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The Arkhangel’skii—Tall problem under Martin’s Axiom
by

Gary Gruenhage and Piotr Koszmider (Auburn, Ala.)

Abstract. We show that MA ,_centered (w1) implies that normal locally compact meta-
compact spaces are paracompact, and that MA(w;) implies normal locally compact met-
alindel6f spaces are paracompact. The latter result answers a question of S. Watson. The
first result implies that there is a model of set theory in which all normal locally compact
metacompact spaces are paracompact, yet there is a normal locally compact metalindelof
space which is not paracompact.

0. Introduction. In 1971, A. V. Arkhangel’skii [A] proved that every
perfectly normal, locally compact, metacompact space is paracompact. This
suggests the question, stated in print three years later by Arkhangel’skii
[AP] and Tall [T], whether “perfectly normal” can be reduced to “normal”:

PROBLEM. Is every normal locally compact metacompact space paracom-
pact?

The first positive consistency result on this problem is due to S. Watson
[W1] who showed that the answer is “yes” if one assumes Gddel’s axiom of
constructibility V' = L. The answer is also positive in a model obtained by
adding supercompact many Cohen or random reals, because there normal
locally compact spaces are collectionwise normal [B4], and it is well known
that metacompact collectionwise normal spaces are paracompact [E].

In [GK] we showed that the answer is not simply positive in ZFC by
constructing a consistent example of a normal locally compact metacompact
non-paracompact space. Earlier, Watson [W3] had constructed consistent
examples of normal locally compact metalindel6f spaces. In particular, his
examples followed from “MA,-contered (w1)+3 Suslin line” | which is known to
be relatively consistent with ZFC. In that paper and subsequently in [W3],
Watson asked if MA(w;) were enough to kill all examples of normal locally
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compact metalindelof non-paracompact spaces. In this paper we answer his
question affirmatively and also show that MA,-centered(w1) 1S enough to
kill all such metacompact examples. It follows that in any model of ZFC
satisfying “MA,-centered (w1) + 3 Suslin line”, every normal locally compact
metacompact space is paracompact, but there is a normal locally compact
metalindel6f space which is not paracompact.

In the course of proving the MA results, we obtain the ZFC result
that normal locally compact metalindel6f spaces which are w-collectionwise
Hausdorff are paracompact. This implies that, in any model, if there is a
normal locally compact metalindelof space which is non-paracompact, then
there is one of Lindelof degree wi, and that is also what enables us to get
by with MA for wi-many dense sets.

MAIN RESULT. (a) Normal locally compact metalindeldf spaces are para-
compact if they are wq-collectionwise Hausdorff.

(b) If there is a normal locally compact metalindeldf space which is not
paracompact, then there is one which is the union of wi-many compact sets.

(¢) MA(w1) implies normal locally compact metalindeldf spaces are para-
compact.

(d) MA,-centered(w1) (i-€., p > w1) implies that normal locally compact
metacompact spaces are paracompact.

1. Destroying examples with MA. We prove here the main result
given in the introduction. Earlier partial positive solutions to the Arkhan-
gel’skii-Tall problem exploited the fact that closed discrete subsets of the
space are normalized, i.e., any subset A of a closed discrete set D is contained
in some open set whose closure is disjoint from D \ A. The key new idea
of our result is a way to exploit normality with respect to a closed discrete
set D and closed sets disjoint from D. The proof uses several ideas from
Balogh’s proof [Bs] that normal, locally compact, metalindel6f spaces are
paracompact if they are collectionwise Hausdorff. (Note that part (a) of the
Main Result is a direct improvement of this.) His proof is by induction on
the Lindeldf degree. Recall that the Lindeldf degree L(X) of a space X is
the least cardinal x such that every open cover of X has a subcoveer of
cardinality <k.

The following is the key new combinatorial tool.

LEMMA 1. Let k be a cardinal, and assume MA(k). Let {B(a) : a < K} be
a collection of sets such that, whenever {Fy, : o < w1} is a disjoint collection
of finite subsets of k, then {Ugc . B(B) : @ < w1} is not centered. (Note that
this condition implies that the B(«)’s are point-countable, and is satisfied,
e.g., if {B(a) : @ < K} is a point-countable collection of compact sets.) Let
{Yo : a < K} be a collection of countable sets such that |Yo\Ugep B(B)| = w
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for every finite F' C k\{a}. Then k =
a€ A,

new An, where, for eachn € w and

(Ya\ U B(B)‘ —w.
BeAn\{a}
Proof. We first define a partial order P which will produce one subset
of k of the required kind.
Let P be all sequences p = (fP),cpr satisfying:

(i) FP e [r]<“.
(ii) f? is a one-to-one function from some nf, € w to Y.
(iii) ran(f2) N Usepr 1oy B(B) = 0.
Define ¢ < p ift F? C F? and f? C fd for each a € FP.
First let us suppose that P is CCC, and show that the desired kind of
set is produced. The sets

D,,={qeP:qLlp, or q<pandnl >n for each a € FP}

are easily seen to be dense in P for each p € P and n € w. Since |P| = &,
by MA(k) there is a filter G meeting them. Let A = J, . F?, and for each
a€ A let fo = Upec fP. Then for each o € A, ran(f,) is an infinite subset
of Yo missing Uge 4\ () B(B) as required.

We now prove that P is CCC. Suppose {p, : @ < wi} is an antichain.
Without loss of generality, the FP~’s form a A-system with root A, and for
some k € w, |FP=\ A| = k for every o < wy.

Since for each v € A there are only countably many possible range values
for any fP, we may also assume that fP~ = f2° for each v € A and a,3 € w;.

Let g, aq,...,a5—1 list FP~\ A in increasing order. We may assume
that there is a sequence ng, ni,...,ni_1 of natural numbers such that
dom(fre) = n; for each o < w; and 7 < k. For a < wy, i < k, and
J < ni, let y(a,i,j) = fP(j). Since {B(a) : @ < w1} is point-countable,
we may, by passing to an uncountable subset if necessary, assume that
y(8,1,5) & U;cp, Blaw) if B < a. So if 3 < «, since p, and pg are incom-
patible, it must be the case that (J;_, B(8;) contains y(a,i(c, 3),j(c, 3))
for some i(a, 3) < k and j(a,3) < nj(a,p). Let & be a uniform ultrafilter
on wi. For each # < wy, there are some i((3),j(3) € w such that the set
Eg ={a>p:i(a,B) =i(B), j(o, ) = j(B)} is in &. Finally, fix i,j € w
such that the set A(i,j) = {8 < w1 :i(B) =14, j(B) = j} is uncountable.

Let Lg = |, B(6:), and consider the collection £ = {Lg : § € A(4,5)}.
We will show that L is centered, which will be a contradiction and complete
the proof. So suppose H is a finite subset of A(i,j). Choose a € ﬂﬁeH Eg
with a > v for every v € H. Then y(a,1,j) € Lg for every § € H, and the
proof that P is CCC is finished.
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Now let P“ be the finite-support countable power of P; i.e., p € P iff
p = {po,p1,D2,--.), where p, € P for each n € w and p, = 0 for all but
finitely many n € w. We may of course assume x > w, so MA(w;) holds and
this implies P¥ is CCC (see, e.g., [K]). For each « € &, let D, = {p € P :
dn € w (o € FP~)}. Also, for each p € P and n,m € w, let

Dynm=4{q¢€ P :q, L py, orgq, <p, and nZ* > m for each o € FP'}.

Let G be a filter meeting these dense sets, and let A4,, = [J{F"" : p € G}.
Then the A,,’s are as required. m

In the metacompact case (i.e., to prove part (d) of the Main Result), we
can use a slightly different version of Lemma 1:

LEMMA 2. Assume MA,_centered(w1) (i.€., p > wi). Let {B(a) : a < wy}
be a collection of sets, and {Ys : & < w1} a collection of countable sets such
that

yeYo= {B:ye€ B(B)}e[a]™.
A, such that, for eachn € w and o € A,

‘Ya\ U B(ﬁ)’ —w.

BeA\{a}

The same partial order as in the proof of Lemma 1 is used for Lemma 2.
Essentially we just need to show that in this case the partial order is o-
centered. The next two lemmas will be useful for this. If F' and G are sets,
then F' A G denotes the symmetric difference (F'\ G) U (G \ F'), and if they
are sets of ordinals then F' < G denotes Voo € F V3 € G (a < ).

Then wi =J

n<w

LEMMA 3. There is a partial function v : [wi]|<¥ — w satisfying:

(a) dom(v) is cofinal in [w1]<Y, i.e., for each A € [w1]<Y¥, there is F €
dom(v) with A C F.
(b) If F,G € ¥~Y(n), then FNG < F A G.

Proof. We inductively define ¢ [[a]<% for @ < wy. Let [w]<“Ndom(¢)) =
w, and let 1 (n) = n. Now suppose a > w and 9 [[5]<“ has been defined for
all 8 < « satisfying the following conditions:

(i) For every A € [3]<% there exists F' € [§]<“ Ndom(y)) with A C F.
(i) F,Geyp tn)N[B<*=FNG<FAG.
(iii) There is { F,,(8) }new C dom(t)) which is cofinal in [5]<“, ¢ (F,(8)) #
Y(Fn(0)) if n # m, and Fo(B) C Fi(B) C Fa(B) C ...

If « = B+ 1, extend ¢[[B]<% by defining ¥ ({8} U F,,) = ¥(F),), where
the F},’s are as in (iii). It is easy to check that (i)—(iii) are now satisfied with

8= a.
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If o is a limit ordinal, then ¥ [[a]<“ has been defined by virtue of having
been defined for each § < a. Furthermore, it is clear that (i) and (ii) hold.

We need to show (iii) if & < wy. Let g, 1, ... be an enumeration of a.
Let By, 31, ... be an increasing sequence of ordinals with supremum «, and
for each n < w let {F, ,, : m < w} witness (iii) for 5 = [3,,. We inductively
define m(n) for n = 0,1,... such that {F), ,,(n) : n < w} satisfies (iii) with
B = a. Given F), ,,,(»), it suffices to choose m(n + 1) such that:

(a) Fogimm+1) 2 Fumm) U {ar}, where k is least such that oy €
Prt1 = Fom(n)-

(b) Y(Frg1mn+1)) 7 V(Fimy) for all i <n.

It is clear that (iii) for §,,+1 implies that this can be done. m

LEMMA 4. Suppose that e : [w1]?> — w is such that for every a € wy the

function e(-,a) : o — w is finite-to-one. (For 3 # a we write e({8,a}) =
e(B,a) = e(a,B3).) Then for every m,k € w there is a partition {AT* :
n <w} of [wi]™ such that:

(a) Un<w ATTJ{ = [wl]m
(b) For every n < w, if a,b € A™F then aNb < aAb and

Vaca—-bVpeb—a (e(B,a) > k).

Proof. Fix m,k € w. For every a € [w;|™ define FE;(a) as follows:
Ep(a) = a and

Eit1(a) ={f:3a € Ei(a) (B < aand e(f,a) < k)},

and put E(a) = |, Fi(a). Note that since max(FE;y;1) < max(E;), only
finitely many FE;(a)’s are non-empty. Hence E(a) is finite because e(-, a) is
finite-to-one.

Let ¢ be a partial function from [w;]<¥ to w satisfying the conditions of
Lemma 3. For each a € [wq]™, choose F(a) € dom(y) with E(a) C F(a).
Then there is a partition {A™* : n < w} of [w1]™ such that a,b € AT
implies:

(i) ¥(F(a)) = $(F(b)) and |F(a)| = |F(b)]
(ii) The unique order preserving function h : F'(a) — F'(b) has the prop-
erty that h”(a) = b.

Suppose a,b € A™*. We need to verify that 4(b) holds. Since ¥ (F(a)) =
Y(F(b)), we have F(a) N F(b) < F(a) A F(b). From this and (ii) it easily
follows that a —b C F(a) — F(b), b—a C F(b) — F(a), and anNb < a Ab.
Now suppose « € a —b and 8 € b — a, and say § < «. If (3, ) < k, then
B € E(a) C F(a), but this contradicts § € F(b) — F(a). m
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Proof of Lemma 2. Let {B(«) : @ < w1} be a collection of sets and
{Ya : @ < w;} a collection of countable sets such that

yeY, = {B:y€ B(B)} € [a]~.

Let P be the same poset as in the proof of Lemma 1 (but applied to the
above sets, of course). It suffices to prove P is o-centered, for then the finite
support countable power would be too.

Let Yo = {yan :n <w}. If f < aand BgNY, # 0, define e(3, ) to be
the minimal n such that y, ., € Bg. Since each y € Y, is in at most finitely
many Bg’s, it follows that e(:, ) is finite-to-one. Then e can be extended
so that e(-, ) has domain « and still is finite-to-one. This completes the
definition of e : [w1]? — w (i.e., e({B,a}) = e(3, ) if 3 < a).

Let {AZM€ : n < w} satisfy the conditions of Lemma 4. If p € P, put
p € Pk if:

(i) [FP| = m.

(ii) For each a € FP, ran(f?) C {ya,i 11 < k}.

(iii) FP € A™F.

To prove that P is centered, it suffices to show that whenever p,q €
Pmk o€ FP 3 € F9 and 8 # a, then ran(f2) N B(B) = 0. If both a and
B are in FP, or both in F'?, this follows from the definition of P. So we may
assume « € FP — F% and 8 € F1— FP. Now suppose ran(f?)NB(3) # (. By
the hypothesis of Lemma 2, we have 5 < a. Suppose y, ; € ran(f2) N B(3).
By condition (ii) in the definition of P™¥ j < k. By definition of e, (3, a)
< j. But by Lemma 4(b), e(3,a) > k. This contradiction completes the
proof. m

LEMMA 5. Let {B(a) : a € K} be a point-countable collection of sets,
and let {Y, : a € Kk} be a collection of countable sets. Then k = U’y<w1 A,
such that § # a € Ay implies B(f) NY, = 0.

Proof.
CrAM 1. Without loss of generality, f < a = Y3 N B(a) = 0.

Note that, by point-countability and an easy closing up argument, each
v € k is in a countable set M such that 3 € M and Yz N B(a) # 0 implies
a € M. Thus k can be written as the union of countable sets M, v < &,
having the above property. Let M, \ Uz, Mg = {z(y,n) : n € w}. Let
E, = {z(y,n) : v < k}. Note that 3 < a = Y;(3,,) N B(z(a,n)) = 0. Thus
each F, satisfies the condition of Claim 1. If the lemma holds for each FE,,,
it holds for x, and so Claim 1 follows.

For each o < K, let F(a) = {f # a : B(B)NY, # 0} = {f < a:
B(B) NY, # 0}. The following claim completes the proof of the lemma.
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CLAM 2. There exists 0 : k — wy such that () = 0(a) = 0 € F(a)
(and hence B(B) NY, = 0).

To see this, simply define 6 inductively by letting 6(a) = sup{0(3) + 1 :
BeF(a)} m

If Y and H are subsets of a space X, let us say Y converges to H, and
write Y — H, if every neighborhood of H contains all but finitely many
elements of Y.

LEMMA 6. Let U be a point-countable cover of a space X by open o-
compact sets with compact closures. Let O € U, and suppose that
H=0\UU\{O}) #0. Let Z C X such that Z N H # (). Then there is a
countable subset Y of Z such thatY — H.

Proof. For each U € U, let U = J,,c, U(n) = U, e, U(n)°, where
each U(n) is compact. For every y € X \ H, let {UY : n < w} enumerate
{U eU\ {O} : y € U}. Inductively choose points y,, n < w, such that

yn € ZNON\| J{UY (k) 11,4,k < n}.

It is easy to check that Y = {y, : n < w} has no limit point outside of H.
Since Y C O and O is compact, it follows that Y — H. m

LEMMA 7. Every open cover of a metalindeldf locally compact space has
a point-countable open refinement by o-compact open sets.

Proof. Note that a locally compact Hausdorff space has a base of
o-compact open sets (use complete regularity). So this is a corollary of [GM,;
Cor. 4.1], which states that every base for a locally Lindel6f, metalindel6f
space contains a point-countable subcover. m

LEMMA 8. The following are equivalent:

(a) There is a normal locally compact metalindeldf space that is not
k-CWH.

(b) There is a normal locally compact metalindelof space of Lindeldf
degree < k which is not paracompact.

Proof. (a)=(b). Suppose D is a closed discrete unseparated subset of
cardinality s in a normal locally compact metalindel6f space X. For each
d € D, let Uyg be an open o-compact subset of X containing d. By normality,
there is a closed neighborhood N of D contained in |J,c p Ugq. Then L(N) <
x and D cannot be separated in V.

(b)=-(a). Suppose X satisfies the hypotheses of (b). By Balogh’s theorem
[Ba], there is a closed discrete subset D of X which cannot be separated.
Since L(X) < k, X is the union of <k-many compact sets, so |D| < k.
Hence X is not k-CWH. n
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LEMMA 9. Let k be the least cardinal such that there is a normal locally
compact metalindeldf non-paracompact space X with L(X) = k. Then k is
regular.

Proof. Let k and X satisfy the hypotheses. Note that by the minimality
of k and Lemma 8, X is <k-CWH. Write X = |J{U, : @ < k}, where each
U, is a o-compact open set. For a < r, let V, = J{Us : B < a}.

First suppose some V, is not paracompact. Since X is <x-CWH, there
is a closed discrete D C V,, with |D| = k. Suppose |a|T < k. Then any
subset of D of cardinality |a|" has a discrete open expansion. But this is
impossible, since V, has a dense subset which is the union of |a|-many
compact sets. So k = a, and the lemma is proved in this case.

Now suppose each V, is paracompact. Then there is a o-discrete cover
W! of V, by relatively open sets with compact closures (e.g., take any
o-discrete open (in V) refinement of any cover of V, by open sets with
compact closures). Let W, = {W NV, : W € W/ }. Then W, is a o-discrete
(in X)) cover of V,, by open (in X) sets with compact closures. Let A be a
cofinal subset of x of cardinality cf(x). Let W = (J,c 4 Wa-

Then W is a cover of X by open sets with compact closures, and each
member of W meets at most cf (k)-many others. Thus by a standard chaining
argument, X is the union of disjoint clopen subspaces of Lindel6f degree
< cf(k). Since X is not paracompact, one of these subspaces cannot be
paracompact. Then by the minimality of &, cf(k) = K. =

Proof of Main Result. Part (b) follows from (a), Lemma 8, and
local compactness. We prove (a), (c), and (d) simultaneously by induction on
the Lindel6f degree. So suppose k is the least cardinality of a counterexample
X with L(X) = k. By Lemma 9, x is regular, and by Lemma 8, X is
<k-CWH. By Lemma 7, X has a point-countable cover U = {U, : a < K}
by o-compact open sets.

We first take care of part (a) when k = w;. In this case, X has no closed
discrete subsets of cardinality greater than wy, so X being w;-CWH implies
X is CWH, hence paracompact by Balogh’s theorem. Thus we may assume
from now on that x > w; when dealing with part (a).

Let V, = U'y<a U,.

Case 1. For some § < K, Vs is not paracompact.

If V5 is not paracompact, it is not xk-CWH but is < k-CWH (by choice
of k). Thus there is a closed discrete set D of Vs of cardinality ». Since Vj is
the union of less than k-many compact sets, we may assume D is a subset of
the boundary Vs of V5. By metalindelof, there is a point-countable cover W
of V5 by open o-compact sets with compact closures such that each member
of W contains at most one member of D, and each point of D is in only
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one member of W. (To see this, apply Lemma 7 to any such open cover
to get a point-countable cover W by o-compact open sets with compact
closures, and for each d € D, if more than one member of VW' contains d,
replace them with their union. Let WV be the result of modifying W’ in this
way.)

Now let O = WU {U, : v < 0}, let D = {z, : @ < K}, and let O, be
the unique member of O which contains z,. Let Hy, = O, \ J(O \ {O,}).
Note that =, € H, C 0Vs, and that H,, is a closed (in X) subset of O, so
it is compact. By Lemma 6, there is a countable subset Y, of Vs such that
Y, — H,.

Let B(a) be a compact neighborhood of H, with B(a) C O,. Then
{B(a) : @ < £} and {Y, : a < k} satisfy the hypotheses of both Lemma 1
and Lemma 5. If kK > wy, apply Lemma 5 and the fact that k is regu-
lar to obtain a subset A of k of cardinality x satisfying the conclusion of
Lemma 5 (i.e., 3 # «a € A implies Y, N B(B) = 0). If Kk = wy, we know we
are considering part (c) or (d). If (c¢), by MA(w;) and Lemma 1, there is a
subset A of k of cardinality x satisfying the conclusion of Lemma 1 (one of
the A,,’s given by Lemma 1 must have cardinality x; take A to be such an
A,,). Suppose we are in case (d). Since {H, : @ < w1} is a closed discrete
collection of closed sets in a metacompact space, it has a point-finite open
expansion, and so we may assume that {B(a) : @ € w;} is point-finite.
Each Y, meets at most countably many B(f3)’s. So it is not difficult to
see that wy = (J,, Wy, where a < 3 € W,, implies B(3) N Y, = 0 (see,
e.g., the proof of Claim 1 in the proof of Lemma 5). Choose n so that W,
is uncountable. By re-indexing via the unique order preserving map from
W, onto wi, the sets B(a) and Y, for a € W, satisfy the hypotheses of
Lemma 2. So again, but now by MA,_centered(w1), there is a set A as in
cases (a) and (b). (In any case, we only need an A which satisfies the con-
clusion of Lemmas 1 or 2, which is of course weaker than the conclusion of
Lemma 5.)

Let H = J,cq Ha and K = X\{J,c 4 B(a)°. We aim for a contradiction
by showing that H and K cannot be separated in X. To this end, suppose G
is an open set containing H, and let G, = GNB(«)°. By the property of the
set A, Yy \ U,@eA\{a} B(p) is infinite. Since Y,, — H,, we can choose a point
Yo € Ga N [Ya \Ugea\ (o) B(B)]. Since Vs is the union of less than x-many
compact sets and each y, € Vs, some compact subset of V5 contains k-many
Yo's. Thus there is a point y € Vs every neighborhood of which contains
K-many yo’s. But the y,’s are relatively discrete in X \ K = {J,c4 B(a)®,
soy € KNG. Thus H and K cannot be separated, a contradiction which
completes the proof of Case 1.

Case 2. Each V,, a < k, is paracompact.
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Let S = {a < Kk : V4 # Vo }. We first show that S is stationary. Suppose
C C kK is a club missing S. Given a € C, let o be the least element of
C' greater than a. We may assume 0 € C. Then {Vy \V, : « € C} is a
partition of X into clopen paracompact pieces, whence X is paracompact,
a contradiction.

Since V,, is a dense subset of V,, and is the union of <x-many compact
sets, any o-discrete cover of V, by open sets with compact closures has
cardinality less than x. Since V, is paracompact, it follows that L(V,) < k.
Thus there is v(a) < & such that V,, C Vy(a)- Let C C &k be a club such that
d € C and a < 0 implies v(a) < 0. Let S = SN C. Then S’ is stationary
and {0V, : o € S’} is a closed discrete collection in X (since each Ug meets

at most one member of the collection).

For each av € ', choose p(a) € s such that Uy, N OV # 0. Note that
p(a) # p(a’) for distinct o, ' € S'. Let O, denote U, (). By complete
regularity, we can find a compact Gs-set K, C O, with K, N oV, # 0.
Let U(«) be the modification of the open cover U obtained by removing K,
from each member of {U, : v > a, v # p(a)}. This modification is still a
cover of X by open o-compact sets. Let H), = O, \ JU(a) \ {On}) and
let H, = H!, N 0V,. Note that K, N0V, C H,; so O # H, C 0V, N O,
and H/, NV, = (. By Lemma 6, there is a countable subset Y, of V,, such
that Y, — H/; note that in fact Y, — H,. We finish the proof as in
Case 1. Let B(«) be a compact neighborhood of H, with B(«a) C O,. Then
{B(a) : a € 5"} and {Y,, : @ € §'} satisfy the hypotheses of both Lemma 1
and Lemma 5.

If kK > wy, apply Lemma 5 and the fact that x is regular to obtain a
stationary subset A of S’ satisfying the conlusion of Lemma 5 (i.e., 8 #
a € A implies Y, N B(B) = 0). If kK = w1, we know we are considering part
(c) or (d). If (c), by MA(w1), there is a stationary subset A of S’ satisfying
the conclusion of Lemma 1. If (d), follow the proof as in Case 1 but choose
n such that W,, N S’ is stationary, and then use Lemma 2 to conclude the
existence of a stationary A as in the other cases. (Again, in any case, we
only need a stationary A which satisfies the conclusion of Lemma 1 or 2.)

Let H = J,cq Ho and K = X \{J,c 4 B(a)®. We aim for a contradiction
by showing that H and K cannot be separated in X. To this end, suppose
G is an open set containing H, and let G, = G N B(«)°. By the property
of A, Yo \Upea\ (o) B(B) is infinite. Since Y, — Hq, we can choose a point
Yo € Ga N[Ya \ Ugea (a3 B(B)]- Now yo € Up(a) for some S(a) < o (since
Yo € Vi), so by the pressing-down lemma, the set E(3) = {y, : « € A and
B(a)) = [} is uncountable for some 3 < k. Since Up is o-compact, such an
E() must have a limit point y in Ug. But E(3) is relatively discrete in
X\ K, soy €GN K. That completes the proof. m
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