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Abstract. Continuing the earlier research in [10] we give some information on ex-
tending automorphisms of models of PA to end extensions and cofinal extensions.

1. Introduction. For any structure, M, we denote by Aut(M) the
group of automorphisms ofM. Here we consider only models of PA (Peano
Arithmetic); see Kaye [6] for models of PA and Kotlarski [15] for what is
known on automorphisms of countable recursively saturated models of PA.
Here we consider the question of extendability of automorphisms.
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Observe first that the problem of extending automorphisms divides into
three cases, depending on whether we consider end extensions, cofinal exten-
sions, or mixed extensions of models. (An extension is mixed if it is neither
an end extension nor a cofinal extension. By Gaifman [2], if K is an extension
ofM, whereM,K |= PA, then this extension splits asM≺cof M∗ ⊆end K,
where

M∗ = {u ∈ K : there exists w ∈M with K |= u < w}.)
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The only known facts about extending automorphisms concern end ex-
tensions. Let us review them. There is an obvious necessary condition for
extendability of automorphisms to greater models. Namely, letM and K be
models of PA with M ≺end K. If g ∈ Aut(M) may be extended to some
ĝ ∈ Aut(K) then g sends coded subsets of M onto coded subsets, i.e. for
every a ∈ K there exists b ∈ K so that g ∗ (a ∩M) = b ∩M.

Theorem 1.1. Let M and K be countable recursively saturated models
of PA with M ≺end K. If N does not code M in K from above then every
g ∈ Aut(M) such that g and g−1 send coded subsets onto coded subsets, can
be extended to some ĝ ∈ Aut(K).

As usual in the theory of models of PA, N codes M in K from above if
there exists a sequence u ∈ K so that M = inf{un : n ∈ N}.

Theorem 1.2. Let M and K be countable recursively saturated models
of PA with M≺end K. Then there exists g ∈ Aut(M) which sends a coded
subset of M onto a subset which is not coded (hence g cannot extend to an
element of Aut(K)).

Theorem 1.3. If M is a countable recursively saturated model of PA
then there exists a recursively saturated countable end elementary extension
K of M such that id is the only element of Aut(M) which extends to K.

Theorems 1.1 and 1.2 are due to Kossak and Kotlarski [10], and Theo-
rem 1.3 is due to Kossak and Schmerl [12].

In [10] we proved Theorem 1.2 by showing that, forM and N as above,
there is always a subset ofM which is coded in N and has continuum many
automorphic images inM. Then we asked if it is true that every undefinable
class of a countable recursively saturated model of PA has continuum many
automorphic images (a class is a subset of a model whose intersection with
every initial segment with a top is definable). Jim Schmerl has provided a
short elementary proof showing that this is indeed the case.

A simple observation should be added here. Namely, the assumption
that K is recursively saturated is essential in Theorem 1.2.

Theorem 1.4. Let M |= PA. Let q be a type which is definable in the
sense of Gaifman [3]. Let K be the Skolem ultrapower of M modulo the
natural extension of q to M. Then every g ∈ Aut(M) extends to K.

The obvious reason for Theorem 1.4 is that every subset of M coded
in K is definable in M, exactly as in Theorem 2.1 to be proved in the next
section.

2. Nonelementary end extensions. In all the results stated in §1 we
required the extension to be elementary. If we do not require elementarity
then the situation is different. That is, Theorem 1.2 fails. Namely, we have
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Theorem 2.1. Let M be any model of PA. Then there exists an end
extension K of M which is recursively saturated and every g ∈ Aut(M)
extends to K. In fact , if r ∈ N then K may be chosen to be Σr-elementary.

P r o o f. Let M |= PA and r ∈ N. Assume first that M thinks that
“PA + TrΣr is consistent”. We use the so-called Arithmetized Complete-
ness Theorem (see e.g. Smoryński [18] or Hájek–Pudlák [4] for more in this
direction). That is, we fix a primitive recursive enumeration ϕ0, . . . , ϕj , . . .
of all sentences and write down the formula C(·) which describes the fol-
lowing procedure: add ϕ0 to C if there is no proof of ¬ϕ0 from the axioms
of PA and Σr sentences which are true, add ¬ϕ0 to C otherwise, continue
in the same fashion for all j (but in the axioms there are not only PA and
TrΣr but also sentences added in earlier steps). This is done with no trou-
bles, the universal formula TrΣr for Σr formulas is used to formalize this
inside M.

Now, one constructs a new model K = ACT(M;C). Consider the set of
all variable-free terms inside M. Divide this set by the equivalence relation
t1 ∼ t2 iff M |= C(t1 = t2). Define addition in the natural manner, i.e.
t∼1 + t∼2 = t∼3 iffM |= C(t1 + t2 = t3). There is no problem in checking that
this is well defined. We treat other atomic relations similarly. This completes
the definition of K. It requires some minor work to show that K |= PA. There
is a natural embedding of M onto an initial segment of M (it is given by
sending b ∈ M to the equivalence class of the bth numeral, Sb0) and if
we identify M with its image then K �Σr M. Finally, let us show how to
extend automorphisms. So let g ∈ Aut(M) be given. For t∼ ∈ K we put
ĝ(t∼) = the equivalence class of the term g(t). It is easy to check that ĝ is
well defined and is an element of Aut(K).

IfM thinks that “PA + TrΣr is inconsistent” then we use the restricted
form of the Arithmetized Completeness Theorem as developed in [16]. Let
us describe the ideas briefly. First we define a hierarchy Qn of formulas.
We put Q0 = ∆0 and Qn+1 = the closure of Qn ∪ ∃Qn under conjunction,
negation and bounded quantification. In this hierarchy every subformula of
every Qn-formula is also in Qn, in contrast to the usual Σn-Πn hierarchy.
On the other hand, the universal formula TrQn for Qn-formulas is itself of
class Qn+1. Say that a proof is Qn iff all formulas which occur in it are
of class Qn. Now one checks that for standard n, M thinks “there exists
no Qn-proof of 0 = 1 from PA + TrΣr” and hence “the smallest n such
that there exists a Qn+1-proof of 0 = 1 from PA + TrΣr” is nonstandard
and definable in M. Call it n0. Find a completion of PA + TrΣr exactly as
above, but the inductive condition in deciding what to put to C is “there is
no Qn0 -proof” rather than “there is no proof” as above. Observe that the
use of n0 in the definition of C is inessential as n0 is definable in M. Now
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define an initial segment I0 of M by putting I0 = inf{n0 − n : n ∈ N}.
Construct the new model K in the same manner as above, but consider only
terms which are terms-minimum for formulas ϕ ∈ M with M |= ϕ ∈ Qj
for some j ∈ I0. (For technical reasons it is more convenient to work with
formulas in one free variable rather than with variable-free terms.) Then we
check that every g ∈ Aut(M) fixes I0 (setwise) and hence we can extend
automorphisms exactly as above. This completes our outline of the proof of
Theorem 2.1.

It should be noticed that the operation g → ĝ (in both cases considered
in the proof sketched above) is canonical enough so that it is, as a matter of
fact, an embedding of Aut(M) in Aut(ACT(M;C)). But this embedding is
not onto; indeed, idM extends to 2ℵ0 elements of Aut(K).

3. Cofinal extensions. By Gaifman’s corollary [2] to the Matiyasevich’s
theorem, we need to consider only elementary cofinal extensions. Moreover,
by the result of Smoryński and Stavi [20], recursive saturation is preserved
under cofinal extensions.

Observe first that ifM≺cof K then we may speak freely about a subset
A of M being coded in K; this means simply that A = a ∩ M for some
a ∈ K. Also, obviously, we have the analogue of the remark stated before
Theorem 1.1, that is, every g ∈ Aut(M) extendable to K must send coded
subsets to coded subsets. Let us formulate the concept to be studied in the
following manner.

Definition 3.1. The extensionM≺cof K has the automorphism exten-
sion property (AEC for short) iff for every g ∈ Aut(M), if g and g−1 send
coded subsets onto coded ones, then g is extendable to K.

The goal of this section is the following Theorem 3.2. Its proof will give
a sufficient condition for the automorphism extension property. It will be
stated in Theorem 3.14.

Theorem 3.2. Let M be a countable recursively saturated model of PA
and let K �cof M be countable. Then there exists a countable R �cof K such
that the extension M≺cof R has the AEC.

Before going further let us state a remark which should help the reader’s
intuition. Let M ≺cof K. Let a ∈ K. Pick any α ∈ M so that K |= a < α.
Then all properties of a with parameters from M are determined by

{X ∈M :M |= X ⊆ (< α) and K |= a ∈ X}.
Think of this family as an ultrafilter in the Boolean algebra {X ∈M : X ⊆
(< α)}, i.e. the power set of < α in M.

The argument is as follows. If ϕ is a formula and m ∈M then we define
(inside M) X = {x ≤ α : ϕ(m,x)}, and the fact that K |= ϕ(m, a) is
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determined by K |= a ∈ X. In fact, the idea presented below is just the
technique of ensuring that we can speak at least to some extent about the
above mentioned ultrafilter inside K.

LetM≺cof K, withM countable. Pick a ∈ K \M. Pick α ∈M so that
K |= a < α. Enumerate the power set (in the sense of M) of < α,

PM(< α) = {Zn : n ∈ N},
using the countability assumption. We define a sequence 〈Yn : n ∈ N〉 by
putting Y0 = Z0 if a ∈ Z0 and Y0 = (< α) \ Z0 otherwise. If Yn is defined
then we take Yn+1 = Yn ∩Zn+1 if a ∈ Zn+1 and Yn+1 = Yn ∩ [(< α) \Zn+1]
otherwise. Obviously, the sequence 〈Yn : n ∈ N〉 has the following properties:

1. Yn ∈M for every n ∈ N,
2. Yn ⊇ Yn+1 for all n ∈ N in both models K,M,
3. K |= a ∈ Yn for all n ∈ N,
4. for every set X ∈ M with K |= a ∈ X there is n ∈ N such that

K |= Yn ⊆ X.

It is convenient to think of a sequence 〈Yn : n ∈ N〉 with these properties
as a describing sequence; it describes all properties of a over M.

Definition 3.3. The extension M ≺cof K has the description property
(DP for short) iff for every a ∈ K \M there exists a describing sequence
〈Yn : n ∈ N〉 which is coded in K.

Of course, the describing sequences were constructed above in a com-
pletely external manner; the heart of the matter in the above notion is that
we require describing sequences to be coded in the greater model. As we
shall see below, the description property allows us to perform a single step
in the “back and forth” procedure of extending an automorphism. But in
order to ensure that the extension also sends coded sets onto coded ones
we need an additional idea of covering. But first let us point out that no
extension with the description property is finitely generated.

Lemma 3.4. Let M ≺cof R be a proper extension with the descrip-
tion property and let a ∈ R. Then the Skolem closure of M ∪ {a} in R,
HullR(M, a), is strictly smaller than R.

P r o o f. Assume the contrary, HullR(M, a) = R for some a ∈ R; we
derive a contradiction. If a ∈ M then we are done as the extension is
proper, so assume a 6∈ M. Pick a sequence Y ∈ R describing a. Clearly
we may assume that Y is decreasing with respect to inclusion, otherwise we
could work with the sequence Zn =

⋂
j<n Yj which is coded if Y is. We claim

that for every n ∈ N, R |= card(Yn) > 1. For otherwise a would be the only
element of Yn and hence a ∈ M. By overspill there exists a nonstandard
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r ∈ R such that

R |= card(Yr) > 1 ∧ ∀i < j ≤ r [Yi ⊇ Yj ].
So fix such an r ∈ R and pick b 6= a which is an element of Yr. This b realizes
the same type as a with all parameters fromM, by the description property.
But also b = s(m, a) for some term s(·, ·) and some m ∈M. This contradicts
the result of Gaifman [3], Theorem 4.1, and Ehrenfeucht [1] (its proof may
be also found in Kaye [7], Lemma 4.1) which states that the generator of a
simple extension is the only element of the extension realizing its type over
the model being extended.

Let us go to the idea of covering.

Definition 3.5. An extensionM≺cof R has the covering property (CP
for short) iff for every γ ∈ M there exists a sequence 〈En : n ∈ N〉 which is
coded in R, is increasing with respect to inclusion and

1. En ∈M for all n ∈ N,
2. {x ∈M :M |= x < γ} = {x ∈ R : ∃n ∈ N [R |= x ∈ En]}.
3. for every set e ∈ R and n ∈ N, the intersection e ∩ En is in M.

It is convenient to think of the sequence 〈En〉 as a sequence covering
(< γ) in such a way that for every standard n, En ⊆ M, and for nonstan-
dard j, Ej adds no new elements of M below γ. The last condition may be
thought of as some sort of comprehension, also for sets in R \M. From a
more technical point of view the assumption that the extension M ≺cof R
has the covering property will play the role of the additional assumption
(N does not ↓ code M in R) in Theorem 1.1. To be more exact, it is an
analogue of “N codes M from below in R”.

In order to prove the existence result (Lemma 3.10) we need an auxiliary
notion.

Definition 3.6. An extension M ≺cof R has the strong covering prop-
erty iff for every γ ∈ M there exists a sequence e ∈ R such that {x ∈ M :
x < γ} = {en : n ∈ N}.

R e m a r k 3.7. Every cofinal extension with strong covering property has
the covering property.

P r o o f. Indeed, if e ∈ R has the property granted by Definition 3.6,
then we put En = {e0, . . . , en−1} and we see that the conditions from Defi-
nition 3.5 are satisfied.

The following fact is obvious:

Lemma 3.8. If the extension M≺cof K has the strong covering property
and R is a cofinal extension of K then the extension M≺ R has the strong
covering property.
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Lemma 3.9. IfM≺cof K are countable models then there exists a count-
able R �cof K such that the extension M ≺ R has the strong covering
property.

P r o o f. Let the extension M≺cof K be given. Pick γ ∈ M. Enumerate
(< γ)M = {un : n ∈ N}, using the countability assumption. Let en = {uj :
j < n}. Extend K in a cofinal way to obtain R0 which contains a sequence
e with this property. Do this for all γ, i.e. enumerateM = {γn : n ∈ N} and
iterate for all n. Clearly we do not loose countability.

Corollary 3.10. If M ≺cof K are countable models then there exists
a countable R �cof K such that the extension M ≺ R has the covering
property.

The following fact was pointed out to us by J. Schmerl; it allowed us to
simplify the material of this section considerably.

Lemma 3.11. If the extension M≺cof K has the covering property then
it has the description property as well.

P r o o f. Let a ∈ K \ M. Pick u ∈ M which is greater than a using
the cofinality assumption. Let E ∈ K witness the covering property of the
extension M≺cof K for 2u. For every n we let en = {A ∈ En : a ∈ A}; this
definition is in K. Then en ∈ K and hence En ∩ en ∈M, so en ∈M. We let
Yn be the intersection (in the sense of M) of en. It is easy to check that Y
witnesses the description property.

Let us recall that ifM≺ R then every element a ∈ R\M determines a
new model, the Skolem hull ofM∪{a} inR; we shall denote it HullR(M, a).

Lemma 3.12. LetM be recursively saturated , let the extensionM≺cof R
have the covering property and let a ∈ R. Then the extension HullR(M, a) ≺
R also has the covering property.

P r o o f. Let γ ∈ HullR(M, a). Then γ is of the form γ = t(m, a) for
some term t and some m ∈ M. Pick δ ∈ M which is greater than γ by the
assumption of cofinality of the extension. Let 〈En〉 be a sequence covering δ
in R. Let {sr : r ∈ N} be a recursive enumeration of terms in two variables.
Consider the type

∆(%) = {∀m [sr(m, a) < δ ⇒ ∃m′ < %, (sr(m, a) = sr(m′, a))] : r ∈ N}.
This type is clearly consistent. Indeed, for any single s the appropriate sen-
tence is easily provable by induction on δ. For finitely many terms we may
take the maximum of the values obtained in this way. So let % realize ∆(·)
in HullR(M, a). By recursive saturation of M and the Smoryński–Stavi
theorem, HullR(M, a) is also recursively saturated, so let S be a (partial
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inductive) satisfaction class for HullR(M, a). We let

E′n = {x < γ : ∃j ≤ n ∃m′ < % [S(sj(m′, a) = x) ∧m′ ∈ En]}
and it is easy to check that the sequence 〈E′n : n ∈ N〉 covers γ in R over
HullR(M, a). In particular, if e ∈ R and n ∈ N then e∩E′n ∈ HullR(M, a).
Indeed, given a single term s, {x < γ : ∃m′ [x = s(m′, a) ∧ m′ ∈ e ∧ x ∈
e∩En]} is inM⊆ HullR(M, a) by the third condition from the definition,
because e ∩ En ∈M.

By the way, we also have

Lemma 3.13. If M ≺cof R has the description property then for every
c ∈ R, the extension HullR(M, c) ≺cof R also has the description property.

P r o o f. Let d ∈ R\HullR(M, c) and let Y be a sequence in R describing
the pair 〈c, d〉 over M . Pick any α ∈M which is greater than this pair, using
the cofinality assumption. Let Y ′n = {x < α : 〈c, x〉 ∈ Yn}. Obviously all
Y ′n ∈ HullR(M, c). It is equally clear that this new sequence is decreasing
and d ∈ Y ′n for all n ∈ N. Let X ′ ∈ HullR(M, c) be such that d ∈ X ′. Then
X ′ is of the form t(m, c) for some Skolem term t and some m ∈ M. Let
X = {〈x, y〉 : y ∈ t(m,x) ∧ x, y < α}. Then 〈c, d〉 ∈ X ∈ M and by the
properties of this describing sequence, there exists n ∈ N so that Yn ⊆ X. For
this n we have d ∈ Y ′n = {y < α : 〈c, y〉 ∈ Yn} ⊆ {y < α : y ∈ t(m, c)} = X
and we are done.

Theorem 3.2 is a consequence of the above results and

Theorem 3.14. Let the extension M ≺cof R have the covering prop-
erty. Assume that M is recursively saturated and R is countable. Then this
extension has the automorphism extension property.

Observe that if the assumptions of Theorem 3.14 are satisfied then
both models M and R are recursively saturated and countable, by the
Smoryński–Stavi result. We shall use this observation without explicit men-
tion.

As a matter of fact we shall have to work with two cofinal submodels,
M and N , of the same model R. Once again, there is no problem in defining
the notion of an isomorphism g ofM onto N sending coded sets onto coded
ones. This means simply that for every c ∈ R there exists d ∈ R so that
g ∗ (c ∩M) = d ∩N .

Lemma 3.15. Let M,N ≺cof R, and let g :M→N be an isomorphism
which sends coded (in R) subsets of M onto subsets of N which are also
coded. Let c, d ∈ R be such that there is an isomorphism ĝ : HullR(M, c)→
HullR(N , d) extending g. Assume moreover that M is recursively saturated
and the extension M ≺cof R has the covering property. Then ĝ also sends
coded subsets onto coded ones.
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P r o o f. Of course, ĝ exists iff for every formula ϕ and every m ∈ M,
R |= ϕ(m, c) iff R |= ϕ(g(m), d); and if this condition is satisfied then ĝ
must be defined in the “natural” way, that is, for every term t and m ∈M,
ĝ(t(m, c)) = t(g(m), d).

So assume that the above condition is satisfied. Let u ∈ R\M. We want
w ∈ R so that ĝ ∗ [u∩HullR(M, c)] = w ∩HullR(N , d). If u ∈ HullR(M, c)
then we let w = ĝ(u), so assume that u 6∈ HullR(M, c).

Pick α ∈ R such that u < α. Passing to a greater element if necessary
we may assume α ∈ M by the assumption of cofinality of the extension.
Consider the type

∆(γ) = {∀m [t(m, c) < α⇒ ∃m′ < γ (t(m, c) = t(m′, c))] : t is a term}.
This type is consistent. Indeed, for any single (Skolem) term t the ap-
propriate sentence is easily provable in PA (by induction on α). So let
γ ∈ HullR(M, c) realize ∆. Once again, we may assume γ ∈ M, other-
wise we pass to a greater element.

By the choice of α, for every term t we have

R |= ∀m [t(m, c) ∈ u⇒ ∃m′ < γ (t(m, c) = t(m′, c))].

Let tn(·, ·) be an enumeration of terms in two variables. We encode in R the
set

e = {〈m,n〉 : m < γ ∧ tn(m, c) ∈ u}.
To be more exact, we realize in R the type

Σ(e) = {∀x ∈ e [Seq(e) ∧ lh(e) = 2]}
∪ {∀m [〈m,n〉 ∈ e ≡ m < γ ∧ tn(m, c) ∈ u] : n ∈ N}.

Obviously this type is consistent; let e realize it in R. By the assumption,
g sends coded sets onto coded ones, hence there exists f ∈ R such that
g ∗ (e ∩M) = f ∩M. Then for every n ∈ N and every m ∈M we have

〈m,n〉 ∈ e ≡ 〈g(m), n〉 ∈ f.
Let us change notation slightly. For every term t we put et = {m < γ :
t(m, c) ∈ u}. Then the above fact may be written in the following way:

for every term t, g ∗ [et ∩M] = ft ∩N .
Consider the type

Ξ(w) = {∀m′′ [m′′ ∈ ft ≡ (m′′ < g(γ) ∧ t(m′′, d) ∈ w)] : t a term}.
We claim that there exists w ∈ R realizing Ξ(·). Once again, enumerate all
terms in two variables as t0, . . . , tr−1, . . . By the assumption, for every r ∈ N
we have

R |= ∃u′
∧∧

i<r

∀m [m ∈ ei ≡ (m < γ ∧ ti(m, c) ∈ u′)];
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indeed, u′ = u satisfies this. Let 〈En : n ∈ N〉 cover γ in R over M. Thus
En ∈M for every standard n and

{x ∈M :M |= x < γ} = {x ∈ R : ∃n ∈ N [R |= x ∈ En]}.
For a fixed n ∈ N we rewrite the above formula in the following way:

R |= ∃u′
∧∧

i<r

∀m ∈ En [m ∈ ei ≡ (m < γ ∧ ti(m, c) ∈ u′)].

Let us rewrite this formula again:

R |= ∃u′
∧∧

i<r

∀m [(m ∈ En ∩ ei) ≡ (m < γ ∧ ti(m, c) ∈ u′)].

But g sends coded sets to coded ones, hence there exists F ∈ R so that
g(En) = Fn for all standard n. Fix n. Hence all parameters in this formula
are in HullR(M, c), by the third condition of Definition 3.5, so this model
satisfies this formula. It follows that HullR(M, d) satisfies the same formula,
but with c replaced by d, E by F , and ei by fi, so by elementarity,

R |= ∃w
∧∧

i<r

∀m ∈ Fn [m ∈ fi ≡ (m < g(γ) ∧ ti(m, d) ∈ w)].

Let us sum everything up. We have shown that for every r ∈ N and every
n ∈ N the model R satisfies the above formula. Pick a partial inductive
satisfaction class S for R and define, in (R, S),

n(r) = max
{
n : ∃w

∧∧

i<r

∀m ∈ Fn [m ∈ fi ≡ (m < g(γ) ∧ ti(m, d) ∈ w)]
}
.

Thus, for every standard r, n(r) is nonstandard, so r < n(r). By unde-
finability of N we see that there exists a nonstandard r such that n(r) is
nonstandard and the w granted by it realizes Ξ(·). This w codes ĝ(u).

Having proved all the lemmas, we prove Theorem 3.14 by the usual back
and forth method. Clearly it suffices to prove the following “back and forth
lemma”.

Lemma 3.16. LetM≺cof R, let finite sequences ā and b̄ of elements of R
be given and let g : HullR(M, ā)→ HullR(M, b̄) be an isomorphism sending
sets coded (in R) onto coded ones. Assume moreover that both extensions
HullR(M, ā) ≺ R and HullR(M, b̄) ≺ R have the covering property. Then
for every a ∈ R there exists b ∈ R such that there exists an isomorphism g′ :
HullR(M, ā, a) → HullR(M, b̄, b) extending g and sending coded sets onto
coded ones, and both extensions HullR(M, ā, a) ≺ R and HullR(M, b̄, b) ≺
R have the covering property.

P r o o f. Observe first that by Lemmas 3.4 and 3.11, HullR(M, ā) 6= R
and the same for HullR(M, b̄). Let a be given. If a ∈ HullR(M, ā) then we
change nothing, i.e. we put b = g(a) and g′ = g. So assume a 6∈ HullR(M, ā).
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Let the sequence 〈Yn : n ∈ N〉 describe a over HullR(M, ā) in R. By the
assumption and the same reasoning as in the proof of Lemma 3.15 there
exists a sequence Z ∈ R such that g(Yn) = Zn for all n ∈ N. For every
n ∈ N, R |= Yn 6= ∅ (because a ∈ Yn), hence Zn 6= ∅ as well. Moreover,
for every n, the sequence 〈Z0, . . . , Zn−1〉 is decreasing because so is the
appropriate sequence 〈Y0, . . . , Yn−1〉. By overspill in R, the same two facts
hold for some nonstandard n. We take any w ∈ Zn for such n and any b ∈ w.
By the properties of describing sequences we have

R |= ϕ(m, a) ≡ ϕ(g(m), b)

for each formula ϕ and each m ∈ HullR(M, ā). Clearly, we can now define
g′ by g′(t(m, a)) = t(g(m), b). By Lemmas 3.12 and 3.13 both extensions
HullR(M, ā, a) ≺ R and HullR(M, b̄, b) ≺ R have the covering property.
Finally, by Lemma 3.15, g′ sends coded subsets to coded ones.

4. Small submodels. Yet another class of elementary extensions of
models of PA was used by D. Lascar [17]. His class is defined as follows.
Call an elementary submodel M of R small (in R) if |M| = {cn : n ∈ N}
for some sequence c ∈ R. As Lascar observes himself, a small elementary
submodelM may have 2ℵ0 automorphisms (stronger:M may be recursively
saturated), but at most countably many of those automorphisms may be
extended to R. Indeed, if g ∈ Aut(M) is extendable to ĝ ∈ Aut(R), then
the restriction of ĝ to M is entirely determined by ĝ(c).

It is easy to check that if M is small in R then M is neither an initial
segment nor cofinal in R. If |M| = {cn : n ∈ N} then c > cn for all n ∈ N,
so M is not cofinal in R. In order to check that M is not a cut of R,
it suffices to show that SSy(M) is strictly smaller than SSy(R). Indeed,
every (notrivial) cut of R has the same standard system as R. But define
(inside R) E = {n : n 6∈ cn}. If E ∩ N ∈ SSy(M) then E ∩ N = N ∩ cn0 for
some n0 ∈ N. Now, n0 ∈ E iff n0 ∈ cn0 iff n0 6∈ cn0 , contradiction, and so
E ∩ N 6∈ SSy(M).

Theorem 4.1. Let M be a small recursively saturated elementary sub-
model of a countable recursively saturated R, say |M| = {cn : n ∈ N}, where
c ∈ R. Let K = {a ∈ R : ∃n ∈ N (a < cn)} be the closure of M in R un-
der initial segment. Let g ∈ Aut(M). Then g is extendable to K iff g and
g−1 send subsets of M which are coded in K onto subsets with the same
property.

P r o o f. The implication⇒ is obvious. In order to prove the not obvious
implication, we simply check that the extension M ≺ K has the covering
property and apply Theorem 3.14; we may apply it as the extension under
consideration is cofinal. So let γ ∈ M. Then γ = cj for some j ∈ N. Enu-
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merate by {en : n ∈ N} all those cn which are smaller than cj ; clearly this is
possible inside R. The same argument as in Lemma 3.7 yields the result.

The following proposition shows that in the case of small submodels
the condition of sending coded subsets onto coded ones may be simplified
considerably.

Proposition 4.2. Let M ≺ R be small , |M| = {cn : n ∈ N}, where
c ∈ R. Let g ∈ Aut(M). Then g sends coded (in R) subsets onto coded ones
iff there exists d ∈ R such that g(cn) = dn for all n ∈ N.

P r o o f. Assume that g sends coded subsets onto coded ones. Consider
the set U = {〈n, cn〉 : n ∈ N}. Here the notion of an ordered pair is in the
set-theoretic sense. Obviously, this set is coded in R, so its g-image is coded
as well, and we can read off from it the desired d.

For the converse, let d ∈ R code g(c). Let u ∈ R. Put (inside R) E =
{n < lh(c) : cn ∈ u}. For every m ∈ N,

R |= ∃w ∀x [x ∈ w ≡ ∃j < m (j ∈ E ∧ x = dj)].

By overspill this holds for some m > N, and the w granted by this codes
g ∗ (u ∩M) in R.

Theorem 4.3. Let R be a countable recursively saturated model of PA,
let M ≺ R be small , |M| = {cn : n ∈ N}, and let g ∈ Aut(M). Then g
extends to R iff there exists d ∈ R such that g(cn) = dn for all n ∈ N and
the same holds for g−1.

P r o o f. One direction is obvious. For the converse we apply the usual
“back and forth” construction. The inductive condition is as follows. We let
ᾱ = 〈α0, . . . , αr−1〉 and similarly for β̄. Then

ĝ(ᾱ) = β̄ ⇒ ∀n ∈ N [tp(c¹n, ᾱ) = tp(d¹n, β̄) in R].

So assume that ᾱ and β̄ satisfy this condition and let α be given. Consider
the type

Γ (x) = {ϕ(c¹n, ᾱ, α) ≡ ϕ(d¹n, β̄, x) : ϕ, n}.
It suffices to show that this type is consistent; indeed, if it is then we realize
it in R. But if it were inconsistent, then for some m ∈ N, the type

Γm(x) = {ϕ(c¹m, ᾱ, α) ≡ ϕ(d¹m, β̄, x) : ϕ}
would be inconsistent as well (we may add superfluous items of c and d if
necessary to get one m). So fix m. We enumerate as {ϕi : i < k} all for-
mulas ϕ which occur in (a finite part of) Γm. Change them in the following
manner. Put ψi = ϕi if R |= ϕ(c¹m, ᾱ, α) and ψi = ¬ϕi otherwise. Let ψ
be
∧∧

i<k ψi. Then R |= ∃x ψ(c¹m, ᾱ, x); indeed, x = α is good. But this is
not true of the sequence d¹m, β̄, and this contradicts the inductive assump-
tion.
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Corollary 4.4. Under the assumption of Theorem 4.3, g extends to
R iff the function F : N → N defined as F (n) = k iff f(cn) = ck is in
SSy(M).

5. Cuts coded by the standard part from above. In this section
we shall show that the annoying extra assumption in Theorem 1.1 cannot
be eliminated. That is, we shall prove

Theorem 5.1. Let M be a countable recursively saturated model of PA.
Then there exist a ∈M and f ∈ Aut(M[a]) such that f and f−1 send coded
sets onto coded ones, but f is not extendable to an element of Aut(M).

Here, as usual, we denote by M(a) the smallest elementary cut of M
containing a, i.e.

M(a) = sup{t(a) : t is a Skolem term},
and

M[a] = sup{b :M(b) < a}
is the greatest elementary cut of M not containing a. (We treat this last
notion as undefined if a is smaller than some definable element of M.) The
set-theoretic difference of these, i.e.

gap(a) =M(a) \M[a],

is called the gap about a.
There is an obvious ordering on the family of all gaps of M, i.e.

gap(a) < gap(b) iff M(a) <M[b].

As usual when working with the above notions it is convenient to work with
some “fast growing Skolem functions” (cf. [14]). In this paper it will suffice
to work with the following sequence:

Fn(x) = min{y : ∀ϕ, u < x [∃v TrΣn(ϕ, 〈u, v, x〉)]
⇒ ∃v < y TrΣn(ϕ, 〈u, v, x〉)}.

The obvious properties of these functions are:

(i) The formula Fn(x) = y is Σn+1.
(ii) If t is a Σn Skolem term and M |= PA then for every nonstandard

a ∈M, M |= ∀x < a [t(x, a) < Fn(a)].

We shall use the symbol ≡n to denote Σn-elementary equivalence.
The proof of Theorem 5.1 will be given in a series of lemmas.

Lemma 5.2. If a, b ∈M andM |= Fn+1(a) < b then there are arbitrarily
large c ∈M such that (M, a, b) ≡n (M, a, c).
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P r o o f. Let d ∈ M be given. It suffices to show that the following type
is consistent:

{ϕ(a, v)⇔ ϕ(a, b) : ϕ} ∪ {v > d}.
But if this type were inconsistent then for some φ ∈ Σn we would have

M |= φ(a, b) ∧ ∀v [φ(a, v)⇒ v ≤ d].

Hence,M |= t(a) = max{v : φ(a, v)} ≤ d, a contradiction since t is ∆n+1.

Lemma 5.3. Let a0, . . . , an ∈ M be such that for all i with 0 < i ≤ n,
M |= F2i(ai) < ai−1. Then there are b0, . . . , bn ∈ M such that bn = an,
gap(bn) < gap(bn−1) < . . . < gap(b0) and (M, b0, . . . , bn) ≡1 (M, a0, . . .
. . . , an).

Let us note that a slightly strange formulation of Lemma 5.3 is just
for technical convenience; the inductive step will be described in a more
readable way.

P r o o f. If n = 0 then the conclusion is obvious. Assume that the lemma
holds for n = k, and let the sequence a0, . . . , ak, ak+1 satisfy the assumption.
In particular, M |= F2k+2(ak+1) < ak, hence, by Lemma 5.2, there are
b′0, . . . , b

′
k such that

M(ak+1) < b′k and (M, a0, . . . , ak, ak+1) ≡2k+1 (M, b′0, . . . b
′
k, ak+1).

Since the formula F2i(x) < y is Σ2i+1, it is easy to verify that the in-
ductive assumptions, for the case n = k, are satisfied by the sequence
b′0, . . . , b

′
k−1, 〈b′n, ak+1〉. This gives b0, . . . , bk, bk+1 as required. (Notice that

bk = b′k and bk+1 = ak+1.)

It will be convenient to denote by (a)n the nth term of the sequence
coded by a.

Lemma 5.4. Let a ∈ M be such that for all n > 0, M |= F2n((a)n) <
(a)n−1. Then the theory

T (I) = Th(M)∪{a ∈ I ⊆end M}∪{I |= PA+Fn((a)k+1) < (a)k : k, n ∈ N}
is consistent.

P r o o f. Let Θ be a finite fragment of T (I) and let k be the greatest
integer for which (a)k occurs in Θ. Then by Lemma 5.3, there are b0, . . . , bk
such that (M, (a)0, . . . , (a)k) ≡1 (M, b0, . . . , bk) and gap(bk) < gap(bk−1) <
. . . < gap(b0).

Let J = M(b0). By Friedman’s embeddability criterion (cf. Kaye [6]),
there exists I ⊆end M with (a)0 ∈ I and (J, b0, . . . , bk) ' (I, (a)0, . . . , (a)k).
Then (M, I, (a)0, . . . , (a)k) |= Θ.
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Corollary 5.5. Let a be as in Lemma 5.4 and let K = inf{(a)n : n ∈
N}. Then there exists a recursively saturated N ⊆end M such that a ∈ N and

1. N ((a)n+1) < (a)n for all n ∈ N,
2. K ≺end N and the same subsets of K are coded in M and in N .

P r o o f. By chronic resplendency of M (cf. Kaye [6]) and Lemma 5.4
there exists N ⊆ M such that (M,N , a) is a recursively saturated model
of T (I). Now, a ∈ N and N ⊆end M, hence K ⊆end N , and, since both
extensions are proper, this implies that the same subsets of K are coded inN
andM. Moreover, the property of a and Tarski’s test show that K ≺end N ,
and the result follows.

The following fact is known from [11].

Lemma 5.6. Let N be a countable recursively saturated model of PA
and let a ∈ N be such that gap((a)n+1) < gap((a)n) for all n ∈ N. Let
K = inf{(a)n : n ∈ N}. Then for all s, s′ ∈ K with (K, s) ≡ (K, s′) there
exists f ∈ Aut(N ) such that f(s) = s′ and f ∗ K = K.

P r o o f (sketch). Using a standard argument (cf. [11], Lemma 2.2) we
may assume that for every n ∈ N,

(N , s, (a)0, . . . , (a)n) ≡ (N , s′, (a)0, . . . , (a)n).

Then, using recursive saturation, we can find a′ ∈ N such thatK = inf{(a)n :
n ∈ N} and (N , s, a′) ≡ (N , s′, a′). Hence there exists f ∈ Aut(N ) such that
f(s, a) = (s′, a′). Clearly for every such f we have f ∗ K = K.

To finish the proof of Theorem 5.1 we need the so-called moving gaps
lemma (see [8], Lemma 3.1, or [11], Lemma 5.4).

Lemma 5.7. There exists a type Γ (v, w) such that for every countable
recursively saturated M |= PA and every v ∈ M, M realizes Γ (v, ·) and
whenever s, a ∈M are such that Γ (s, a) we have M(s) < a and for all s, s′

and a, a′, if Γ (s, a), Γ (s′, a′), and s 6= s′ then gap(a) 6= gap(a′).

P r o o f o f T h e o r e m 5.1. Let a ∈ M be such that for some s ∈ M,
M |= Γ (s, a). Using recursive saturation it is easy to show that there exists
a′ such that gap(a′) = gap(a) and a′ satisfies the assumption of Lemma 5.4
and M[a] = K = inf{(a′)n : n ∈ N}. Let N be the model given by Corol-
lary 5.5. Let s′ ∈ M[a] be such that s 6= s′ and (M, s) ≡ (M, s′). Then by
Lemma 5.6 there exists h ∈ Aut(N ) with h(s) = s′ and h ∗ K = K. The
models M,N code the same subsets of K and h, h−1 send subsets coded
inM onto coded ones, so the same happens to subsets coded in N . Finally,
let f = h¹M[a]. Then f cannot be extended to an element of Aut(M). In-
deed, if g ∈ Aut(M) is such that g ∗M[a] =M[a] then gap(g(a)) = gap(a),
so for each such g, g(s) = s′, and g cannot extend f .
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6. More on the theory of (M,M[a]). Smoryński [19] studied the va-
riety of complete theories and isomorphism types of pairs (M,K), whereM
is a countable recursively saturated model of PA and K ≺end M. Among
other results, he proved that for every nonstandard a, gap(a) is definable
(M,M(a)) and, as a consequence, he showed that there are countably many
pairwise elementarily inequivalent structures of this form.

Here we will apply the methods of the previous section to prove that
for all a, b ∈ M \ M[0] we have (M,M[a]) ≡ (M,M[b]). Then, using
Smoryński’s arguments, we can show that for a ∈ M \ M(0), gap(a) is
not definable in (M,M[a]). This contradicts the claim made about those
structures in Smoryński’s paper (Theorems 2.11 and 2.12 in [19]).

Theorem 6.1. Let M be a countable recursively saturated model of PA.
Then for all a, b ∈M\M(0), the structures (M,M[a]) and (M,M[b]) are
elementarily equivalent.

Let M be a countable recursively saturated model of PA.

Lemma 6.2. Let a0, . . . , an ∈M be such that for some k ∈ N with k > 0,
and for all i with 0 < i ≤ n, M |= F2i+k−1(ai) < ai−1. Then there exist
b0, . . . , bn such that bn = an, gap(bn) < gap(bn−1) < . . . < gap(b0) and
(M, b0, . . . , bn) ≡k (M, a0, . . . , an).

P r o o f. Analogous to the proof of Lemma 5.3.

Lemma 6.3. For all a, b ∈ M \M(0) and every k ∈ N there are a′, b′

such that gap(a) = gap(a′), gap(b) = gap(b′), M[a] = inf{(a′)n : n ∈ N},
M[b] = inf{(b′)n : n ∈ N}, and (M, a′) ≡k (M, b′).

P r o o f. Let k ∈ N be fixed. Using recursive saturation we can as-
sume that M[a] = inf{(a)n : n ∈ N}, M[b] = inf{(b)n : n ∈ N} and
F2n+k−1((a)n) < (a)n−1 for all n > 0, and similarly for the sequence (coded
by) b.

Let us consider the theory

Tk(I, x) = Th(M) ∪ {x ∈ I ≺Σk+1,end M}
∪ {I |= PA + Fi((x)n+1) < (x)n : i, n ∈ N}.

Then Tk(I, a) and Tk(I, b) are both consistent. This follows from Lemma 6.2
and the appropriate form of Friedman’s embeddability theorem (cf. Kaye [6],
Theorem 12.5). Chronic resplendency ofM yields two recursively saturated
models Na, Nb such thatM[a] ≺end Na ≺k,end M andM[b] ≺end Nb ≺k,end

M. Now, arguing as in the proof of Theorem 5.1, we can replace a, b by a′, b′

such that M[a] = infn∈N(a′)n, M[b] = infn∈N(b′)n and(Na, a′) ≡ (Nb, b′).
But Na ≺kM and Nb ≺kM, hence (M, a′) ≡k (M, b′).
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P r o o f o f T h e o r e m 6.1. Let a′ and b′ be as in Lemma 6.3. We have
(M, a′) ≡k (M, b′), hence in the Ehrenfeucht–Fraisse game for Σk-element-
ary equivalence of (M, s′) and (M, b′) the second player has a winning
strategy (cf. Hodges [5]). It is not difficult to see that the same strategy can
be used by the second player in the game for Σk-elementary equivalence of
(M,M[a]) and (M,M[b]), and, since k was arbitrary, the result follows.

Smoryński [19] shows that in (M,M(a)) one can define N, satisfac-
tion for M(a) and, consequently, gap(a). This in turn allows him to de-
termine whether certain types are realized in gap(a) just by looking at
Th((M,M(a))). The types {pn(v) : n ∈ N}, used by Smoryński, are such
that for n 6= m if a realizes pm and b realizes pn then gap(a) 6= gap(b). This
is the key fact in the proof that for such a and b, (M,M(a)) 6≡ (M,M(b)).
Since there are a and b such that (M,M(a)) 6≡ (M,M(b)), Theorem 6.1
implies that ifM is a countable and recursively saturated model of PA, then
gap(a) cannot be uniformly definable in (M,M[a]). We will show that in
fact gap(a) is not definable in (M,M[a]) for every a ∈ M \M(0). Let us
formulate this as a theorem.

Theorem 6.4. If M is a countable recursively saturated model of PA,
a ∈M\M(0) and I is an elementary initial segment of M which contains
M[a] and is definable in (M,M[a]), then I =M[a].

P r o o f. Suppose that I is an elementary initial segment of M and
that I contains M[a]. If M(0) < I then it is routine to verify that there is
f ∈ Aut(M) such that f ∗ M[a] = M[a] and f ∗ I 6= I. Thus, if I is de-
finable in (M,M[a]) then I =M(a) or I =M[a]. But since all structures
(M,M[a]) are elementarily equivalent, the above argument shows that if
M(a) is definable in (M,M[a]) for some a, then the same would be true
for every a, and this would contradict the remark preceding the statement
of the theorem.

Let us finish this section with the following problem. The proof of Theo-
rem 6.1 actually shows that ifM and N are countable recursively saturated
models of PA and Th(M) = Th(N ), then, for all a, b with a ∈ M \M(0)
and b ∈ N \ N (0), Th(M,M[a]) = Th(N ,N [b]). The question is what is
Th(M,M[a])?

7. Some open problems. Let us pose some problems connected with
the ideas of this paper.

1. The class of cofinal extensions with the automorphism extension prop-
erty described above seems to be very narrow. We do not know any wider
classes of such cofinal extensions. Perhaps the most important problem in
this direction is as follows. Let R be a countable recursively saturated model



262 R. Kossak and H. Kotlarski

of PA. Let q(·) be a minimal type realized in R. Let A be the set of real-
izations of q. Which order automorphisms of A extend to R? Equivalently,
which automorphisms of HullR(A) extend to R? The moving gaps lemma
(3.1 in [8] or 5.4 in [11]) shows that this happens quite rarely; moreover, if
the extension exists then it is unique.

2. As pointed out earlier (just after Definition 3.5), the covering property
is an analogue of the notion “N codes M in R”. We do not know how to
extend other combinatorial properties of cuts in models of PA, introduced
by J. Paris and his school in mid-seventies (see e.g. Kirby’s thesis [9]), to
the case of cofinal extensions.

3. Let M ≺cof K, with both M and K countable recursively saturated.
Does there exist g ∈ Aut(M) which sends a coded subset to a not coded
one? Are any extra assumptions on the extension needed?
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