-closed and satisfies the ω2-c.c.

Definition 4. Suppose f, g are partial functions from ω into ω. Then
f <+ g will mean that

∀n < ω ∃i ∈ ω ∀j ∈ (dom(g) ∩ dom(f)− i) [g(j)− f(j) > n].

We also let Id denote the identity function on ω.

Before defining the second group of coordinates, it will be convenient to
define a weakening of the notion of an (ω, 1)-morass (see [V]):

Definition 5. Suppose that s ∈ P1. A family F =
⋃
n<ω Fn is called

an s-frame if and only if the following conditions hold:

(1) If a ∈ Fn, then a ⊂ αs and |a| = n.
(2) F is directed.
(3) If β ∈ a, b ∈ Fn for some n < ω, then a ∩ β = b ∩ β.
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(4) If a ∈ Fn, b ∈ Fm, β ∈ a ∩ b and n < m then a ∩ β ⊆ b ∩ β.
(5) For every β < αs and every n ∈ ω − Y sβ , Fn covers β (by which we

simply mean β ∈ ⋃Fn).
(6) For every k ∈ ω and β < αs there is m < ω such that for all n > m

we have n− |a ∩ (β + 1)| > k for a ∈ Fn and β ∈ a.

If F is an s-frame and β ∈ a ∈ Fn, we denote a ∩ (β + 1) by aβ(F)(n).
In this case we also denote |aβ(F)(n)| by ηβ(F)(n).

By m(β1, β2) we mean the minimal integer m such that there is a ∈ Fm
such that β1, β2 ∈ a for β1, β2 < αs.

If s1, s2 ∈ P1 and s1 ≤ s2 and F i are si-frames respectively, then we say
that F1 is an end-extension of F2 if and only if F1 ⊇ F2 and

∀n < ω ∀a ∈ F1
n ∃b ∈ F2

n ∃β ∈ αs2 (a ∩ αs2 = b ∩ β).

Fact 6. Let s ∈ P1 and let F be an s-frame.

(1) If Fn covers β1 and β1, β2 < αs then the objects m(β1, β2), aβ1(F)(n)
and ηβ1(F)(n) are well defined.

(2) For each β < αs the sequence {aβ(F)(n) : Fn covers β} is non-
decreasing and cofinal in [β]<ω and the partial function ηβ(F) : {n : Fn
covers β} → ω is nondecreasing (and has unbounded range if β is infinite);
moreover , ηβ(F) <+ Id.

(3) For each β1 < β2 < αs and n ≥ m(β1, β2), if Fn covers both β1 and
β2, then aβ2(F)(n) ∩ (β1 + 1) = aβ1(F)(n) and ηβ1(F)(n) < ηβ2(F)(n).

(4) For every β < αs and k < ω, if Fn covers both β and β + k, then
ηβ(F)(n) + k ≥ ηβ+k(F)(n).

(5) Suppose that (si : i < ω) is a decreasing sequence of conditions of
P1 and (F i : i < ω) is a sequence of respective si-frames. If for every i < ω
the frame F i+1 end-extends the frame F i, then

⋃Fi is a (
⋃
i<ω Xi,

⋃
i<ω Yi,

sup(αsi : i < ω))-frame which end-extends all frames F i.
P r o o f. (1) For β1 covered by Fn and β1, β2 < αs the existence of

aβ1(F)(n) and so of ηβ1(F)(n) follows from the definition, and their
uniqueness from Definition 5(3). Now m(β1, β2) is well defined because there
are b1, b2 ∈ F such that β1 ∈ b1 and β2 ∈ b2 by 5(5) and then there is a ∈ F
such that b1 ∪ b2 ⊆ a by 5(2).

(2) The nondecreasingness follows from Definition 5(4). The cofinality
is proved as follows: take x ∈ [β]<ω; by the directedness of F and 5(5), we
will find a ∈ F such that x, {β} ⊆ a; now x ⊆ aβ(F)(n) for n such that
a ∈ Fn. It is an easy consequence of the above that ηβ(F) is nondecreasing
and unbounded if β is infinite. ηβ(F) <+ Id follows from 5(6).

(3) Fix β1, β2 and n as in (3). By the definition of m(β1, β2) there is a ∈
Fm such that β1, β2 ∈ a and m ≤ n, so by 5(4), we see that β1 ∈ aβ2(F)(n)
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and now the first part of (3) follows from 5(3). The second part follows from
the first.

(4) As n ≥ m(β, β + k), it follows from 5(3) that aβ(F)(n) may differ
from aβ+k(F)(n) only by elements of the form β + 1, . . . , β + k.

(5) Clear.

R e m a r k. We introduced the notion of an s-frame so that the assump-
tions of the following lemma are relatively simple.

Extension Lemma 7. Suppose that s = (Xs,Ys, αs) ∈ P1 and that
F is an s-frame and (bi, βi, ni)i<ω is a sequence satisfying the following
conditions:

(i) bi ⊆ bi+1 ∈ [αs]<ω for all i < ω.
(ii) For each i < ω we have

aβi(F)(ni) = bi.

(iii) The sequence (βi : i < ω) is nondecreasing and unbounded in αs.
(iv) The sequence (ni : i < ω) is increasing and unbounded in ω and

almost disjoint from all (Y sβ : β < αs).
(v) (|bi| : i < ω) <+ Id and (ni − |bi| : i < ω) is nondecreasing.

Then there is an s′ ≤ s such that αs′ = αs+ω and Y s
′

αs = ω−{ni : i < ω}
and there is an s′-frame G such that G is an end-extension of F and for
every i > i0,

aα(G)(ni) = bi ∪ {α},
where i0 is such that for i > i0 we have ni − |βi| > 0.

P r o o f. Let s′ ∈ P1 be an extension of s such that Y s
′

αs = ω−{ni : i < ω},
and each of the Y s

′
αs+k’s strictly includes ω − {ni : i < ω}; this can be

accomplished using assumption (iv). Define f(i) = ni − |bi| for i ∈ ω. Put
di = bi ∪ [α, α + f(i)). Now we are ready to define G. We put Gn = Fn for
n 6∈ {ni : i < ω} and

Gni = Fni ∪ {(di − {max(di)}) ∪ {γ} : γ ≥ max(di), γ ≥ α}.
So now we have to check that all the clauses of Definition 5 hold.

(1) ni = |bi|+ni−|bi| = |bi∪ [αs, αs+f(i))| = |di| = |di−{max(di)}|+1.
(2) Note that the sequence (bi ∪ [αs, αs + f(i)) is cofinal in [αs + ω]<ω.

Indeed, fix x ∈ [αs + ω]<ω. By (iii) and the fact that f is unbounded in
ω find i such that βi > max(x ∩ α) and x − αs ⊆ [α, α + f(i)); now use
Fact 6(2) to find j0 ∈ ω such that for j > j0 if there is aβi(F)(j), then
x ⊆ aβi(F)(j). Now take nk > j0, ni. By assumption (i) we have x ⊆
aβi(F)(nk) ∪ [αs, αs + f(i)) ⊆ aβk(F)(nk) ∪ [αs, αs + f(k)) ⊆ dk. Now note
that dj ∈ Gnj for j such that f(j) > 0.
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(3) Let a, b ∈ Gn − Fn. As all such a, b consist of a common part and
distinct maximums, 5(3) is clear in this case. So consider a ∈ Fn and b ∈
Gn − Fn and let n = ni. First note that b ∩ αs = aβ(F)(ni) (where β is
either βni if f(i) > 0 or the previous element of bi if f(i) = 0), for some
β < αs. Then, by the definition of aβi(F)(ni) and by (ii), we conclude that
there is e ∈ Fni such that β ∈ e and e ∩ (β + 1) = b ∩ αs. Now as a ∈ Fni ,
we have e ∩ (β + 1) = a ∩ (β + 1) by 5(3). Hence a ∩ β = b ∩ β.

(4) By 5(3), for γ ≥ αs and n = ni, i < ω, there is a unique aγ(G)(ni)
and for no other n ∈ ω does Gn cover γ. Calculating aγ(G)(ni) we get
aγ(G)(ni) = bi ∪ [αs, αs + f(i) − 1) ∪ {γ} for i such that αs + f(i) ≤ γ. So
aγ(G)(ni) = bi ∪ [αs, γ] for γ < αs + f(n). By assumptions (i) and (v), both
(bi : i < ω) and ([αs, αs+f(i)−1) : i < ω) are nondecreasing, so (4) follows.
Note that we also proved that aαs(G)(ni) = bi ∪ {αs}.

(5) Follows from the construction of s′ and G.
(6) For γ ≥ αs + f(i) we have ni − ηγ(G)(ni) = 0 and for γ = αs + k <

αs + f(i) we have ni − ηγ(G)(ni) = ni − (|bi| + k) = f(i) − k. Thus the
function in (6) is nondecreasing by assumption (v). The other properties
follow directly from the construction.

Definition 8. Suppose that H is a directed subset of P1 and that
sup{αs : s ∈ H} = ω1 and Fs for s ∈ H are s-frames such that if s1 ≤ s2, s3

then Fs1 ⊇ Fs2 ,Fs3 . Moreover, suppose F =
⋃{Fs : s ∈ H}.

We define Σ(F) = {σα,n : α < ω1, n ∈ Xs
α, s ∈ H}, where

σα,n = 〈α1, . . . , αr〉
with α1, . . . ., αr being the increasing enumeration of aα(F)(n).

Reduction Lemma 9. Suppose F and H are as in Definition 8, X =⋃{Xs : s ∈ H} and that for every uncountable A ⊆ ω1 we have δ < ω1 such
that

Xα ⊆∗
⋃

β∈A∩δ
Xβ −m(β, δ)

for every α ∈ A. Then X and Σ(F) have the hereditary Lindelöf property
(property (iii) of Proposition 2).

P r o o f. Fix H and F as in Definition 8. Let A ⊆ ω1. Find δ as in
the reduction lemma. We claim that the hereditary Lindelöf property is
witnessed by B = A ∩ δ and f = m(., δ).

The function m(., δ) is finite-to-one by Definition 5(1), (3), and is well
defined on the entire δ by Fact 6(1).

Now take any α ∈ A (we may assume that α ≥ δ) and n ∈ Xα such that:

(i) n ≥ m(δ, α).
(ii) n 6∈ Yδ.

(iii) n ∈ ⋃β∈A∩δXβ −m(β, δ).
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A sufficiently large n ∈ Xα has these properties as Yδ ⊆∗ Yα and Xα ∩
Yα = ∅ and by the assumption of the lemma. Using (iii) find β ∈ A∩ δ such
that n ∈ Xβ −m(β, δ).

Now we are left with the proof of the fact that σβ,n ⊆ σα,n. By the facts
that Xα ∩ Yα = Xβ ∩ Yβ = ∅ and Definition 5(5), we know that Fn covers
both α and β. Also by (ii) and 5(5), it covers δ. Thus by Fact 6(3) applied
twice, using both (i) and (iii), we conclude that

aβ(F)(n) = aα(F)(n) ∩ (β + 1).

Thus the definition of Σ(F) implies that σβ,n ⊆ σα,n.

Now we are ready to define the second group of coordinates of the forcing
P . This group depends on the first one so in fact we are defining the entire
P . The conditions of P are of the form (s, t), where s ∈ P1 and t is of the
form t = (Ft, αt, Ψt), where:

(1) αt = αs.
(2) Ft is an s-frame.
(3) Ψt is a countable family of partial functions from ω into ω.
(4) For every f ∈ Ψt, dom(f) ⊇ Yβ for some β < αt, and 0 <+ f .
(5) For every β < αt and every f ∈ Ψt we have ηβ(Ft) <+ f .

The order is defined by (s1, t1) ≤ (s2, t2) if and only if:

(6) s1 ≤P1 s2.
(7) Ft1 end-extends Ft2 .
(8) Ψt2 ⊇ Ψt1 .

R e m a r k. Adding a collection of functions as a side condition makes the
family of ηβ(F)’s strictly dominated below every function which dominates
it. In particular, it is going to form a Hausdorff gap together with Ψ . We
have found that the hereditary Lindelöf property fails without such a side
condition.

Fact 10. (CH ) P is σ-closed and satisfies the ω2-c.c.

P r o o f. Fact 6(5).

Density Lemma 11. Suppose that (s, t) ∈ P and α ∈ ω1. There is
(s′, t′) ≤ (s, t) with (s′, t′) ∈ P such that αs′ = αt′ ≥ α.

P r o o f. The proof is by induction on α < ω1. If α is a limit ordinal, then
we can apply the inductive hypothesis and Fact 6(5). If α = β + k for some
β < ω1, we will use the Extension Lemma 7. By the inductive hypothesis
and the fact that αs is always a limit ordinal, we can assume that αs = β.
Now in order to use the Extension Lemma we have to find (bi, βi, ni)i<ω
satisfying the assumptions of that lemma.
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We construct this sequence by induction on i < ω. Given bi′ , βi′ , ni′ for
i′ < i we find βi so that (iii) will hold for the entire sequence (βi : i < ω).
Now we have to find ni, and bi will be determined by (ii). We should do it
so that (i), (iv) and (v) will hold.

By Fact 6(2), for ni large enough so that (Ft)ni covers βi, the condition
(i) will hold, so choose such an ni which moreover satisfies the following
conditions:

(∗) ni − |aβi(Ft)(ni)| > i, ni′ − |bi′ | for i′ < i.
(∗∗) ni 6∈ Y sβi′ for i′ < i.

(∗∗∗) ψi′(ni)− |aβi(Ft)(ni)| > i for i′ < i, where {ψi′ : i′ < ω} = Ψt.

This can be accomplished: (∗) by Fact 6(2), (∗∗) since Xs
βi
⊆∗ Y sβi −⋃

i<i′ Y
s
βi′

and by 5(5), and (∗∗∗) by the definition of a condition in P .
So we obtain G ⊇ Ft and s′ ≤ s as in the Extension Lemma. Put

(s′, t′) = (s′, (G, β + ω, Ψt)). To make sure that it is a condition of P , we
need to check that for every γ < β + ω and for every f ∈ Ψt we have
ηγ(G) <+ f . For γ < β this follows from the fact that (s, t) ∈ P , and for
γ = β it follows from (∗∗∗). For γ = β+ k it follows from the fact for γ = β
and from Fact 6(4).

The definition of the iteration takes place in V P . We define P (A) for
A ⊆ ω1; then we will run A through all subsets of ω1 which appear in
some intermediate model and we will iterate these P (A)’s with countable
supports. Using the standard argument and Fact 17 proved later one can
take care of all subsets of ω1 in the extension. A condition p of P (A) satisfies
the following requirements:

(1) p : dom(p)→ 2.
(2) dom(p) ⊆∗ Yi(p) for some i(p) < ω1.
(3) For all j < i(p) we have Xj ⊆∗ dom(p), and if j ∈ A, then Xj ⊆∗

p−1({1}), while if j 6∈ A, then Xj ⊆∗ p−1({0}).
We say p ≤ q if and only if p ⊇ q. This was a single step. When we think

about the iteration the conditions of Qω2 have two coordinates, the first will
run through ω2 and the second through ω; thus if we say p(ξ)(n) we mean
the condition p at the ξth stage of the iteration (i.e., a name for a partial
function on ω) evaluated at n ∈ ω.

Definition 12. Let r = (s, t, p) ∈ R (= P ∗ Qω2). Let G be a finite
subset of ω2 and X a set of integers. We say that r avoids (G,X) if and only
if there is a countable set S ⊆ ω2 such that (s, t) forces that the support of
p is included in S and that

∀ξ ∈ G ∀n ∈ X [p¹ξ ° n 6∈ dom(p(ξ))].

If X = {n}, for some n ∈ ω, then we write (G,n) instead of (G, {n}).
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Note that, for convenience, we added the requirement of deciding a su-
perset of the support of the condition of Qω2 . Thus, if we are talking of a
condition (s, t, p) ∈ R avoiding some (G,n) we will identify this countable
set with the support of p, denoted by supp(p).

Fact 13. Suppose r = (s, t, p) ∈ R and suppose that for some 0 < k < ω
we are given G1, . . . , Gk ∈ [ω2]<ω and n1 < . . . < nk such that r avoids
(Gi, ni) for i ≤ k. Then for every sequence (σi : i < k) where σi ∈ 2Gi there
is a condition r[σ1, n1; . . . ;σk, nk] = (s, t, p[σ1, n1; . . . ;σk, nk]) such that :

(0) r[σ1, n1; . . . ;σk, nk] ≤ r.
(1) For each i < k and ξ ∈ Gi we have

(s, t, p[σ1, n1; . . . ;σk, nk]¹ξ) ° p[σ1, n1; . . . ;σk, nk](ξ)(ni) = σi(ξ).

(2) For every q ≤ r[σ1, n1; . . . ;σk, nk] there is r′ ≤ r such that r′ avoids
(G1, n1), . . . , (Gk, nk) and

r′[σ1, n1; . . . ;σk, nk] ≤ q.
(3) The set

{r[µ] : µ ∈ 2G1 × {n1} × . . .× 2Gk × {nk}}
is a maximal antichain below r.

P r o o f. For (σ1, n1; . . . ;σk, nk) ∈ 2G1 × {n1} × . . . × 2Gk × {nk} and
r = (s, t, p) ∈ R we put p[σ1, n1; . . . ;σk, nk] to be a P -name for a condition
of Qω2 such that (s, t) forces that p¹ξ forces

p[σ1, n1; . . . ;σk, nk](ξ)(n) = σi(ξ)

if ξ ∈ Gi and n = ni and otherwise

p[σ1, n1; . . . ;σk, nk](ξ)(n) = p(ξ)(n).

Such names can be found by the maximum principle (see, e.g., [K]). Since
(s, t, p) avoids (G1, n1), . . . , (Gk, nk), the condition r[σ1, n1; . . . ;σk, nk] =
(s, t, p[σ1, n1; . . . ;σk, nk]) is an element of R.

Now (0) and (1) follow from the definition, and (2) and (3) are standard.

Lemma 14. Let α ∈ ω1. Let G1, . . . , Gk, Gk+1 ∈ [ω2]<ω and n1, . . . , nk <
ω. Suppose that r ∈ R avoids (Gj , nj) for j ≤ k. Then there are r′ ≤ r, and
there is m < ω and α′ > α such that r′ avoids (Gj , nj) for j ≤ k and it
avoids (Gk+1, ω − (Y r

′
α′ ∪m)).

P r o o f. By extending the first two coordinates, using Lemma 11, we can
assume that αs > α. By induction on η ≤ ω2 we prove that the lemma holds
for P ∗Qη. Of course for η limit it is clear, so consider η = η0 + 1. We may
assume that η0 ∈ Gk+1.
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Let m0 =
∑
i≤k 2|Gi−{ξ0}| and fix an enumeration {µ(j) : j ≤ m0} =

2G1−{η0} × {n1} × . . . × 2Gk−{ηk} × {nk}. We will construct a decreasing
sequence r(j) = (s(j), t(j), p(j)) ≤ (s, t, p¹(η0 +1)) in P ∗Qη0 such that r(j)
avoids all (Gi−{η0}, ni) for i ≤ k and we construct sequences (α(j) : j < m0)
and (m(j) : j ≤ m0) such that

r(j)[µ(j)] ° dom(p(η0))−m(j) ⊆ Yα(j).

To construct the next objects r(j+ 1), α(j+ 1),m(j+ 1) we just extend the
condition r(j)[µ(j + 1)] to a condition (s(j + 1), t(j + 1), q) which decides
α(j + 1) and m(j + 1) as above and αs(j+1) ≥ α(j + 1) (using Density
Lemma 11); then we apply Fact 12(2) to find p(j + 1).

Now we apply the inductive hypothesis for (s(m0), t(m0), p(m0))¹(η0+1)
and α, obtaining r1 = (s1, t1, p1), α1 and m1. Now possibly extending the
first two coordinates of r1 to s′ and t′ find α′ > α,α1, α(j) for j ≤ m0 and
m > m1,m(j) for j ≤ m0 such that

(Y s
′

α1
∪ Y s′α(1) ∪ . . . ∪ Y s

′
α(m0))−m ⊆ Y s

′
α′ .

By the appropriate choice of s′ the above sets are determined in the ground
model, so m as above can be found. Now α,m and r′ = (s′, t′, p_1 p(η0))
work.

Density Lemma 15. Suppose that r ∈ R and G1, . . . , Gn ∈ [ω2]<ω

and n1, . . . , nk ∈ ω and r avoids (G1, n1), . . . , (Gk, nk), and suppose ξ ∈
ω2 and α ∈ ω1. Then there is r′ = (s′, t′, p′) ≤ r such that r′ avoids
(G1, n1), . . . , (Gk, nk) and

(s′, t′) ° p′¹ξ ° i(p′(ξ)) ≥ α.
P r o o f. The proof makes use of Fact 13, similar to the way it is done

in Lemma 14, to decide i(p′(ξ)) up to a finite set. It also uses the fact that
if p ∈ P (A) and α ∈ ω1, then there is p′ ≤ p such that p′ ∈ P (A) and
i(p′) ≥ α. The details are left to the reader.

Fusion Lemma 16. Suppose that (ri, Gi, ni, bi, βi)i<ω satisfies the fol-
lowing conditions:

(1) For all i < ω, ri = (si, ti, pi) ∈ R and ri+1 ≤ ri.
(2)

⋃
i<ω Gi ⊇

⋃
i<ω supp(pi).

(3) For all i < ω we have Gi ⊆ Gi+1.
(4) For all i < ω, ri avoids (Gj , nj) for j ≤ i.
(5) For all i < ω the condition (si+1, ti+1) forces that

∀ξ ∈ Gi [pi+1¹ξ ° αsi ≤ i(pi+1(ξ)) ≤ αsi+1 ].

(6) (bi, βi, ni)i<ω satisfies the assumption of the Extension Lemma 7
for s =

⋃
i<ω si and F =

⋃
i<ω Fti .

(7) For all f ∈ Ψti we have (|bi| : i < ω) <+ (f(ni) : i < ω).
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Then there is (s∗, t∗, p∗) ∈ R such that :

(8) For each i < ω we have (s∗, t∗, p∗) ≤ (si, ti, pi).
(9) For each i < ω, (s∗, t∗, p∗) avoids (Gi, ni).

(10) αs∗ = δ+ω and Yδ = ω−{ni : i < ω}, where δ = sup{αsi : i < ω}.
(11) For each i < ω we have aδ(Ft∗)(ni) = bi ∪ {δ}.

If moreover we are given

(12) (ψ(ni) : i < ω) such that (|bi| : i < ω) <+ (ψ(ni) : i < ω),

then we can also assume

(13) ψ ∈ Ψt∗ .
P r o o f. s = (

⋃
i<ω Xsi ,

⋃
i<ω Ysi , δ) is a condition of P1. By Fact 6(5)

the family F =
⋃
i<ω Fti is an s-frame with αs = δ. Put t = (F ,⋃i<ω Ψi, δ).

So (s, t) ∈ P and also (s, t) ≤ (si, ti) for i < ω.
Now by (6) and the Extension Lemma 7, there is s∗ ≤ s and an s∗-frame

G which end-extends
⋃
i<ω Fti such that (10) and (11) are satisfied. So put

t∗ = (G, Ψ, δ + ω), where Ψ =
⋃
i<ω Ψi. To make sure that (s∗, t∗) is a

condition of P we need to prove that for every β < δ + ω and for every
f ∈ Ψ we will have ηβ(G) <+ f . By Fact 6(4) and 6(3) it is enough to prove
that ηδ(G) <+ f for each f ∈ Ψ . This follows from our assumption (7) and
already noted condition (11). Clearly assuming also (12) we can add ψ to
Ψt∗ to obtain (13).

To obtain p∗, by induction on ξ ≤ ω2 we will define p∗(ξ) such that
(s∗, t∗) forces that

p∗¹ξ ° p∗(ξ) ∈ Qξ, dom(p(ξ)) ∩ {ni : ξ ∈ Gi} = ∅, p∗(ξ) ≤ pi(ξ) for i < ω.

This in turn implies that (s∗, t∗) ° pi ≥ p∗ ∈ Qω2 and that (s∗, t∗, p∗) avoids
(Gi, ni) for i < ω, and so (8) and (9) will hold.

We begin the construction. Since, by the inductive assumption p∗¹ξ ≤
pi¹ξ for i < ω, we have

p∗¹ξ ° pi(ξ) ⊆ pi+1(ξ),

it follows that p∗¹ξ forces that p(ξ) =
⋃
i<ω pi(ξ) is a partial function from

ω into 2 such that for every β < sup(i(pi(ξ)) : i < ω) = δ (by (5)) we have
Xβ ⊆∗ p(ξ)−1({0}) if β 6∈ Aξ, and Xβ ⊆∗ p(ξ)−1({1}) if β ∈ Aξ. Also since

(∗) pi¹ξ ° ni 6∈ dom(pi(ξ))

for all i such that ξ ∈ Gi and ξ belongs to almost all Gi by (2) and (3), we
conclude that (s∗, t∗) forces that

p¹ξ ° dom(p(ξ)) ⊆∗ Yδ.
We put p∗(ξ) = p(ξ) and we conclude that (s∗, t∗, p∗) ∈ R and that (8)
holds, and (∗) implies that (9) holds.
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Fact 17. (CH ) R is a proper notion of forcing which preserves cardinals
and R ° 2ω1 = ω2.

P r o o f. First let us show that R is proper. This could be done by appro-
priately modifying the argument given in [JS], since our forcing is the same
except for two side conditions added to the first factor. For the benefit of
the reader, we outline a somewhat different argument here which uses the
machinery we have developed so far. Let M ≺ H(ν) be a countable elemen-
tary submodel for ν large enough and let r ∈ M ∩ R. Let (Di : i < ω) be
an enumeration of all predense subsets of R which are elements of M . We
construct a fusion sequence (ri, Gi, ni)i<ω satisfying (1)–(5) of the Fusion
Lemma 16 such that r0 = r and Di is predense below ri. Each ri, Gi is in
M . Given ri′ , Gi′ , ni′ for i′ < i, in order to construct ri, Gi, ni, first choose
Gi+1 so that (2), (3) of Lemma 16 will be satisfied in the end. Now extend
ri−1 to find (bi, βi, ni) so that (4), (6), and (7) of the Fusion Lemma 16 will
be satisfied in the end. Use Lemma 14 to get ni so that (4) holds; simulta-
neously choose βi so that βi, ni, and bi = aβi(Fti)(ni) will satisfy (6) and
(7) in the end. . . this may be done as in the proof of Density Lemma 11.
Next use Lemma 15 repeatedly for ξ ∈ Gi and α = αsi−1 and Lemma 11, so
that the assumption (5) of Lemma 16 is satisfied.

Now we have r′i ≤ r′ and G1, . . . , Gi and n1, . . . , ni such that r′i avoids
all the sets (G1, n1), . . . , (Gi, ni) and we have taken care of the conditions
(1)–(7) of Lemma 16. So now our task is to find ri ≤ r′i avoiding (G1, n1), . . .
. . . , (Gi, ni) such that Di is predense below ri. For this we use repeatedly
Fact 13(2) so that for the obtained condition ri, for every µ ∈ 2G1 ×
{n1} × . . . × 2Gi × {ni} we have ri[µ] ≤ d for some d ∈ Di. Then ri is
as required. Now the fusion r∗ obtained using Lemma 16 is an (R,M)-
generic stronger condition than r, i.e., R is proper. In particular, ω1 is pre-
served.

In order to prove the rest of the fact, we need to prove that for every
η < ω2, the forcing P ∗ Qη has a dense set of size ω1. If we know this,
then we can conclude that R has the ω2-c.c. (this is well known; see, e.g.,
[J; Cor. 7.10]), and so cardinals are preserved. Also R ° 2ω1 = ω2 follows in
the standard way. Following [BL], we say that a condition r = (s, t, p) ∈ R
is determined if and only if there are sequences (Gi, ni)i<ω and a function
fr mapping

{(µ, ξ) ∈ 2G1∩ξ × {n1} × . . .× 2Gk∩ξ × {nk} × {ξ} :

k < ω, ξ ∈ supp(p), ξ ∈ Gk}
into 2<ω, and such that:

(i) supp(r) ⊆ ⋃i<ω Gi.
(ii) r avoids (Gi, ni) for all i < ω.
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(iii) For every ξ ∈ supp(p) such that ξ ∈ Gk and (µ, ξ) ∈ dom(fr) we
have

(s, t) ° p[µ]¹ξ ° p[µ](ξ)¹nk = fr(µ, ξ).

First we note that the collection of all determined conditions is dense in
P ∗Qη. To construct a determined condition below a condition r ∈ P ∗Qη
one uses Fusion Lemma 16, and at each step of the construction, one uses
Lemma 14 and Fact 13(2) repeatedly, to decide the values of p(ξ)¹nk. The
details are left to the reader, since they are standard.

Finally, note that if r1, r2 ∈ P ∗Qη are determined and fr1 and fr2 are
the same, then p ≤ q and q ≤ p. The proof of this fact is by induction on
η ≤ ω2, using Fact 13(3) and the fact that if π1, π2 ∈ 2ω are distinct then
there is k < ω such that π1¹nk 6= π2¹nk. So by CH, practically there are ω1

determined conditions in P ∗Qη, as required.

Proposition 18. Suppose that r ∈ R and Ȧ are such that r ° Ȧ ⊆ ω1.
Then there are r∗ ≤ r and δ ∈ ω1 such that r∗ forces that

∀α ∈ Ȧ ∃k ∈ ω ∀n ∈ Xα − k ∃β ∈ Ȧ ∩ δ (n ∈ Xβ &m(β, δ) ≤ n).

P r o o f. Fix a countable model M ≺ H(ν) for ν large enough. Assume
that M contains all relevant objects like r, Ȧ, and so forth. Let M ∩ ω1 =
δ = {δi : i < ω} and M ∩ ω2 = {%i : i < ω}.

We will construct a few sequences which will yield the extension r∗ wit-
nessing the hereditary Lindelöf property at Ȧ. The sequences are:

(1) ri = (si, ti, pi) for i < ω are conditions in R.
(2) (Gi : i < ω) ⊆ [M ∩ ω2]<ω.
(3) (ni : i < ω) ⊆ ω.
(4) (bi : i < ω) ⊆ [δ]<ω.
(5) (ψ(ni) : i < ω) ⊆ ω.

We will construct these sequences so that the assumptions of the Fusion
Lemma will be satisfied, which will then be applied to obtain the desired
extension. The sequences will be constructed in V . Each term will be con-
structed in M , we will leave M for V only to acquire knowledge about next
terms of {δi : i < ω} and {%i : i < ω}, so that the obtained sequences diag-
onalize formulas over M . The construction will be carried out by induction
on i < ω, hence the main steps will be executed in M . The input of each
step is an element of M and by elementarity of M we can assume that the
output is an element of M .

Let ti = (Fi, αi, Ψi) and fix some enumeration Ψi = (ψli : l < ω). Fix
some enumeration {ξjk : k < ω} = supp(pj). At each i < ω the ith terms of
the above sequences are required to satisfy the following conditions:

To satisfy conditions (1)–(5) of the Fusion Lemma:
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(6) ri = (si, ti, pi) ∈ R and ri+1 ≤ ri.
(7) %i ∈ Gi.
(8) Gi ⊆ Gi+1.
(9) ri avoids (Gi′ , ni′) for i′ ≤ i.

(10) The condition (si, ti) forces that

∀ξ ∈ Gi [pi¹ξ ° αsi ≤ i(pi+1(ξ)) ≤ αsi+1 ].

To make sure condition (6) of the Fusion Lemma, i.e., the assumptions
of the Extension Lemma 7 are satisfied:

(11) bi ⊆ bi+1.
(12) There is βi < δ such that aβi(Fsi)(ni) = bi.
(13) βi > δi, and βi > βi′ for i′ < i.
(14) si ° ni 6∈ Yαs

i′
for i′ < i.

(15) ni − |bi| > i, and n′i − |bi′ | for i′ < i.

To make sure that condition (12) of the Fusion Lemma holds:

(16) ψ(ni)− |bi| > i.

To make sure that condition (7) of the Fusion Lemma holds:

(17) ψi
′′
i′ (ni)− |bi| > i for i′, i′′ < i.

To make the proof of the hereditary Lindelöf property work:

(18) ri forces that: If

α ∈ Ȧ& ni ∈ Xα & aα(F)(ni) ⊇ bi
and

∀β ∈ Ȧ (ni ∈ Xβ ⇒ β 6∈ bi)
then

ηα(F)(ni) > ψ(ni).

So suppose we are at stage i ∈ ω, that is, we are given ri, Gi, ni, bi, ψ(ni)
and we are aiming at constructing ri+1, Gi+1, ni+1, bi+1, ψ(ni+1). In order
to do so we will be applying the following lemma, in which F , Yα’s, and
Xα’s denote the generic frame, the elements of the generic tower, and the
elements of the generic almost disjoint family.

Lemma 19. Suppose we are given r = (s, t, p) ∈ R and G1, . . . , Gi, Gi+1∈
[ω2]<ω, b ∈ [αt]<ω and n1, . . . , ni ∈ ω, an integer-valued function f , an
integer l and an infinite set X such that :

(a) X ⊆ ω − Ymax(b).
(b) (s, t, p) avoids (G1, n1), . . . ., (Gi, ni), (Gi+1, X).
(c) (s, t) forces that for every β ∈ ω1 we have ηβ(F) <+ f .

Then there are r′ = (s′, t′, p′) ≤ r and j ∈ X and c such that :



Arkhangel’skĭı–Tall problem 161

(d) b ⊆ c = amax(c)(Ft′)(j).
(e) r′ avoids (G1, n1), . . . , (Gi, ni), (Gi+1, j).
(f) r′ forces that : If

α ∈ Ȧ& j ∈ Xα & aα(F)(j) ⊇ c
and

∀β ∈ Ȧ (j ∈ Xβ ⇒ β 6∈ c)
then

ηα(F)(j) > l + |c|.
(g) |c| < f(j).

P r o o f. We may assume that b ⊆ amax(b)(Ft)(j) for all j ∈ X ⊆ ω −
Ymax(b) by taking j ∈ X large enough (by 6(2)).

Put m0 = 2|G1| + . . . + 2|Gi+1|. We will construct sequences 〈r(j)〉j∈X
and 〈c(j)〉j∈X satisfying:

(h) r(j) ≤ (s, t, p) and r(j) avoids (G1, n1), . . . , (Gi, ni), (Gi+1, j).
(i) c(j) ∈ (Ft(j))j and c(j) ⊇ b.
For an appropriate j we will in the end put r′ = r(j) and c an appropriate

subset of c(j).
Given j ∈ X the construction of r(j) and c(j) takes m0 +1 steps. In each

step 1 ≤ k ≤ m0 + 1 we produce r(k, j) satisfying (h) and γ(k, j), c(k, j)
and µ(k, j) such that:

(j) γ(0, j) = max(b) ≤ γ(1, j) ≤ . . . ≤ γ(m0, j) ≤ max(c(j)) = γ(m0 +
1, j) such that the above γ’s are elements of c(j).

(k) c(k, j) = aγ(k,j)(Ft(k,j))(j).
(l) µ(1, j), . . . , µ(m0, j) are distinct elements of 2G1 ×{n1}× . . .× 2Gi ×

{ni} × 2Gi+1 × {j}.
In the beginning, before the first step, we put r(0, j) = (s, t, p), γ(0, j) =

max(b), c(0, j) = b. To find the next r(k + 1, j), γ(k + 1, j), c(k + 1, j),
µ(k + 1, j) for k + 1 ≤ m0, we consider several cases.

C a s e 1: There is r′(k + 1, j) in R satisfying (h) and such that there
exists some µ(k + 1, j) 6∈ {µ(1, j), . . . , µ(k, j)} such that

r′(k + 1, j)[µ(k + 1, j)] 6° ∀β ∈ Ȧ (j ∈ Xβ ⇒ β 6∈ c(k, j)).
In this case apply Fact 13 to find r(k + 1, j) satisfying (h) such that

r(k + 1, j)[µ(k + 1, j)] forces that there is β ∈ Ȧ ∩ c(k, j) such that j ∈ Xβ ,
and put γ(k + 1, j) = γ(k, j).

C a s e 2: Case 1 does not hold and for each µ 6∈ {µ(1, j), . . . , µ(k, j)},
r(k, j)[µ] forces that

∀β ∈ Ȧ (j ∈ Xβ ⇒ c(k, j) 6⊆ aβ(F)(j)).
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In this case we choose some c(j + 1, k) ∈ (Ft(j,k))j including c(j, k) and
we put r(k + 1, j) = r(k, j).

C a s e 3: Cases 1 and 2 do not hold.

Choose γ(k + 1, j) for which there exists µ 6∈ {µ(1, j), . . . , µ(k, j)} such
that there is r(k + 1, j) satisfying (h) such that r(k + 1, j)[µ] forces that

γ(k + 1, j) ∈ Ȧ& j ∈ Xγ(k+1,j) & c(k, j) ⊆ aγ(k+1,j)(Ft(k+1,j))(j).

The choice is done so that the value of ηγ(k+1,j)(Ft(k+1,j))(j) is minimal.
We put µ(k + 1, j) = µ as above and c(k + 1, j) such that (k) is satisfied.

Since at each step we consider less µ’s than in the previous step, the
construction will terminate in m0 + 1 steps, since there are only m0 many
sequences in 2G1 × . . . × 2Gi+1 . In the last, (m0 + 1)th step we find some
c(m0 + 1, j) = c(j) ∈ (Ft(m0,j))j and γ(m0 + 1, j) satisfying (j) and (k) and
r(j) = r(m0, j).

First let us argue that r(j) forces that for each 0 ≤ k ≤ m0, if

(m) α ∈ Ȧ& j ∈ Xα & c(k, j) ⊆ aα(F)(j)

and

(n) ∀β ∈ Ȧ (j ∈ Xβ ⇒ β 6∈ c(k, j)),
then

(o) ηα(F)(j) ≥ ηγ(k+1,j)(F)(j).

By Fact 13(3) it is enough to note that this is forced by the conditions
of the form r(k′, j)[µ(k′, j] for 1 ≤ k′ ≤ m0 (since by (l), the µ’s are distinct
and there are enough of them). This is proved in different ways depending
on the relationship between k and k′.

C a s e k = k′. Since k′ ≥ 1, suppose that we are at the stage when we
are given c(k−1, j), r(k−1, j), γ(k−1, j), and µ(k, j), c(k, j), r(k, j), γ(k, j)
are chosen according to the above algorithm. If at this stage we are in Case
1, then r(k, j)[µ(k, j)] forces that there is β ∈ c(k − 1, j) such that j ∈ Xβ ,
thus (n) is false (because the c’s are increasing) so “(m) & (n)⇒ (o)” is true.
If we are in Case 2, r(k, j)[µ(k, j)] forces that (m) is false, so again “(m) &
(n) ⇒ (o)” is true. Finally, if we are in Case 3 and r(k, j)[µ(k, j)] does not
force “(m) & (n) ⇒ (o)”, then there is r′(k, j) ≤ r(k, j) satisfying (h) and
forcing its negation. The negation of (n) cannot be forced because we would
be in Case 1, not Case 3. By the description of Case 3, r(k, j)[µ(k, j)] forces
that (m) holds, so r′(k, j)[µ(k, j)] forces that there is α as in (m) but (o)
fails for this α. This contradicts the minimality of ηγ(k,j)(F)(j).
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C a s e k′ < k. If at the stage at which we are constructing c(k′, j) we
are in Case 1 or Case 3, this means that

r(k′, j)[µ(k′, j)] ° ∃β ∈ Ȧ [j ∈ Xβ & β ∈ c(k′, j)],
and since c(k′, j) ⊆ c(k, j) we conclude that r(k′, j)[µ(k′, j)] forces that (n)
is false, so “(m) & (n) ⇒ (o)” is true. If at this stage we are in Case 2,
then note that we are in Case 2 in all the following stages, in particular
in the stage when objects with the subscript k are constructed, and note
that in this situation we put c(k, j) = c(k + 1, j) = . . . = c(k′, j) (because
c(k′, j) ∈ (Ft(k′,j))j), thus the formulas (m), (n), (o) are the same for k and
k′ and so the proof is the same as for k = k′.

C a s e k < k′. We can assume that at the stage when we construct
r(k+ 1, j), c(k+ 1, j), γ(k+ 1, j) we are not in Case 1 because if it happens
then c(k, j) = c(k + 1, j) and we may assume that we are considering the
next stage, and if k + 1 = k′ we are done by the first case. If any extension
of r(k′, j)[µ(k′, j)] forces that (m) is true, then we are not in Case 2. So we
can assume that we are in Case 3 at this stage. Now if any extension of the
above condition forces that (o) is false, it contradicts the choice of µ(k, j)
which is chosen from outside {µ(1, j), . . . , µ(k−1, j)} (so, µ(k′, j) is eligible)
so that γ(k, j)(F)(j) is minimal.

This completes the proof of the fact that r(j,m0) ≤ r(j) forces the
implication “(m) & (n) ⇒ (o)”. So the (f) part of the statement of the
lemma holds for all j ∈ X and r′ = r(j) if l + |c(k, j)| < ηγ(k+1,j)(F)(j), if
we put c = c(k, j).

Now to satisfy (g) of the statement of the lemma, and make sure that
l + |c(k, j)| < ηγ(k+1,j)(F)(j), we look for a nice j0 ∈ X, namely such that
there is k0 ≤ m0 such that r(j0) forces that

|c(k0, j0)| < f(j0) & |ηγ(k0+1,j0)(F)(j0)− ηγ(k0,j0)(F)(j0)| > l.

A j0 and k0 like this can be found. To see this, first note that

c(j) ∩ (max(b) + 1) = amax(b)(Ft(j))(j) = amax(b)(Ft)(j).
Since |c(j)| = j and ηmax(b)(Ft) <+ Id (recall Fact 6(2)), |c(j) − c(j) ∩
(max(b) + 1)| increases with j. Also, f(j)− ηmax(b)(Ft)(j) increases with j.
So choose j0 large enough so that both of these numbers are greater than
(m0 + 1) · l. Then since γ(0, j0) = max(b) and γ(m0 + 1, j0) = max(c(j0)),
for some k we must have |ηγ(k+1,j0)(F)(j0)− ηγ(k,j0)(F)(j0)| > l, and if we
let k0 be the least such k we will have |c(k0, j0)| < f(j0) as well.

Once we have these j0 and k0 put

c = c(k0, j0), j = j0, r′ = r(j0).

Now (g) holds and r′ forces that ηγ(k0+1,j0)(j0)> ηγ(k0,j0)(j0) + l= |c|+ l.
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Continuation of the proof of Proposition 18. Now let us see how
Lemma 19 is used to construct the next elements of our sequence (ri, ni, Gi,
bi, βi)i<ω. First find Gi+1 such that (7) and (8) are satisfied. Now apply
Lemma 14 for α which is bigger than αs1 , . . . , αsi , δi+1, β1, . . . , βi = max(bi)
and for r = ri. This lemma gives α0 > α, m < ω and r′ = (s′, t′, p′) ≤ r = ri
as in the statement of Lemma 14. By the choice of α we can assume (in-
creasing m if necessary) that

(Yαs1 ∪ . . . ∪ Yαsi ∪ Ymax(bi))−m ⊆ Y s
′

α′

and that the following function is nonnegative for j ∈ X = ω − (Y s
′

α′ ∪m):

f(j) = min{φ(j)− (i+ 1)− (max{i′ − |bi′ | : i′ < i+ 1}) :

φ ∈ Φ& j ∈ dom(φ)},
where Φ = {ψ1

1 , . . . , ψ
1
i , . . . , ψ

i
1, . . . , ψ

i
i , Id}. Now note that r = r0, G1, . . .

. . . , Gi, Gi+1, b = bi ∪ {δi+1}, n1, . . . , ni, the function f and l = i + 1
and X = ω − (Y s

′
α′ ∪m) satisfy the assumptions of Lemma 19. Indeed, (a)

follows from the choice of m, (b) follows from the properties of r′ and X
obtained by Lemma 14, and (c) follows from the fact that ψi

′′
i′ ∈ Ψti for

i′, i′′ < i + 1. So apply Lemma 19 and find ri+1 ≤ r′ such that condition
(10) is satisfied (using the Density Lemma 15), and put ni+1 = j, bi+1 =
c, βi+1 = max(bi+1), ψ(ni+1) = |bi+1|+ (i+ 1).

We have to check that conditions (6)–(18) are satisfied. Conditions
(6)–(8) already follow from the choice of Gi+1, (9) follows from (e) of Lemma
19, and the choice of ri+1. Condition (10) follows from the choice of ri+1.
Conditions (11) and (12) follow from (d) of Lemma 19, condition (13) fol-
lows from the choice of b and condition (d) of Lemma 19. Condition (14)
follows from the choice of m and X. Condition (15) follows from the fact
that f(ni+1) ≤ nj − (n′i − |bi′ |), ni for i′ < i+ 1, so by (g) of Lemma 19, we
have |bi+1| < f(ni+1) so

ni+1 − |bi+1| > n′i − |bi′ |, i+ 1

for i′ < i+1. Condition (16) follows from the definition of ψ(ni+1). Condition
(17) follows from the fact that f(ni+1) ≤ ψi′′i′ (ni+1)−(i+1) for i′′, i′ < i+1,
so by (g) of Lemma 19, we have |bi+1| < f(ni+1). Condition (18) follows
from (f) of Lemma 19.

Now suppose we have constructed the sequence (ri, Gi, ni, bi, βi)i<ω sat-
isfying (1)–(18). By (6)–(10) the (ri, Gi, ni)i<ω satisfies the assumptions
(1)–(5) of the Fusion Lemma, and by (11)–(17) the assumptions (6), (7),
and (12) of the Fusion Lemma are also satisfied. Thus we deduce the exis-
tence of r∗ = (s∗, t∗, p∗) satisfying (8)–(11) and (13). Now suppose r′′ ≤ r∗

forces that α ∈ Ȧ − δ. We will extend r′′ so that the obtained extension
satisfies the statement of Proposition 18.
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The only thing we require from the extension r∗∗ ≤ r′′ is that it decides
k ∈ ω such that:

(p) Xr∗∗
α − k ⊆ ω − Y r∗∗δ .

(r) ηα(F)(n) < ψ(n) for n ∈ Xr∗∗
α − k.

Note that by (p), ψ(n) in the condition (r) is defined. We will show that
for each n ∈ Xr∗∗

α − k we have

r∗∗ ° ∃β ∈ Ȧ ∩ δ [n ∈ Xβ &m(β, δ) ≤ n].

Since r∗∗ ≤ r∗, we have ω − Y r∗∗δ = {ni : i < ω}, so for n ∈ Xr∗∗
α − k find

i < ω such that n = ni (using (p)), and apply property (18) for r∗∗ ≤ r∗ ≤
ri, to conclude that r∗∗ forces that either

∀β ∈ Ȧ (n ∈ Xβ ⇒ β 6∈ bi)
is false, or

ηα(Fr∗∗)(n) > ψ(n)

holds. This is because the first displayed formula of condition (18) is true by
Fact 6(3) because n > m(δ, α) and Fn covers both β and α (by the choice
of n), so aα(F)(n) ∩ δ = aδ(F)(n) ∩ δ = bi.

By (r), the second of the above displayed formulas is false, so r∗∗ forces
that there is β ∈ Ȧ such that n ∈ Xβ and β ∈ bi. In particular, β < δ, and
by the definition of the function m and by (12) we have m(β, δ) ≤ n, as
required in the statement of Proposition 18.

P r o o f o f P r o p o s i t i o n 2. Let Ḣ be a P -name for a generic filter
in R. Consider the R-names

X =
⋃
{Xs : (s, ∅, ∅) ∈ H}, F =

⋃
{Ft : ∃s ∈ P1 [(s, t, ∅) ∈ H]}.

We claim that Proposition 2 is witnessed by X and Σ(F) (see Definition 8).
To verify condition (i) of the proposition, note that for each R-name Ȧ for a
subset of ω1 there is a stage ξ < ω2 of the iteration Q̇ω2 such that Ȧ = Ȧξ.
Using a density argument we conclude that

u̇ =
⋃
{n ∈ ω : p(ξ)(n) = 1, ∃(s, t) ∈ P [(s, t, p) ∈ Ḣ]}

satisfies condition (i) of Proposition 2.
To get condition (ii), note that it is implied by the definition of Σ(F),

for if α 6= α′, then the last terms of σα,n and σα′,n′ differ, as they are α and
α′ themselves respectively, thus σα,n 6= σα′,n′ .

To conclude the last hereditary Lindelöf property, apply the Reduction
Lemma 9, and Proposition 18, to X .
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