# On the tameness of trivial extension algebras 

by<br>Ibrahim Assem (Sherbrooke, Qué.) and José Antonio de la Peña (México)


#### Abstract

For a finite dimensional algebra $A$ over an algebraically closed field, let $T(A)$ denote the trivial extension of $A$ by its minimal injective cogenerator bimodule. We prove that, if $T_{A}$ is a tilting module and $B=\operatorname{End} T_{A}$, then $T(A)$ is tame if and only if $T(B)$ is tame.


Introduction. Let $k$ be an algebraically closed field. In this paper, an algebra $A$ is always assumed to be associative, with an identity and finite dimensional over $k$. We denote by $\bmod A$ the category of finitely generated right $A$-modules, and by $\bmod A$ the stable module category whose objects are the $A$-modules, and the set of morphisms from $M_{A}$ to $N_{A}$ is $\underline{H o m}_{A}(M, N)=\operatorname{Hom}_{A}(M, N) / \mathcal{P}(M, N)$, where $\mathcal{P}(M, N)$ is the subspace of all morphisms factoring through projective modules. Two algebras $R$ and $S$ are called stably equivalent if the categories $\bmod R$ and $\bmod S$ are equivalent. There are several important problems of the representation theory of algebras which are formulated in terms of the stable equivalence of two selfinjective algebras (see, for instance, $[9,19]$ ). But few things are known. For instance, it is not yet known whether for two stably equivalent self-injective algebras $R$ and $S$, the tameness of $R$ implies that of $S$. We consider this problem in the following context.

Let $A$ be an algebra, and $D=\operatorname{Hom}_{k}(-, k)$ denote the usual duality on $\bmod A$. The trivial extension $T(A)$ of $A$ (by the minimal injective congenerator bimodule $D A$ ) is defined to be the $k$-algebra whose vector space structure is that of $A \oplus D A$, and whose multiplication is defined by

$$
(a, q)\left(a^{\prime}, q^{\prime}\right)=\left(a a^{\prime}, a q^{\prime}+q a^{\prime}\right)
$$

for $a, a^{\prime} \in A$ and $q, q^{\prime} \in{ }_{A}(D A)_{A}$. Trivial extensions are a special class of self-injective (actually, of symmetric) algebras. They have been extensively

[^0]studied in the representation theory of algebras (see, for instance, $[2,3,8$, $10,12,17]$ ), in particular, in the context of tilting theory. Following [7], an $A$-module $T_{A}$ is called a tilting module if $\operatorname{Ext}_{A}^{2}(T,-)=0, \operatorname{Ext}_{A}^{1}(T, T)=0$ and there is an exact sequence
$$
0 \rightarrow A_{A} \rightarrow T_{A}^{\prime} \rightarrow T_{A}^{\prime \prime} \rightarrow 0
$$
with $T^{\prime}, T^{\prime \prime}$ in the additive category add $T$ consisting of the direct sums of direct summands of $T$. A tilting triple $\left(B,{ }_{B} T_{A}, A\right)$ consists of an algebra $A$, a tilting module $T_{A}$ and $B=\operatorname{End} T$. For a tilting triple $(B, T, A)$, Tachikawa and Wakamatsu have constructed in [17] a stable equivalence functor $\mathcal{S}: \underline{\bmod } T(A) \rightarrow \underline{\bmod } T(B)$. Our main result is the following:

Theorem. Let $\left(B,{ }_{B} T_{A}, A\right)$ be a tilting triple. Then $T(A)$ is tame if and only if $T(B)$ is tame.

Recall from [5] that an algebra $C$ is called tame if, for each $d \in \mathbb{N}$, there is a finite number of $k[t]-C$-bimodules $M_{1}, \ldots, M_{s(d)}$ which are free and finitely generated left $k[t]$-modules and such that, for all but at most finitely many non-isomorphic indecomposable $C$-modules $X$ with $\operatorname{dim}_{k} X=d$, there is an isomorphism $X \xrightarrow{\sim}(k[t] /\langle t-\lambda\rangle) \otimes_{k[t]} M_{i}$, for some $1 \leq i \leq s(d)$ and $\lambda \in k$. In this case, we let $\mu_{C}(d)$ denote the least possible $s(d)$. We say that $C$ is of polynomial growth (or domestic) if $\mu_{C}(d) \leq d^{m}$ for some $m \in \mathbb{N}$ (or $\mu_{C}(d) \leq K$ for some $K \in \mathbb{N}$, respectively).

The representation theory of the trivial extension of polynomial growth is well known. Namely, the representation-finite trivial extensions are trivial extensions of tilted algebras of Dynkin type (by [8]), the representationinfinite domestic trivial extensions are either trivial extensions of tilted algebras of Euclidean type or quotients of a trivial extension $T(A)$ of some representation-infinite algebra $A$ of Euclidean type $\widetilde{A}_{n}$ by the group $\mathbb{Z}_{2}$ (by $[3,10,11])$, and the non-domestic trivial extensions of polynomial growth are trivial extensions of tubular algebras (by $[10,12]$ ). But the representation theory of the tame trivial extensions which are not of polynomial growth is still completely unknown. Our theorem ensures that the tameness of these algebras is preserved under tilting of the original algebra.

The main technique used for the proof of the theorem is the geometric setting developed in [14]. The proof essentially reduces to showing that the construction of $\mathcal{S}$ yields a constructible function on objects $\mathcal{S}: \bmod T(A) \rightarrow$ $\bmod T(B)$. Then one applies [14], (4.3).

## 1. The Tachikawa-Wakamatsu stable equivalence functor

1.1. Let $A$ be a finite dimensional $k$-algebra assumed moreover to be basic and connected. We shall use freely, and without further reference, facts about the module category $\bmod A$ and the Auslander-Reiten translations
$\tau=D \operatorname{Tr}$ and $\tau^{-1}=\operatorname{Tr} D$, as in [4, 15]. For tilting theory, we refer the reader to [1]. Recall in particular that if $\left(B,{ }_{B} T_{A}, A\right)$ is a tilting triple, then $T_{A}$ induces a torsion theory $(\mathcal{T}, \mathcal{F})$ in $\bmod A$, where $\mathcal{T}$ (or $\left.\mathcal{F}\right)$ denotes the full subcategory of $\bmod A$ generated by $T_{A}$ (or cogenerated by $\tau T_{A}$, respectively).

Given an $A$-module $M$, the evaluation morphism $\varepsilon_{M}: \operatorname{Hom}_{A}(T, M) \otimes_{B} T$ $\rightarrow M$ defined by $f \otimes t \mapsto f(t)$ (where $f \in \operatorname{Hom}_{A}(T, M), t \in T$ ) is functorial, and is an isomorphism if and only if $M \in \mathcal{T}$. Similarly, to a $B$-module $X$ corresponds a functorial morphism $\eta_{X}: X_{B} \rightarrow \operatorname{Hom}_{A}\left(T, X \otimes_{B} T\right)$ defined by $x \mapsto(t \mapsto x \otimes t)$ (where $x \in X, t \in T$ ).

Finally, we have canonical isomorphisms $D T \otimes_{B} T \xrightarrow{\sim} D A$ and $T \otimes_{B}$ $D T \xrightarrow{\sim} D B$, which we shall consider as identifications throughout this paper.
1.2. Torsion resolutions. Let $(B, T, A)$ be a tilting triple, and $(\mathcal{T}, \mathcal{F})$ be the corresponding torsion theory in $\bmod A$. For an $A$-module $M_{A}$, an exact sequence of the form

$$
0 \longrightarrow M \xrightarrow{\alpha_{0}} V_{0} \xrightarrow{\beta_{0}} T_{0} \longrightarrow 0
$$

with $V_{0} \in \mathcal{T}$ and $T_{0} \in \operatorname{add} T$ is called a torsion resolution for $M$. By [17], each module $M_{A}$ admits a torsion resolution

$$
0 \longrightarrow M \xrightarrow{\alpha_{M}} V(M) \xrightarrow{\beta_{M}} T(M) \longrightarrow 0
$$

such that $T(M)=P \otimes_{B} T$, where $P_{B}$ is a projective cover of $\operatorname{Ext}_{A}^{1}(T, M)$, and which is minimal in the following sense: for any other torsion resolution for $M$,

$$
0 \longrightarrow M \xrightarrow{\alpha^{\prime}} V^{\prime} \xrightarrow{\beta^{\prime}} T^{\prime} \longrightarrow 0,
$$

there exists $T^{\prime \prime} \in \operatorname{add} T$ such that we have a commutative diagram with exact rows:


In fact, the module $V(M)$ is constructed as follows:
(a) If $M \in \mathcal{T}$, then $V(M)=M$.
(b) If $M \in \mathcal{F}$, then $V(M) \xrightarrow{\sim} K \otimes_{B} T$, where $K_{B}$ is the kernel of the projective cover morphism $P_{B} \rightarrow \operatorname{Ext}_{A}^{1}(T, M)$.
(c) In general, if $0 \rightarrow t M \rightarrow M \rightarrow M / t M \rightarrow 0$ is the canonical sequence of $M$ in the torsion theory $(\mathcal{T}, \mathcal{F})$, the torsion resolution of $M$ is obtained as the middle column in the following commutative diagram with exact rows
and columns:


Lemma. Let $t=\operatorname{dim}_{k} T, s_{A}=\operatorname{dim}_{k} A, s_{B}=\operatorname{dim}_{k} B$ and $M_{A}$ be an $A$-module with $d=\operatorname{dim}_{k} M$. Then $\operatorname{dim}_{k} V(M) \leq d+d t^{2} s_{A}^{3} s_{B}$.

Proof. Using the middle row in the above diagram, we see that $\operatorname{dim}_{k} V(M)=\operatorname{dim}_{k} t M+\operatorname{dim}_{k} V(M / t M)$. Since $t M \subseteq M$, we have $\operatorname{dim}_{k} t M$ $\leq d$. Put $N=M / t M$. We have a short exact sequence of $B$-modules

$$
0 \longrightarrow K \longrightarrow P_{B} \xrightarrow{p} \operatorname{Ext}_{A}^{1}(T, N) \longrightarrow 0
$$

where $p$ is a projective cover. Hence $V(N) \xrightarrow{\sim} K \otimes_{B} T$ yields $\operatorname{dim}_{k} V(N) \leq$ $t \operatorname{dim}_{k} K$. On the other hand,

$$
\operatorname{dim}_{k} K \leq \operatorname{dim}_{k} P_{B} \leq s_{B} \operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}(T, N)
$$

In order to bound $\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}(T, N)$, we shall use the Auslander-Reiten formula $\operatorname{Ext}_{A}^{1}(T, N) \xrightarrow{\sim} D \underline{\operatorname{Hom}}_{A}\left(\tau^{-1} N, T\right)$ and a minimal projective presentation in $\bmod A^{\text {op }}$ :

$$
{ }_{A} P_{1} \xrightarrow{f_{1}}{ }_{A} P_{0} \xrightarrow{f_{0}}{ }_{A} D N \longrightarrow 0 .
$$

Indeed, the latter yields $\operatorname{dim}_{k} P_{1} \leq s_{A} \operatorname{dim}_{k} \operatorname{Ker} f_{0}$ and $\operatorname{dim}_{k} \operatorname{Ker} f_{0} \leq$ $s_{A} \operatorname{dim}_{k} D N=s_{A} \operatorname{dim}_{k} N$. Applying the functor $\operatorname{Hom}_{A}(-, A)$ yields an exact sequence

$$
\operatorname{Hom}_{A}\left(P_{0}, A\right) \longrightarrow \operatorname{Hom}_{A}\left(P_{1}, A\right) \longrightarrow \tau^{-1} N \longrightarrow 0
$$

Hence, $\operatorname{dim}_{k} \tau^{-1} N \leq \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P_{1}, A\right) \leq s_{A} \operatorname{dim}_{k} P_{1} \leq s_{A}^{3} \operatorname{dim}_{k} N$. On the other hand, since $N=M / t M$, we have $\operatorname{dim}_{k} N \leq \operatorname{dim}_{k} M=d$. The result then follows from the inequalities

$$
\begin{aligned}
\operatorname{dim}_{k} V(M / t M) & \leq t \operatorname{dim}_{k} K \leq t s_{B} \operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}(T, N) \\
& \leq t s_{B} \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(\tau^{-1} N, T\right) \leq t s_{B} \operatorname{dim}_{k} T \operatorname{dim}_{k} \tau^{-1} N \\
& \leq t^{2} s_{B} s_{A}^{3} d
\end{aligned}
$$

1.3. The stable equivalence. For an algebra $A$, let $T(A)$ denote the trivial extension of $A$ by $D A$. We shall use the following equivalent description of $\bmod T(A)($ see $[6])$. Let $\mathcal{C}$ be the category whose objects are the pairs $(M, \varphi)$ where $M$ is an $A$-module and $\varphi: M \otimes_{A} D A \rightarrow M$ is an $A$-linear map such that $\varphi(\varphi \otimes D A)=0$, and where a morphism $f:(M, \varphi) \rightarrow\left(M^{\prime}, \varphi^{\prime}\right)$ is an $A$-linear $\operatorname{map} f: M \rightarrow M^{\prime}$ such that $\varphi^{\prime}(f \otimes D A)=f \varphi$. Then $\mathcal{C} \xrightarrow{\sim} \bmod T(A)$. Throughout this paper, we shall identify these two categories. In particular, any $A$-module $M$ induces a $T(A)$-module $\left(M \oplus(M \otimes D A),\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)$ that will be denoted by

$$
\frac{M}{M \otimes D A}
$$

It is well known that the image of the canonical embedding $\bmod A \rightarrow$ $\bmod T(A)$ actually lies inside the stable category (see, for instance, [17]).

Let $(M, \varphi)$ be an arbitrary $T(A)$-module. As an $A$-module, $M$ admits a minimal torsion resolution

$$
0 \longrightarrow M \xrightarrow{\alpha_{M}} V(M) \xrightarrow{\beta_{M}} T(M) \longrightarrow 0
$$

Now, define a $B$-linear map

$$
\phi_{M}: M \otimes_{A} D T_{B} \longrightarrow \operatorname{Hom}_{A}(T, V(M)) \oplus\left[\operatorname{Hom}_{A}(T, V(M)) \otimes_{B} D B\right]
$$

by the formula

$$
\phi_{M}=\left[\begin{array}{c}
\operatorname{Hom}_{A}\left(T, \alpha_{M}\right) \operatorname{Hom}_{A}(T,-\varphi) \eta_{M \otimes D T} \\
\left(\varepsilon_{V(M)}^{-1} \otimes D T\right)\left(\alpha_{M} \otimes D T\right)
\end{array}\right]
$$

The construction of $\phi_{M}$ may be visualised as follows:


The source and the target of $\phi_{M}$ are each endowed with a natural $T(B)$ module structure. Namely, $M \otimes_{A} D T$ has the $T(B)$-module structure induced by the morphism

$$
\begin{aligned}
M \otimes_{A} D T \otimes_{B} D B \xrightarrow{\sim} M & \otimes_{A} D T \otimes_{B} T \otimes_{A} D T \\
& \xrightarrow{\sim} M \otimes_{A} D A \otimes_{A} D T \xrightarrow{-\varphi \otimes D T} M \otimes_{A} D T
\end{aligned}
$$

while $\operatorname{Hom}_{A}(T, V(M)) \oplus\left[\operatorname{Hom}_{A}(T, V(M)) \otimes_{B} D B\right]$ induces the $T(B)$-module

$$
{\widetilde{\operatorname{Hom}_{A}(T, V(M)) \otimes_{B} D B}}_{\operatorname{Hom}_{A}(T, V(M))} .
$$

One shows that $\phi_{M}$ is $T(B)$-linear, so that $\mathcal{S}(M, \varphi)=\operatorname{Coker} \phi_{M}$ is a $T(B)$-module. We have thus defined a map on objects $\mathcal{S}: \bmod T(A) \rightarrow$ $\bmod T(B)$. One can show that for an $A$-module $M \in \mathcal{T}$, we have $\mathcal{S}(M, 0)=$ $\operatorname{Hom}_{A}(T, M)$, that the image of a projective $T(A)$-module is a projective $T(B)$-module, and, finally, that $\mathcal{S}$ is a functor from $\underline{\bmod } T(A)$ to $\bmod T(B)$. We have the following theorem:

Theorem [17]. Let $(B, T, A)$ be a tilting triple. Then the functor $\mathcal{S}$ : $\underline{\bmod } T(A) \rightarrow \underline{\bmod } T(B)$ is an equivalence.

## 2. Geometrisation of the problem

2.1. The proof of our theorem relies on the methods of algebraic geometry and the criteria for tameness developed in [13, 14]. For more details on the constructions used, we refer the reader to [14].

First, we identify our $A$ - and $T(A)$-modules with points of constructible sets in appropriate affine spaces.

Let $A$ be an algebra, and $1=a_{1}, a_{2}, \ldots, a_{s}$ be a $k$-basis of $A$ such that $a_{i} a_{j}=\sum_{m=1}^{s} \lambda_{i j}^{(m)} a_{m}$ for all $1 \leq i, j \leq m$ (the scalars $\lambda_{i j}^{(m)}$ are the so-called structure constants of $A$ ). Recall that an $A$-module $M$ of $k$-dimension $d$ may be identified with a representation $M: A \rightarrow \operatorname{End}_{k}\left(k^{d}\right)$, thus, each of the basis elements $a_{i}$ corresponds to a $d \times d$ matrix $M\left(a_{i}\right)$. We define, for each $d \in \mathbb{N}, \bmod _{A}(d)$ to be the (closed) subset of the affine space $\prod_{i=1}^{s} k^{d \times d}$ consisting of the $s$-tuples of $d \times d$ matrices $M=\left(M\left(a_{1}\right), \ldots, M\left(a_{s}\right)\right)$ such that $M\left(a_{1}\right)$ is the identity matrix and $M\left(a_{i}\right) M\left(a_{j}\right)=\sum_{m=1}^{s} \lambda_{i j}^{(m)} M\left(a_{m}\right)$ for all $1 \leq i, j \leq s$.

Recall that a vector space category is a pair $(K,|-|)$ consisting of a $k$-linear category and a faithful $k$-linear functor $|-|: K \rightarrow \bmod k$.

Following [14], we say that the pair $(K,|-|)$ is geometrisable if there exists an increasing function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ inducing, for each $d \in \mathbb{N}$, a function $\left\{X \in K: \operatorname{dim}_{k}|X|=d\right\} \rightarrow k^{\sigma(d)}$ (denoted by $X \mapsto \widetilde{X}$ ) satisfying
(G1) the image $K(d)$ is constructible as a subset of the affine space $k^{\sigma(d)}$;
(G2) there is a function $\mu: K(d) \rightarrow K$ such that $\operatorname{dim}_{k}|\mu(\widetilde{X})|=d$ and

$$
\mu(\widetilde{X})^{\sim}=\widetilde{X} ; \text { moreover, } \mu(\widetilde{X}) \xrightarrow{\sim} X .
$$

Examples. (a) The module category $\bmod A$ is a vector space category taking $|-|: \bmod A \rightarrow \bmod k$ to be the forgetful functor. Let $\sigma(d)=s d^{2}$, for $d \in \mathbb{N}$. As above, let $1=a_{1}, a_{2}, \ldots, a_{s}$ be a $k$-basis of $A$. The map $M \mapsto \widetilde{M}=\left(M\left(a_{1}\right), \ldots, M\left(a_{s}\right)\right) \in k^{\sigma(d)}$ defines a geometrisation of $\bmod A$.
(b) Let $K_{A}$ be the category whose objects are triples $(M, f, N)$, where $M, N$ are $A$-modules, and $f: M \rightarrow N$ is $A$-linear, and whose morphisms $(h, g):(M, f, N) \rightarrow\left(M^{\prime}, f^{\prime}, N^{\prime}\right)$ are pairs of $A$-linear maps such that $f^{\prime} h=$ $g f$. Then $K_{A}$ is a vector space category with $|(M, f, N)|=|M| \oplus|N|$ (where, on the right, $|-|: \bmod A \rightarrow \bmod k$ denotes the forgetful functor, as in (a)). Let $\sigma(d)=(s+1) d^{2}$. For a triple $(M, f, N)$ with $\operatorname{dim}_{k}|M|=m, \operatorname{dim}_{k}|N|=n$ and $d=m+n$, we define $(M, f, N)^{\sim}$ to be the $(s+1)$-tuple of $d \times d$ matrices

$$
\left(\left[\begin{array}{cc}
M\left(a_{1}\right) & 0 \\
0 & N\left(a_{1}\right)
\end{array}\right], \ldots,\left[\begin{array}{cc}
M\left(a_{s}\right) & 0 \\
0 & N\left(a_{s}\right)
\end{array}\right],\left[\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right]\right)
$$

The images of this map form a closed subset $K_{A}(m, n)$ of $k^{\sigma(d)}$. Thus $K_{A}(d)=\bigcup_{d=m+n} K_{A}(m, n)$ is closed in $k^{\sigma(d)}$. Therefore $K_{A}$ is geometrisable.
2.2. Let us now consider $\bmod T(A)$. For $(M, \varphi) \in \bmod T(A)$, we set $|(M, \varphi)|$ to equal the underlying $k$-space $|M|$ of $M$. Thus $\bmod T(A)$ is a vector space category. The following lemma is shown in [14], we only indicate the main steps of the proof.

Lemma. The vector space category $\bmod T(A)$ is geometrisable.
Sketch of proof. Let $\sigma(d)=2 s d^{2}$, where $a_{1}=1, \ldots, a_{s}$ is a basis of $A$. Let $m \leq s d$. Consider the functor $F=-\otimes_{A} D A: \bmod A \rightarrow \bmod A$. By [14], (2.2), the set $F^{-1}\binom{d}{m}=\left\{M \in \bmod _{A}(d): \operatorname{dim}_{k}|F M|=m\right\}$ is constructible. The set of pairs $(M, \varphi)$ in $\bmod _{A}(d) \times k^{d \times m}$ such that $\varphi$ : $\widetilde{F M} \rightarrow \widetilde{M}$ is $A$-linear and $\varphi(\varphi \otimes D A)=0$ is a constructible subset $C(m)$ of $k^{s d^{2}} \times k^{d \times m} \subseteq k^{\sigma(d)}$. Since, for any $N \in \bmod _{A}, \operatorname{dim}_{k}|F N| \leq s \operatorname{dim}_{k}|N|$, it follows that $\bmod _{T(A)}(d)=\bigcup_{m \leq s d} C(m)$ is a constructible subset of $k^{\sigma(d)}$. For $(M, \varphi) \in \bmod T(A)$ with $\operatorname{dim}_{k}|M|=d$, we thus set $(M, \varphi)^{\sim}=(\widetilde{M}, \varphi) \in$ $\bmod _{T(A)}(d)$.
2.3. In 1.3, we defined the function on objects $\mathcal{S}: \bmod T(A) \rightarrow \bmod T(B)$ which induces a stable equivalence $\mathcal{S}: \underline{\bmod } T(A) \rightarrow \underline{\bmod } T(B)$.

Let $\mathcal{U}, \mathcal{V}$ be two vector space categories. A function on objects $f: \mathcal{U} \rightarrow \mathcal{V}$ is called an object-function if $X \xrightarrow{\sim} Y$ in $\mathcal{U}$ implies $f(X) \xrightarrow{\sim} f(Y)$ in $\mathcal{V}$. An object-function $f: \mathcal{U} \rightarrow \mathcal{V}$, where $\mathcal{U}, \mathcal{V}$ are geometrisable categories, is called constructible [14] if, for each $d, m \in \mathbb{N}$, the following are satisfied:
(C1) the set $f^{-1}\binom{d}{m}=\left\{M \in \mathcal{U}(d): \operatorname{dim}_{k}|f(M)|=m\right\}$ is constructible, and empty for $m$ large enough;
(C2) there exist $c \in \mathbb{N}$ and a constructible subset $C \subseteq f^{-1}\binom{d}{m} \times k^{c} \times \mathcal{V}(m)$ such that the following diagram (where $\pi_{1}, \pi_{3}$ denote the respective
projection morphisms) commutes:

in the sense that $f \pi_{1}(w)^{\sim} \xrightarrow{\sim} \pi_{3}(w)^{\sim}$, for $w \in C$.
(C3)
$\pi_{1}(C)=f^{-1}\binom{d}{m}$.
The following examples are treated in detail in [14].
Examples. (a) The composition of constructible object-functions is constructible.
(b) Let ${ }_{B} X_{A}$ be a bimodule. Then $-\otimes_{B} X_{A}: \bmod B \rightarrow \bmod A$ and $-\otimes_{B} X_{A}: K_{B} \rightarrow K_{A}$ yield constructible object-functions.
(c) Let $f:{ }_{B} X_{A} \rightarrow{ }_{B} Y_{A}$ be a morphism of $B$ - $A$-bimodules. Then $-\otimes_{B} f$ : $\bmod B \rightarrow K_{A}$ yields a constructible object-function.
(d) The functors Ker, Coker : $K_{A} \rightarrow \bmod A$ yield constructible objectfunctions.
(e) Let ${ }_{B} T_{A}$ be a bimodule and $\eta: 1_{\bmod B} \rightarrow \operatorname{Hom}_{B}\left(T,-\otimes_{B} T\right)$ be the functorial morphism defined in 1.1. Then $\eta$ induces a constructible objectfunction $\eta: \bmod B \rightarrow K_{B}$.
(f) Let ${ }_{B} T_{A}$ be a bimodule and $\varepsilon: \operatorname{Hom}_{A}(T,-) \otimes_{B} T \rightarrow 1_{\bmod A}$ be the (evaluation) functorial morphism defined in 1.1. Then $\varepsilon$ induces a constructible object-function $\varepsilon: \bmod A \rightarrow K_{A}$. If $T_{A}$ is a tilting module and $B=\operatorname{End} T_{A}$, then $\varepsilon_{M}$ is invertible for each $M \in \mathcal{T}$ and $\varepsilon^{-1}: \mathcal{T} \rightarrow K_{A}$ is also constructible (here, $\mathcal{T}$ denotes, as usual, the torsion class induced by $T_{A}$ in $\left.\bmod A\right)$.
2.4. Proposition. The object function $\mathcal{S}: \bmod T(A) \rightarrow \bmod T(B)$ is constructible.

Proof. By the examples in 2.3 above, and the construction of $\mathcal{S}$ given in 1.3, it suffices to show that, if $M \in \bmod A$ and

$$
0 \longrightarrow M \xrightarrow{\alpha_{M}} V(M) \xrightarrow{\beta_{M}} T(M) \longrightarrow 0
$$

is a minimal torsion resolution of $M$, then the object-function $s: \bmod A \rightarrow$ $K_{A}$ given by $M \mapsto\left(V(M), \beta_{M}, T(M)\right)$ is constructible.

Let $(\mathcal{T}, \mathcal{F})$ be the torsion theory in $\bmod A$ induced by the tilting triple $(B, T, A)$. We claim that, for any $d \in \mathbb{N}$, the sets $\mathcal{F}(d)=\left\{M \in \bmod _{A}(d):\right.$ $M \in \mathcal{F}\}$ and $\mathcal{T}(d)=\left\{M \in \bmod _{A}(d): M \in \mathcal{T}\right\}$ are constructible. Indeed, by [14], (2.5), the functors $F=\operatorname{Hom}_{A}(T,-)$ and $F^{\prime}=\operatorname{Ext}_{A}^{1}(T,-)$ from $\bmod A$
to $\bmod B$ induce constructible object-functions. Hence $F^{-1}\binom{d}{0}=\{M \in$ $\left.\bmod _{A}(d): F(M)=0\right\}=\mathcal{F}(d)$ and $F^{\prime-1}\binom{d}{0}=\left\{M \in \bmod _{A}(d): F^{\prime}(M)=0\right\}$ $=\mathcal{T}(d)$ are constructible.

Consider the object-function $c: \bmod A \rightarrow K_{A} \times K_{A}$ defined by $M \mapsto$ $((t M, i, M),(M, p, M / t M))$, where

$$
0 \longrightarrow t M \xrightarrow{i} M \xrightarrow{p} M / t M \longrightarrow 0
$$

is the canonical sequence of $M$ in the torsion theory $(\mathcal{T}, \mathcal{F})$. We now claim that $c$ is constructible. Indeed, for $e \leq d$, let

$$
\begin{aligned}
& C(d, e) \\
& \quad=\left\{\left(M^{\prime}, i, M, p, M^{\prime \prime}\right) \in \mathcal{T}(e) \times k^{e \times d} \times \bmod _{A}(d) \times k^{d \times(d-e)} \times \mathcal{F}(d-e):\right. \\
& \text { the sequence } \left.0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{p} M^{\prime \prime} \longrightarrow 0 \text { is exact }\right\} .
\end{aligned}
$$

Clearly, $C(d, e)$ is constructible. Therefore $c$ is constructible.
The object-function $f: F \rightarrow K_{A}$ defined by $f(M)=\left(K \otimes_{B} T, j \otimes_{B} T\right.$, $P_{0} \otimes_{B} T$ ), where

$$
0 \longrightarrow K \xrightarrow{j} P_{0} \xrightarrow{p_{0}} \operatorname{Ext}_{A}^{1}(T, M) \longrightarrow 0
$$

is an exact sequence, and $P_{0}$ is a projective cover of $\operatorname{Ext}_{A}^{1}(T, M)$, is also a constructible object-function. Indeed, the coordinates of $f$ are obtained by composition of the following object-functions:
(a) $\operatorname{Ext}_{A}^{1}(T,-): \bmod A \rightarrow \bmod B$,
(b) $P_{0}: \bmod B \rightarrow \bmod B$, such that $P_{0}(X)$ is a projective cover of $X$,
(c) Ker: $K_{B} \rightarrow \bmod B$,
(d) $-\otimes_{B} T: \bmod B \rightarrow \bmod A$,
each of which is constructible (see 2.3 above, or [14]). Hence $f$ is constructible.

We proceed to show that $s$ is constructible. Let $d \in \mathbb{N}$ and $m \leq d+$ $d t^{2} s_{A}^{3} s_{B}$ (as in 1.2). Choose also $e \leq d$. Consider the set $C(d, e, m)$ of 16 tuples

$$
\left(M, M^{\prime}, i, p, M^{\prime \prime}, j, V^{\prime \prime}, \sigma, P, q, L, \alpha, V, \beta, \alpha^{\prime}, \beta^{\prime}\right)
$$

such that
(a) $M \in \bmod _{A}(d), c(M)=\left(\left(M^{\prime}, i, M\right),\left(M, p, M^{\prime \prime}\right)\right) \in C(d, e)$,
(b) $f\left(M^{\prime \prime}\right)=\left(V^{\prime \prime}, \sigma, P\right)$ and $0 \longrightarrow M^{\prime \prime} \xrightarrow{j} V^{\prime \prime} \xrightarrow{q} L \longrightarrow 0$ is exact in $\bmod A$,
(c) $V \in \bmod _{A}(m)$ and the following diagram is commutative, with exact rows and columns:


The set $C(d, e, m)$ is constructible and

$$
s^{-1}\binom{d}{(m, m-d)}=\bigcup_{e \leq d} \pi_{1} C(d, e, m)
$$

is constructible. Moreover, the diagram

(where $\pi, \pi_{1}$ denote the respective projections) commutes. Hence $s$ is constructible.
2.5. Proof of the theorem. As pointed out in the introduction, our theorem immediately follows from the above proposition and the criterion for tameness in [14], (4.3). Indeed, let $X$ be a non-projective $T(B)$-module. Then there exists a $T(A)$-module $M$ and a projective $T(B)$-module $P$ such that $\mathcal{S}(M) \xrightarrow{\sim} X \oplus P$. In the terminology of [14], (4.1), we say that $\mathcal{S}$ constructively almost covers $\bmod T(B)$. A direct application of [14], (4.3) completes the proof.

Remark. Let $(B, T, A)$ be a tilting triple. Then $T(A)$ is domestic repres-entation-infinite (or non-domestic of polynomial growth) if and only if $T(B)$ is domestic representation-infinite (or non-domestic of polynomial growth, respectively). This follows from $[3,10,11,12]$.

Acknowledgements. This paper was written while the second author was visiting the first. The first author gratefully acknowledges partial support from the Natural Sciences and Engineering Council of Canada and the Université de Sherbrooke, and the second author gratefully acknowledges
partial support from the Consejo Nacional de Ciencia y Tecnología and the Université de Sherbrooke.

## References

[1] I. Assem, Tilting theory - an introduction, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 127-180.
[2] I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984), 235-242.
[3] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extension of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72.
[4] M. Auslander and I. Reiten, Representation theory of artin algebras III, IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518.
[5] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, Berlin, 1980, 240-258.
[6] R. M. Fossum, P. A. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Lecture Notes in Math. 456, Springer, Berlin, 1975.
[7] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (2) (1982), 399-443.
[8] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364.
[9] R. Martínez-Villa, Properties that are left invariant under stable equivalence, Comm. Algebra 18 (12) (1990), 4141-4169.
[10] J. Nehring, Trywialne rozszerzenia wielomianowego wzrostu [Trivial extensions of polynomial growth], Ph.D. thesis, Nicholas Copernicus Univ., 1989 (in Polish).
[11] -, Polynomial growth trivial extensions of non-simply connected algebras, Bull. Polish Acad. Sci. Math. 36 (1988), 441-445.
[12] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134.
[13] J. A. de la Peña, Functors preserving tameness, ibid. 137 (1991), 177-185.
[14] -, Constructible functors and the notion of tameness, Comm. Algebra, to appear.
[15] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[16] H. Tachikawa, Selfinjective algebras and tilting theory, in: Representation Theory I. Finite Dimensional Algebras, Lectures Notes in Math. 1177, Springer, Berlin, 1986, 272-307.
[17] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165.

DÉPARTEMENT DE MATHÉMATIQUES
INSTITUTO DE MATEMÁTICAS
ET INFORMATIQUE UNIVERSIDAD NACIONAL
UNIVERSITÉ DE SHERBROOKE AUTÓNOMA DE MÉXICO
SHERBROOKE, QUÉBEC
CANADA, J1K 2R1 MÉXICO 04510, D.F. MÉXICO
E-mail: IBRAHIM.ASSEM@DMI.USHERB.CA E-mail: JAP@PENELOPE.MATEM.UNAM.MX


[^0]:    1991 Mathematics Subject Classification: Primary 16G60.

