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On the tameness of trivial extension algebras
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Ibrahim A s s e m (Sherbrooke, Qué.) and
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Abstract. For a finite dimensional algebra A over an algebraically closed field, let
T (A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We
prove that, if TA is a tilting module and B = EndTA, then T (A) is tame if and only if
T (B) is tame.

Introduction. Let k be an algebraically closed field. In this paper, an
algebra A is always assumed to be associative, with an identity and finite
dimensional over k. We denote by modA the category of finitely gener-
ated right A-modules, and by modA the stable module category whose
objects are the A-modules, and the set of morphisms from MA to NA is
HomA(M,N) = HomA(M,N)/P(M,N), where P(M,N) is the subspace of
all morphisms factoring through projective modules. Two algebras R and S
are called stably equivalent if the categories modR and modS are equiva-
lent. There are several important problems of the representation theory of
algebras which are formulated in terms of the stable equivalence of two self-
injective algebras (see, for instance, [9, 19]). But few things are known. For
instance, it is not yet known whether for two stably equivalent self-injective
algebras R and S, the tameness of R implies that of S. We consider this
problem in the following context.

Let A be an algebra, and D = Homk(−, k) denote the usual duality
on modA. The trivial extension T (A) of A (by the minimal injective con-
generator bimodule DA) is defined to be the k-algebra whose vector space
structure is that of A⊕DA, and whose multiplication is defined by

(a, q)(a′, q′) = (aa′, aq′ + qa′)

for a, a′ ∈ A and q, q′ ∈ A(DA)A. Trivial extensions are a special class of
self-injective (actually, of symmetric) algebras. They have been extensively
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studied in the representation theory of algebras (see, for instance, [2, 3, 8,
10, 12, 17]), in particular, in the context of tilting theory. Following [7], an
A-module TA is called a tilting module if Ext2

A(T,−) = 0, Ext1
A(T, T ) = 0

and there is an exact sequence

0→ AA → T ′A → T ′′A → 0,

with T ′, T ′′ in the additive category addT consisting of the direct sums
of direct summands of T . A tilting triple (B,BTA, A) consists of an alge-
bra A, a tilting module TA and B = EndT . For a tilting triple (B, T,A),
Tachikawa and Wakamatsu have constructed in [17] a stable equivalence
functor S : modT (A)→ modT (B). Our main result is the following:

Theorem. Let (B,BTA, A) be a tilting triple. Then T (A) is tame if and
only if T (B) is tame.

Recall from [5] that an algebra C is called tame if, for each d ∈ N, there
is a finite number of k[t] − C-bimodules M1, . . . ,Ms(d) which are free and
finitely generated left k[t]-modules and such that, for all but at most finitely
many non-isomorphic indecomposable C-modules X with dimkX = d, there
is an isomorphism X

∼→ (k[t]/〈t − λ〉) ⊗k[t] Mi, for some 1 ≤ i ≤ s(d) and
λ ∈ k. In this case, we let µC(d) denote the least possible s(d). We say that
C is of polynomial growth (or domestic) if µC(d) ≤ dm for some m ∈ N (or
µC(d) ≤ K for some K ∈ N, respectively).

The representation theory of the trivial extension of polynomial growth
is well known. Namely, the representation-finite trivial extensions are trivial
extensions of tilted algebras of Dynkin type (by [8]), the representation-
infinite domestic trivial extensions are either trivial extensions of tilted al-
gebras of Euclidean type or quotients of a trivial extension T (A) of some
representation-infinite algebra A of Euclidean type Ãn by the group Z2 (by
[3, 10, 11]), and the non-domestic trivial extensions of polynomial growth are
trivial extensions of tubular algebras (by [10, 12]). But the representation
theory of the tame trivial extensions which are not of polynomial growth is
still completely unknown. Our theorem ensures that the tameness of these
algebras is preserved under tilting of the original algebra.

The main technique used for the proof of the theorem is the geometric
setting developed in [14]. The proof essentially reduces to showing that the
construction of S yields a constructible function on objects S : modT (A)→
modT (B). Then one applies [14], (4.3).

1. The Tachikawa–Wakamatsu stable equivalence functor

1.1. Let A be a finite dimensional k-algebra assumed moreover to be ba-
sic and connected. We shall use freely, and without further reference, facts
about the module category modA and the Auslander–Reiten translations
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τ = DTr and τ−1 = TrD, as in [4, 15]. For tilting theory, we refer the
reader to [1]. Recall in particular that if (B,BTA, A) is a tilting triple, then
TA induces a torsion theory (T ,F) in modA, where T (or F) denotes the
full subcategory of modA generated by TA (or cogenerated by τTA, respec-
tively).

Given an A-module M , the evaluation morphism εM : HomA(T,M)⊗BT
→M defined by f ⊗ t 7→ f(t) (where f ∈ HomA(T,M), t ∈ T ) is functorial,
and is an isomorphism if and only if M ∈ T . Similarly, to a B-module X
corresponds a functorial morphism ηX : XB → HomA(T,X ⊗B T ) defined
by x 7→ (t 7→ x⊗ t) (where x ∈ X, t ∈ T ).

Finally, we have canonical isomorphisms DT ⊗B T
∼→ DA and T ⊗B

DT
∼→ DB, which we shall consider as identifications throughout this

paper.

1.2. Torsion resolutions. Let (B, T,A) be a tilting triple, and (T ,F) be
the corresponding torsion theory in modA. For an A-module MA, an exact
sequence of the form

0 −→M
α0−→ V0

β0−→ T0 −→ 0

with V0 ∈ T and T0 ∈ addT is called a torsion resolution for M . By [17],
each module MA admits a torsion resolution

0 −→M
αM−→ V (M)

βM−→ T (M) −→ 0

such that T (M) = P ⊗B T , where PB is a projective cover of Ext1
A(T,M),

and which is minimal in the following sense: for any other torsion resolution
for M ,

0 −→M
α′−→ V ′

β′−→ T ′ −→ 0,

there exists T ′′ ∈ addT such that we have a commutative diagram with
exact rows:

0 M V ′ T ′ 0

0 M V (M)⊕ T ′′ T (M)⊕ T ′′ 0

// ������

������

α′ // �����

�����

β′ // �����

�����

//

//

[
αM
0

]
//

[
βM 0
0 1

]
// //

In fact, the module V (M) is constructed as follows:

(a) If M ∈ T , then V (M) = M .
(b) If M ∈ F , then V (M) ∼→ K ⊗B T , where KB is the kernel of the

projective cover morphism PB → Ext1
A(T,M).

(c) In general, if 0→ tM →M →M/tM → 0 is the canonical sequence
of M in the torsion theory (T ,F), the torsion resolution of M is obtained as
the middle column in the following commutative diagram with exact rows
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and columns:
0 0

0 tM M M/tM 0

0 tM V (M) V (M/tM) 0

T (M) T (M/tM)

0 0

²² ²²
// ������

������

//

²²

//

²²

//

// //

²²

//

²²

//

²²

__________

²²

Lemma. Let t = dimk T , sA = dimk A, sB = dimk B and MA be an
A-module with d = dimkM . Then dimk V (M) ≤ d+ dt2s3

AsB.

P r o o f. Using the middle row in the above diagram, we see that
dimk V (M) = dimk tM+dimk V (M/tM). Since tM ⊆M , we have dimk tM
≤ d. Put N = M/tM . We have a short exact sequence of B-modules

0 −→ K −→ PB
p−→ Ext1

A(T,N) −→ 0,

where p is a projective cover. Hence V (N) ∼→ K ⊗B T yields dimk V (N) ≤
t dimkK. On the other hand,

dimkK ≤ dimk PB ≤ sB dimk Ext1
A(T,N).

In order to bound dimk Ext1
A(T,N), we shall use the Auslander–Reiten for-

mula Ext1
A(T,N) ∼→ DHomA(τ−1N,T ) and a minimal projective presenta-

tion in modAop:

AP1
f1−→ AP0

f0−→ ADN −→ 0.

Indeed, the latter yields dimk P1 ≤ sA dimk Ker f0 and dimk Ker f0 ≤
sA dimkDN = sA dimkN . Applying the functor HomA(−, A) yields an ex-
act sequence

HomA(P0, A) −→ HomA(P1, A) −→ τ−1N −→ 0.

Hence, dimk τ
−1N ≤ dimk HomA(P1, A) ≤ sA dimk P1 ≤ s3

A dimkN . On
the other hand, since N = M/tM , we have dimkN ≤ dimkM = d. The
result then follows from the inequalities

dimk V (M/tM) ≤ tdimkK ≤ tsB dimk Ext1
A(T,N)

≤ tsB dimk HomA(τ−1N,T ) ≤ tsB dimk T dimk τ
−1N

≤ t2sBs3
Ad.
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1.3. The stable equivalence. For an algebra A, let T (A) denote the trivial
extension of A by DA. We shall use the following equivalent description of
modT (A) (see [6]). Let C be the category whose objects are the pairs (M,ϕ)
where M is an A-module and ϕ : M ⊗A DA→ M is an A-linear map such
that ϕ(ϕ ⊗ DA) = 0, and where a morphism f : (M,ϕ) → (M ′, ϕ′) is an
A-linear map f : M →M ′ such that ϕ′(f⊗DA) = fϕ. Then C ∼→ modT (A).
Throughout this paper, we shall identify these two categories. In particular,
any A-module M induces a T (A)-module

(
M ⊕ (M ⊗DA),

[0 0
1 0

])
that will

be denoted by

It is well known that the image of the canonical embedding modA →
modT (A) actually lies inside the stable category (see, for instance, [17]).

Let (M,ϕ) be an arbitrary T (A)-module. As an A-module, M admits a
minimal torsion resolution

0 −→M
αM−→ V (M)

βM−→ T (M) −→ 0.

Now, define a B-linear map

φM : M ⊗A DTB −→ HomA(T, V (M))⊕ [HomA(T, V (M))⊗B DB]

by the formula

φ
M

=

[
HomA(T, αM ) HomA(T,−ϕ)ηM⊗DT

(ε−1
V (M) ⊗DT )(αM ⊗DT )

]
.

The construction of φM may be visualised as follows:

HomA(T,M ⊗A DT ⊗B T ) HomA(T,M ⊗A DA) HomA(T,M)

M ⊗A DT HomA(T, V (M))⊕
[HomA(T, V (M))⊕BDB]

V (M)⊗A DT HomA(T, V (M))⊗B T ⊗A DT

∼ // HomA(T,−ϕ)//

HomA(T,αM )

²²
ηM⊗DT

OO

αM⊗DT
²² ∼

ε−1
V (M)

⊗DT
//

∼

OO

The source and the target of φM are each endowed with a natural T (B)-
module structure. Namely, M ⊗A DT has the T (B)-module structure in-
duced by the morphism

M ⊗A DT ⊗B DB ∼−→M ⊗A DT ⊗B T ⊗A DT
∼−→M ⊗A DA⊗A DT −ϕ⊗DT−−−−−→M ⊗A DT,

while HomA(T, V (M))⊕[HomA(T, V (M))⊗BDB] induces the T (B)-module
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One shows that φM is T (B)-linear, so that S(M,ϕ) = CokerφM is a
T (B)-module. We have thus defined a map on objects S : modT (A) →
modT (B). One can show that for an A-module M ∈ T , we have S(M, 0) =
HomA(T,M), that the image of a projective T (A)-module is a projective
T (B)-module, and, finally, that S is a functor from modT (A) to modT (B).
We have the following theorem:

Theorem [17]. Let (B, T,A) be a tilting triple. Then the functor S :
modT (A)→ modT (B) is an equivalence.

2. Geometrisation of the problem

2.1. The proof of our theorem relies on the methods of algebraic geom-
etry and the criteria for tameness developed in [13, 14]. For more details on
the constructions used, we refer the reader to [14].

First, we identify our A- and T (A)-modules with points of constructible
sets in appropriate affine spaces.

Let A be an algebra, and 1 = a1, a2, . . . , as be a k-basis of A such that
aiaj =

∑s
m=1 λ

(m)
ij am for all 1 ≤ i, j ≤ m (the scalars λ(m)

ij are the so-called
structure constants of A). Recall that an A-module M of k-dimension d may
be identified with a representation M : A → Endk(kd), thus, each of the
basis elements ai corresponds to a d× d matrix M(ai). We define, for each
d ∈ N, modA(d) to be the (closed) subset of the affine space

∏s
i=1 k

d×d

consisting of the s-tuples of d × d matrices M = (M(a1), . . . ,M(as)) such
that M(a1) is the identity matrix and M(ai)M(aj) =

∑s
m=1 λ

(m)
ij M(am)

for all 1 ≤ i, j ≤ s.
Recall that a vector space category is a pair (K, |−|) consisting of a

k-linear category and a faithful k-linear functor |−| : K → mod k.
Following [14], we say that the pair (K, |−|) is geometrisable if there

exists an increasing function σ : N→ N inducing, for each d ∈ N, a function
{X ∈ K : dimk |X| = d} → kσ(d) (denoted by X 7→ X̃) satisfying

(G1) the image K(d) is constructible as a subset of the affine space kσ(d);
(G2) there is a function µ : K(d) → K such that dimk |µ(X̃)| = d and

µ(X̃)∼ = X̃; moreover, µ(X̃) ∼−→ X.

Examples. (a) The module category modA is a vector space category
taking |−| : modA → mod k to be the forgetful functor. Let σ(d) = sd2,
for d ∈ N. As above, let 1 = a1, a2, . . . , as be a k-basis of A. The map
M 7→ M̃ = (M(a1), . . . ,M(as)) ∈ kσ(d) defines a geometrisation of modA.
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(b) Let KA be the category whose objects are triples (M,f,N), where
M,N are A-modules, and f : M → N is A-linear, and whose morphisms
(h, g) : (M,f,N)→ (M ′, f ′, N ′) are pairs of A-linear maps such that f ′h =
gf . Then KA is a vector space category with |(M,f,N)| = |M |⊕|N | (where,
on the right, |−| : modA→ mod k denotes the forgetful functor, as in (a)).
Let σ(d) = (s+1)d2. For a triple (M,f,N) with dimk |M | = m, dimk |N | = n
and d = m+n, we define (M,f,N)∼ to be the (s+1)-tuple of d×d matrices

([
M(a1) 0

0 N(a1)

]
, . . . ,

[
M(as) 0

0 N(as)

]
,

[
0 f
0 0

])
.

The images of this map form a closed subset KA(m,n) of kσ(d). Thus
KA(d) =

⋃
d=m+n KA(m,n) is closed in kσ(d). Therefore KA is geometris-

able.

2.2. Let us now consider modT (A). For (M,ϕ) ∈ modT (A), we set
|(M,ϕ)| to equal the underlying k-space |M | of M . Thus modT (A) is a
vector space category. The following lemma is shown in [14], we only indicate
the main steps of the proof.

Lemma. The vector space category modT (A) is geometrisable.

S k e t c h o f p r o o f. Let σ(d) = 2sd2, where a1 = 1, . . . , as is a basis
of A. Let m ≤ sd. Consider the functor F = − ⊗A DA : modA → modA.
By [14], (2.2), the set F−1

(
d
m

)
= {M ∈ modA(d) : dimk |FM | = m} is

constructible. The set of pairs (M,ϕ) in modA(d) × kd×m such that ϕ :
F̃M → M̃ is A-linear and ϕ(ϕ⊗DA) = 0 is a constructible subset C(m) of
ksd

2 × kd×m ⊆ kσ(d). Since, for any N ∈ modA, dimk |FN | ≤ sdimk |N |, it
follows that modT (A)(d) =

⋃
m≤sd C(m) is a constructible subset of kσ(d).

For (M,ϕ) ∈ modT (A) with dimk |M | = d, we thus set (M,ϕ)∼ = (M̃, ϕ) ∈
modT (A)(d).

2.3. In 1.3, we defined the function on objects S : modT (A)→ modT (B)
which induces a stable equivalence S : modT (A)→ modT (B).

Let U ,V be two vector space categories. A function on objects f : U → V
is called an object-function if X ∼→ Y in U implies f(X) ∼→ f(Y ) in V. An
object-function f : U → V, where U ,V are geometrisable categories, is called
constructible [14] if, for each d,m ∈ N, the following are satisfied:

(C1) the set f−1
(
d
m

)
= {M ∈ U(d) : dimk |f(M)| = m} is constructible,

and empty for m large enough;
(C2) there exist c ∈ N and a constructible subset C ⊆ f−1

(
d
m

)×kc×V(m)
such that the following diagram (where π1, π3 denote the respective
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projection morphisms) commutes:

C ⊆ f−1
(
d
m

)× kc × V(m) V(m)

f−1
(
d
m

)
π1

²²

π3 //

fmmmmmmmmmmmmm66

in the sense that fπ1(w)∼ ∼−→ π3(w)∼, for w ∈ C.
(C3) π1(C) = f−1

(
d
m

)
.

The following examples are treated in detail in [14].

Examples. (a) The composition of constructible object-functions is con-
structible.

(b) Let BXA be a bimodule. Then − ⊗B XA : modB → modA and
−⊗B XA : KB → KA yield constructible object-functions.

(c) Let f : BXA → BYA be a morphism of B-A-bimodules. Then −⊗Bf :
modB → KA yields a constructible object-function.

(d) The functors Ker,Coker : KA → modA yield constructible object-
functions.

(e) Let BTA be a bimodule and η : 1modB → HomB(T,− ⊗B T ) be the
functorial morphism defined in 1.1. Then η induces a constructible object-
function η : modB → KB .

(f) Let BTA be a bimodule and ε : HomA(T,−) ⊗B T → 1modA be
the (evaluation) functorial morphism defined in 1.1. Then ε induces a con-
structible object-function ε : modA → KA. If TA is a tilting module and
B = EndTA, then εM is invertible for each M ∈ T and ε−1 : T → KA is
also constructible (here, T denotes, as usual, the torsion class induced by
TA in modA).

2.4. Proposition. The object function S : modT (A) → modT (B) is
constructible.

P r o o f. By the examples in 2.3 above, and the construction of S given
in 1.3, it suffices to show that, if M ∈ modA and

0 −→M
αM−→ V (M)

βM−→ T (M) −→ 0

is a minimal torsion resolution of M , then the object-function s : modA→
KA given by M 7→ (V (M), βM , T (M)) is constructible.

Let (T ,F) be the torsion theory in modA induced by the tilting triple
(B, T,A). We claim that, for any d ∈ N, the sets F(d) = {M ∈ modA(d) :
M ∈ F} and T (d) = {M ∈ modA(d) : M ∈ T } are constructible. Indeed, by
[14], (2.5), the functors F = HomA(T,−) and F ′ = Ext1

A(T,−) from modA
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to modB induce constructible object-functions. Hence F−1
(
d
0

)
= {M ∈

modA(d) : F (M) = 0} = F(d) and F ′−1
(
d
0

)
= {M ∈ modA(d) : F ′(M) = 0}

= T (d) are constructible.
Consider the object-function c : modA → KA × KA defined by M 7→

((tM, i,M), (M,p,M/tM)), where

0 −→ tM
i−→M

p−→M/tM −→ 0

is the canonical sequence of M in the torsion theory (T ,F). We now claim
that c is constructible. Indeed, for e ≤ d, let

C(d, e)

= {(M ′, i,M, p,M ′′) ∈ T (e)× ke×d ×modA(d)× kd×(d−e) ×F(d− e) :

the sequence 0 −→M ′ i−→M
p−→M ′′ −→ 0 is exact}.

Clearly, C(d, e) is constructible. Therefore c is constructible.
The object-function f : F → KA defined by f(M) = (K ⊗B T, j ⊗B T ,

P0 ⊗B T ), where

0 −→ K
j−→ P0

p0−→ Ext1
A(T,M) −→ 0

is an exact sequence, and P0 is a projective cover of Ext1
A(T,M), is also a

constructible object-function. Indeed, the coordinates of f are obtained by
composition of the following object-functions:

(a) Ext1
A(T,−) : modA→ modB,

(b) P0 : modB → modB, such that P0(X) is a projective cover of X,
(c) Ker : KB → modB,
(d) −⊗B T : modB → modA,

each of which is constructible (see 2.3 above, or [14]). Hence f is con-
structible.

We proceed to show that s is constructible. Let d ∈ N and m ≤ d +
dt2s3

AsB (as in 1.2). Choose also e ≤ d. Consider the set C(d, e,m) of 16-
tuples

(M,M ′, i, p,M ′′, j, V ′′, σ, P, q, L, α, V, β, α′, β′)

such that

(a) M ∈ modA(d), c(M) = ((M ′, i,M), (M,p,M ′′)) ∈ C(d, e),
(b) f(M ′′) = (V ′′, σ, P ) and 0 −→ M ′′

j−→ V ′′
q−→ L −→ 0 is exact in

modA,
(c) V ∈ modA(m) and the following diagram is commutative, with exact

rows and columns:
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0 0

0 M ′ M M ′′ 0

0 M ′ V V ′′ 0

L L

0 0

²² ²²
// �����

�����

i //

α

²²

p //

j

²²

//

// α′ //

β

²²

β′ //

q

²²

//

²²

______________

²²

The set C(d, e,m) is constructible and

s−1( d
(m,m−d)

)
=
⋃

e≤d
π1C(d, e,m)

is constructible. Moreover, the diagram

C(d, e,m) KA((m,m− d))

s−1
(

d
(m,m−d)

) ⊆ modA(d)

π1

²²

π //

siiiiiiiiiiiiiiiii44

(where π, π1 denote the respective projections) commutes. Hence s is con-
structible.

2.5. P r o o f o f t h e t h e o r e m. As pointed out in the introduction, our
theorem immediately follows from the above proposition and the criterion
for tameness in [14], (4.3). Indeed, let X be a non-projective T (B)-module.
Then there exists a T (A)-module M and a projective T (B)-module P such
that S(M) ∼−→ X ⊕ P . In the terminology of [14], (4.1), we say that S
constructively almost covers modT (B). A direct application of [14], (4.3)
completes the proof.

R e m a r k. Let (B, T,A) be a tilting triple. Then T (A) is domestic repres-
entation-infinite (or non-domestic of polynomial growth) if and only if T (B)
is domestic representation-infinite (or non-domestic of polynomial growth,
respectively). This follows from [3, 10, 11, 12].
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E-mail: IBRAHIM.ASSEM@DMI.USHERB.CA E-mail: JAP@PENELOPE.MATEM.UNAM.MX

Received 27 February 1995;
in revised form 21 September 1995


