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The Arkhangel’skĭı–Tall problem under Martin’s Axiom

by

Gary G r u e n h a g e and Piotr K o s z m i d e r (Auburn, Ala.)

Abstract. We show that MAσ-centered(ω1) implies that normal locally compact meta-
compact spaces are paracompact, and that MA(ω1) implies normal locally compact met-
alindelöf spaces are paracompact. The latter result answers a question of S. Watson. The
first result implies that there is a model of set theory in which all normal locally compact
metacompact spaces are paracompact, yet there is a normal locally compact metalindelöf
space which is not paracompact.

0. Introduction. In 1971, A. V. Arkhangel’skĭı [A] proved that every
perfectly normal, locally compact, metacompact space is paracompact. This
suggests the question, stated in print three years later by Arkhangel’skĭı
[AP] and Tall [T], whether “perfectly normal” can be reduced to “normal”:

Problem. Is every normal locally compact metacompact space paracom-
pact?

The first positive consistency result on this problem is due to S. Watson
[W1] who showed that the answer is “yes” if one assumes Gödel’s axiom of
constructibility V = L. The answer is also positive in a model obtained by
adding supercompact many Cohen or random reals, because there normal
locally compact spaces are collectionwise normal [B1], and it is well known
that metacompact collectionwise normal spaces are paracompact [E].

In [GK] we showed that the answer is not simply positive in ZFC by
constructing a consistent example of a normal locally compact metacompact
non-paracompact space. Earlier, Watson [W2] had constructed consistent
examples of normal locally compact metalindelöf spaces. In particular, his
examples followed from “MAσ-centered(ω1)+∃ Suslin line”, which is known to
be relatively consistent with ZFC. In that paper and subsequently in [W3],
Watson asked if MA(ω1) were enough to kill all examples of normal locally
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compact metalindelöf non-paracompact spaces. In this paper we answer his
question affirmatively and also show that MAσ-centered(ω1) is enough to
kill all such metacompact examples. It follows that in any model of ZFC
satisfying “MAσ-centered(ω1) + ∃ Suslin line”, every normal locally compact
metacompact space is paracompact, but there is a normal locally compact
metalindelöf space which is not paracompact.

In the course of proving the MA results, we obtain the ZFC result
that normal locally compact metalindelöf spaces which are ω1-collectionwise
Hausdorff are paracompact. This implies that, in any model, if there is a
normal locally compact metalindelöf space which is non-paracompact, then
there is one of Lindelöf degree ω1, and that is also what enables us to get
by with MA for ω1-many dense sets.

Main Result. (a) Normal locally compact metalindelöf spaces are para-
compact if they are ω1-collectionwise Hausdorff.

(b) If there is a normal locally compact metalindelöf space which is not
paracompact , then there is one which is the union of ω1-many compact sets.

(c) MA(ω1) implies normal locally compact metalindelöf spaces are para-
compact.

(d) MAσ-centered(ω1) (i.e., p > ω1) implies that normal locally compact
metacompact spaces are paracompact.

1. Destroying examples with MA. We prove here the main result
given in the introduction. Earlier partial positive solutions to the Arkhan-
gel’skĭı–Tall problem exploited the fact that closed discrete subsets of the
space are normalized , i.e., any subset A of a closed discrete set D is contained
in some open set whose closure is disjoint from D \ A. The key new idea
of our result is a way to exploit normality with respect to a closed discrete
set D and closed sets disjoint from D. The proof uses several ideas from
Balogh’s proof [B2] that normal, locally compact, metalindelöf spaces are
paracompact if they are collectionwise Hausdorff. (Note that part (a) of the
Main Result is a direct improvement of this.) His proof is by induction on
the Lindelöf degree. Recall that the Lindelöf degree L(X) of a space X is
the least cardinal κ such that every open cover of X has a subcoveer of
cardinality ≤κ.

The following is the key new combinatorial tool.

Lemma 1. Let κ be a cardinal , and assume MA(κ). Let {B(α) : α < κ} be
a collection of sets such that , whenever {Fα : α < ω1} is a disjoint collection
of finite subsets of κ, then {⋃β∈Fα B(β) : α < ω1} is not centered. (Note that
this condition implies that the B(α)’s are point-countable, and is satisfied ,
e.g., if {B(α) : α < κ} is a point-countable collection of compact sets.) Let
{Yα : α < κ} be a collection of countable sets such that |Yα\

⋃
β∈F B(β)| = ω
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for every finite F ⊂ κ\{α}. Then κ =
⋃
n<ω An, where, for each n ∈ ω and

α ∈ An, ∣∣∣Yα
∖ ⋃

β∈An\{α}
B(β)

∣∣∣ = ω.

P r o o f. We first define a partial order P which will produce one subset
of κ of the required kind.

Let P be all sequences p = 〈fpα〉α∈Fp satisfying:

(i) F p ∈ [κ]<ω.
(ii) fpα is a one-to-one function from some npα ∈ ω to Yα.

(iii) ran(fpα) ∩⋃β∈Fp\{α}B(β) = ∅.
Define q ≤ p iff F p ⊂ F q and fpα ⊂ fqα for each α ∈ F p.

First let us suppose that P is CCC, and show that the desired kind of
set is produced. The sets

Dp,n = {q ∈ P : q ⊥ p, or q ≤ p and nqα ≥ n for each α ∈ F p}
are easily seen to be dense in P for each p ∈ P and n ∈ ω. Since |P | = κ,
by MA(κ) there is a filter G meeting them. Let A =

⋃
p∈G F

p, and for each
α ∈ A, let fα =

⋃
p∈G f

p
α. Then for each α ∈ A, ran(fα) is an infinite subset

of Yα missing
⋃
β∈A\{α}B(β) as required.

We now prove that P is CCC. Suppose {pα : α < ω1} is an antichain.
Without loss of generality, the F pα ’s form a ∆-system with root ∆, and for
some k ∈ ω, |F pα \∆| = k for every α < ω1.

Since for each γ ∈ ∆ there are only countably many possible range values
for any fpγ , we may also assume that fpαγ = f

pβ
γ for each γ ∈ ∆ and α,β ∈ ω1.

Let α0, α1, . . . , αk−1 list F pα \ ∆ in increasing order. We may assume
that there is a sequence n0, n1, . . . , nk−1 of natural numbers such that
dom(fpααi ) = ni for each α < ω1 and i < k. For α < ω1, i < k, and
j < ni, let y(α, i, j) = fpααi (j). Since {B(α) : α < ω1} is point-countable,
we may, by passing to an uncountable subset if necessary, assume that
y(β, i, j) 6∈ ⋃i<k B(αi) if β < α. So if β < α, since pα and pβ are incom-
patible, it must be the case that

⋃
i<k B(βi) contains y(α, i(α, β), j(α, β))

for some i(α, β) < k and j(α, β) < ni(α,β). Let E be a uniform ultrafilter
on ω1. For each β < ω1, there are some i(β), j(β) ∈ ω such that the set
Eβ = {α > β : i(α, β) = i(β), j(α, β) = j(β)} is in E . Finally, fix i, j ∈ ω
such that the set A(i, j) = {β < ω1 : i(β) = i, j(β) = j} is uncountable.

Let Lβ =
⋃
i<k B(βi), and consider the collection L = {Lβ : β ∈ A(i, j)}.

We will show that L is centered, which will be a contradiction and complete
the proof. So suppose H is a finite subset of A(i, j). Choose α ∈ ⋂β∈H Eβ
with α > γ for every γ ∈ H. Then y(α, i, j) ∈ Lβ for every β ∈ H, and the
proof that P is CCC is finished.
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Now let Pω be the finite-support countable power of P ; i.e., p ∈ Pω iff
p = 〈p0, p1, p2, . . .〉, where pn ∈ P for each n ∈ ω and pn = ∅ for all but
finitely many n ∈ ω. We may of course assume κ > ω, so MA(ω1) holds and
this implies Pω is CCC (see, e.g., [K]). For each α ∈ κ, let Dα = {p ∈ Pω :
∃n ∈ ω (α ∈ F pn)}. Also, for each p ∈ P and n,m ∈ ω, let

Dp,n,m = {q ∈ P : qn ⊥ pn, or qn ≤ pn and nqnα ≥ m for each α ∈ F pn}.
Let G be a filter meeting these dense sets, and let An =

⋃{F pn : p ∈ G}.
Then the An’s are as required.

In the metacompact case (i.e., to prove part (d) of the Main Result), we
can use a slightly different version of Lemma 1:

Lemma 2. Assume MAσ-centered(ω1) (i.e., p > ω1). Let {B(α) : α < ω1}
be a collection of sets, and {Yα : α < ω1} a collection of countable sets such
that

y ∈ Yα ⇒ {β : y ∈ B(β)} ∈ [α]<ω.

Then ω1 =
⋃
n<ω An such that , for each n ∈ ω and α ∈ An,

∣∣∣Yα
∖ ⋃

β∈An\{α}
B(β)

∣∣∣ = ω.

The same partial order as in the proof of Lemma 1 is used for Lemma 2.
Essentially we just need to show that in this case the partial order is σ-
centered. The next two lemmas will be useful for this. If F and G are sets,
then F MG denotes the symmetric difference (F \G)∪ (G \ F ), and if they
are sets of ordinals then F < G denotes ∀α ∈ F ∀β ∈ G (α < β).

Lemma 3. There is a partial function ψ : [ω1]<ω → ω satisfying :

(a) dom(ψ) is cofinal in [ω1]<ω, i.e., for each A ∈ [ω1]<ω, there is F ∈
dom(ψ) with A ⊂ F .

(b) If F,G ∈ ψ−1(n), then F ∩G < F MG.

P r o o f. We inductively define ψ¹[α]<ω for α ≤ ω1. Let [ω]<ω∩dom(ψ) =
ω, and let ψ(n) = n. Now suppose α > ω and ψ¹[β]<ω has been defined for
all β < α satisfying the following conditions:

(i) For every A ∈ [β]<ω there exists F ∈ [β]<ω ∩ dom(ψ) with A ⊂ F .
(ii) F,G ∈ ψ−1(n) ∩ [β]<ω ⇒ F ∩G < F MG.

(iii) There is {Fn(β)}n∈ω ⊂ dom(ψ) which is cofinal in [β]<ω, ψ(Fn(β)) 6=
ψ(Fm(β)) if n 6= m, and F0(β) ⊂ F1(β) ⊂ F2(β) ⊂ . . .

If α = β + 1, extend ψ¹[β]<ω by defining ψ({β} ∪ Fn) = ψ(Fn), where
the Fn’s are as in (iii). It is easy to check that (i)–(iii) are now satisfied with
β = α.
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If α is a limit ordinal, then ψ¹[α]<ω has been defined by virtue of having
been defined for each β < α. Furthermore, it is clear that (i) and (ii) hold.

We need to show (iii) if α < ω1. Let α0, α1, . . . be an enumeration of α.
Let β0, β1, . . . be an increasing sequence of ordinals with supremum α, and
for each n < ω let {Fn,m : m < ω} witness (iii) for β = βn. We inductively
define m(n) for n = 0, 1, . . . such that {Fn,m(n) : n < ω} satisfies (iii) with
β = α. Given Fn,m(n), it suffices to choose m(n+ 1) such that:

(a) Fn+1,m(n+1) ⊃ Fn,m(n) ∪ {αk}, where k is least such that αk ∈
βn+1 − Fn,m(n).

(b) ψ(Fn+1,m(n+1)) 6= ψ(Fi,m(i)) for all i ≤ n.

It is clear that (iii) for βn+1 implies that this can be done.

Lemma 4. Suppose that e : [ω1]2 → ω is such that for every α ∈ ω1 the
function e(·, α) : α → ω is finite-to-one. (For β 6= α we write e({β, α}) =
e(β, α) = e(α, β).) Then for every m, k ∈ ω there is a partition {Am,kn :
n < ω} of [ω1]m such that :

(a)
⋃
n<ω A

m,k
n = [ω1]m.

(b) For every n < ω, if a, b ∈ Am,kn , then a ∩ b < a M b and

∀α ∈ a− b ∀β ∈ b− a (e(β, α) > k).

P r o o f. Fix m, k ∈ ω. For every a ∈ [ω1]m define Ei(a) as follows:
E0(a) = a and

Ei+1(a) = {β : ∃α ∈ Ei(a) (β < α and e(β, α) ≤ k)},
and put E(a) =

⋃
i<ω Ei(a). Note that since max(Ei+1) < max(Ei), only

finitely many Ei(a)’s are non-empty. Hence E(a) is finite because e(·, α) is
finite-to-one.

Let ψ be a partial function from [ω1]<ω to ω satisfying the conditions of
Lemma 3. For each a ∈ [ω1]m, choose F (a) ∈ dom(ψ) with E(a) ⊆ F (a).
Then there is a partition {Am,kn : n < ω} of [ω1]m such that a, b ∈ Am,kn

implies:

(i) ψ(F (a)) = ψ(F (b)) and |F (a)| = |F (b)|.
(ii) The unique order preserving function h : F (a)→ F (b) has the prop-

erty that h”(a) = b.

Suppose a, b ∈ Am,kn . We need to verify that 4(b) holds. Since ψ(F (a)) =
ψ(F (b)), we have F (a) ∩ F (b) < F (a) M F (b). From this and (ii) it easily
follows that a − b ⊂ F (a) − F (b), b − a ⊂ F (b) − F (a), and a ∩ b < a M b.
Now suppose α ∈ a − b and β ∈ b − a, and say β < α. If e(β, α) ≤ k, then
β ∈ E(a) ⊂ F (a), but this contradicts β ∈ F (b)− F (a).



280 G. Gruenhage and P. Koszmider

P r o o f o f L e m m a 2. Let {B(α) : α < ω1} be a collection of sets and
{Yα : α < ω1} a collection of countable sets such that

y ∈ Yα ⇒ {β : y ∈ B(β)} ∈ [α]<ω.

Let P be the same poset as in the proof of Lemma 1 (but applied to the
above sets, of course). It suffices to prove P is σ-centered, for then the finite
support countable power would be too.

Let Yα = {yα,n : n < ω}. If β < α and Bβ ∩ Yα 6= ∅, define e(β, α) to be
the minimal n such that yα,n ∈ Bβ . Since each y ∈ Yα is in at most finitely
many Bβ ’s, it follows that e(·, α) is finite-to-one. Then e can be extended
so that e(·, α) has domain α and still is finite-to-one. This completes the
definition of e : [ω1]2 → ω (i.e., e({β, α}) = e(β, α) if β < α).

Let {Am,kn : n < ω} satisfy the conditions of Lemma 4. If p ∈ P , put
p ∈ Pm,kn if:

(i) |F p| = m.
(ii) For each α ∈ F p, ran(fpα) ⊂ {yα,i : i < k}.

(iii) F p ∈ Am,kn .

To prove that Pm,kn is centered, it suffices to show that whenever p, q ∈
Pm,kn , α ∈ F p, β ∈ F q, and β 6= α, then ran(fpα) ∩B(β) = ∅. If both α and
β are in F p, or both in F q, this follows from the definition of P . So we may
assume α ∈ F p−F q and β ∈ F q−F p. Now suppose ran(fpα)∩B(β) 6= ∅. By
the hypothesis of Lemma 2, we have β < α. Suppose yα,j ∈ ran(fpα)∩B(β).
By condition (ii) in the definition of Pm,kn , j < k. By definition of e, e(β, α)
≤ j. But by Lemma 4(b), e(β, α) > k. This contradiction completes the
proof.

Lemma 5. Let {B(α) : α ∈ κ} be a point-countable collection of sets,
and let {Yα : α ∈ κ} be a collection of countable sets. Then κ =

⋃
γ<ω1

Aγ
such that β 6= α ∈ Aγ implies B(β) ∩ Yα = ∅.

P r o o f.

Claim 1. Without loss of generality , β < α⇒ Yβ ∩B(α) = ∅.
Note that, by point-countability and an easy closing up argument, each

γ ∈ κ is in a countable set M such that β ∈ M and Yβ ∩ B(α) 6= ∅ implies
α ∈ M . Thus κ can be written as the union of countable sets Mγ , γ < κ,
having the above property. Let Mγ \

⋃
β<γMβ = {x(γ, n) : n ∈ ω}. Let

En = {x(γ, n) : γ < κ}. Note that β < α ⇒ Yx(β,n) ∩ B(x(α, n)) = ∅. Thus
each En satisfies the condition of Claim 1. If the lemma holds for each En,
it holds for κ, and so Claim 1 follows.

For each α < κ, let F (α) = {β 6= α : B(β) ∩ Yα 6= ∅} = {β < α :
B(β) ∩ Yα 6= ∅}. The following claim completes the proof of the lemma.
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Claim 2. There exists θ : κ → ω1 such that θ(β) = θ(α) ⇒ β 6∈ F (α)
(and hence B(β) ∩ Yα = ∅).

To see this, simply define θ inductively by letting θ(α) = sup{θ(β) + 1 :
β ∈ F (α)}.

If Y and H are subsets of a space X, let us say Y converges to H, and
write Y → H, if every neighborhood of H contains all but finitely many
elements of Y .

Lemma 6. Let U be a point-countable cover of a space X by open σ-
compact sets with compact closures. Let O ∈ U , and suppose that
H = O \⋃(U \ {O}) 6= ∅. Let Z ⊂ X such that Z ∩H 6= ∅. Then there is a
countable subset Y of Z such that Y → H.

P r o o f. For each U ∈ U , let U =
⋃
n∈ω U(n) =

⋃
n∈ω U(n)◦, where

each U(n) is compact. For every y ∈ X \ H, let {Uyn : n < ω} enumerate
{U ∈ U \ {O} : y ∈ U}. Inductively choose points yn, n < ω, such that

yn ∈ Z ∩O \
⋃
{Uyij (k) : i, j, k < n}.

It is easy to check that Y = {yn : n < ω} has no limit point outside of H.
Since Y ⊂ O and O is compact, it follows that Y → H.

Lemma 7. Every open cover of a metalindelöf locally compact space has
a point-countable open refinement by σ-compact open sets.

P r o o f. Note that a locally compact Hausdorff space has a base of
σ-compact open sets (use complete regularity). So this is a corollary of [GM;
Cor. 4.1], which states that every base for a locally Lindelöf, metalindelöf
space contains a point-countable subcover.

Lemma 8. The following are equivalent :

(a) There is a normal locally compact metalindelöf space that is not
κ-CWH.

(b) There is a normal locally compact metalindelöf space of Lindelöf
degree ≤ κ which is not paracompact.

P r o o f. (a)⇒(b). Suppose D is a closed discrete unseparated subset of
cardinality κ in a normal locally compact metalindelöf space X. For each
d ∈ D, let Ud be an open σ-compact subset of X containing d. By normality,
there is a closed neighborhood N of D contained in

⋃
d∈D Ud. Then L(N) ≤

κ and D cannot be separated in N .
(b)⇒(a). Suppose X satisfies the hypotheses of (b). By Balogh’s theorem

[B2], there is a closed discrete subset D of X which cannot be separated.
Since L(X) ≤ κ, X is the union of ≤κ-many compact sets, so |D| ≤ κ.
Hence X is not κ-CWH.
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Lemma 9. Let κ be the least cardinal such that there is a normal locally
compact metalindelöf non-paracompact space X with L(X) = κ. Then κ is
regular.

P r o o f. Let κ and X satisfy the hypotheses. Note that by the minimality
of κ and Lemma 8, X is <κ-CWH. Write X =

⋃{Uα : α < κ}, where each
Uα is a σ-compact open set. For α < κ, let Vα =

⋃{Uβ : β < α}.
First suppose some V α is not paracompact. Since X is <κ-CWH, there

is a closed discrete D ⊂ V α with |D| = κ. Suppose |α|+ < κ. Then any
subset of D of cardinality |α|+ has a discrete open expansion. But this is
impossible, since V α has a dense subset which is the union of |α|-many
compact sets. So κ = α+, and the lemma is proved in this case.

Now suppose each V α is paracompact. Then there is a σ-discrete cover
W ′α of V α by relatively open sets with compact closures (e.g., take any
σ-discrete open (in V α) refinement of any cover of V α by open sets with
compact closures). LetWα = {W ∩Vα : W ∈ W ′α}. ThenWα is a σ-discrete
(in X) cover of Vα by open (in X) sets with compact closures. Let A be a
cofinal subset of κ of cardinality cf(κ). Let W =

⋃
α∈AWα.

Then W is a cover of X by open sets with compact closures, and each
member ofW meets at most cf(κ)-many others. Thus by a standard chaining
argument, X is the union of disjoint clopen subspaces of Lindelöf degree
≤ cf(κ). Since X is not paracompact, one of these subspaces cannot be
paracompact. Then by the minimality of κ, cf(κ) = κ.

P r o o f o f M a i n R e s u l t. Part (b) follows from (a), Lemma 8, and
local compactness. We prove (a), (c), and (d) simultaneously by induction on
the Lindelöf degree. So suppose κ is the least cardinality of a counterexample
X with L(X) = κ. By Lemma 9, κ is regular, and by Lemma 8, X is
<κ-CWH. By Lemma 7, X has a point-countable cover U = {Uα : α < κ}
by σ-compact open sets.

We first take care of part (a) when κ = ω1. In this case, X has no closed
discrete subsets of cardinality greater than ω1, so X being ω1-CWH implies
X is CWH, hence paracompact by Balogh’s theorem. Thus we may assume
from now on that κ > ω1 when dealing with part (a).

Let Vα =
⋃
γ<α Uγ .

C a s e 1. For some δ < κ, V δ is not paracompact.

If V δ is not paracompact, it is not κ-CWH but is < κ-CWH (by choice
of κ). Thus there is a closed discrete set D of V δ of cardinality κ. Since Vδ is
the union of less than κ-many compact sets, we may assume D is a subset of
the boundary ∂Vδ of Vδ. By metalindelöf, there is a point-countable coverW
of V δ by open σ-compact sets with compact closures such that each member
of W contains at most one member of D, and each point of D is in only
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one member of W. (To see this, apply Lemma 7 to any such open cover
to get a point-countable cover W ′ by σ-compact open sets with compact
closures, and for each d ∈ D, if more than one member of W ′ contains d,
replace them with their union. Let W be the result of modifying W ′ in this
way.)

Now let O = W ∪ {Uγ : γ < δ}, let D = {xα : α < κ}, and let Oα be
the unique member of O which contains xα. Let Hα = Oα \

⋃
(O \ {Oα}).

Note that xα ∈ Hα ⊂ ∂Vδ, and that Hα is a closed (in X) subset of Oα, so
it is compact. By Lemma 6, there is a countable subset Yα of Vδ such that
Yα → Hα.

Let B(α) be a compact neighborhood of Hα with B(α) ⊂ Oα. Then
{B(α) : α < κ} and {Yα : α < κ} satisfy the hypotheses of both Lemma 1
and Lemma 5. If κ > ω1, apply Lemma 5 and the fact that κ is regu-
lar to obtain a subset A of κ of cardinality κ satisfying the conclusion of
Lemma 5 (i.e., β 6= α ∈ A implies Yα ∩ B(β) = ∅). If κ = ω1, we know we
are considering part (c) or (d). If (c), by MA(ω1) and Lemma 1, there is a
subset A of κ of cardinality κ satisfying the conclusion of Lemma 1 (one of
the An’s given by Lemma 1 must have cardinality κ; take A to be such an
An). Suppose we are in case (d). Since {Hα : α < ω1} is a closed discrete
collection of closed sets in a metacompact space, it has a point-finite open
expansion, and so we may assume that {B(α) : α ∈ ω1} is point-finite.
Each Yα meets at most countably many B(β)’s. So it is not difficult to
see that ω1 =

⋃
nWn, where α < β ∈ Wn implies B(β) ∩ Yα = ∅ (see,

e.g., the proof of Claim 1 in the proof of Lemma 5). Choose n so that Wn

is uncountable. By re-indexing via the unique order preserving map from
Wn onto ω1, the sets B(α) and Yα for α ∈ Wn satisfy the hypotheses of
Lemma 2. So again, but now by MAσ-centered(ω1), there is a set A as in
cases (a) and (b). (In any case, we only need an A which satisfies the con-
clusion of Lemmas 1 or 2, which is of course weaker than the conclusion of
Lemma 5.)

Let H =
⋃
α∈AHα and K = X\⋃α∈AB(α)◦. We aim for a contradiction

by showing that H and K cannot be separated in X. To this end, suppose G
is an open set containing H, and let Gα = G∩B(α)◦. By the property of the
set A, Yα \

⋃
β∈A\{α}B(β) is infinite. Since Yα → Hα, we can choose a point

yα ∈ Gα ∩ [Yα \
⋃
β∈A\{α}B(β)]. Since Vδ is the union of less than κ-many

compact sets and each yα ∈ Vδ, some compact subset of Vδ contains κ-many
yα’s. Thus there is a point y ∈ Vδ every neighborhood of which contains
κ-many yα’s. But the yα’s are relatively discrete in X \K =

⋃
α∈AB(α)◦,

so y ∈ K ∩ G. Thus H and K cannot be separated, a contradiction which
completes the proof of Case 1.

C a s e 2. Each V α, α < κ, is paracompact.
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Let S = {α < κ : V α 6= Vα}. We first show that S is stationary. Suppose
C ⊂ κ is a club missing S. Given α ∈ C, let α′ be the least element of
C greater than α. We may assume 0 ∈ C. Then {Vα′ \ Vα : α ∈ C} is a
partition of X into clopen paracompact pieces, whence X is paracompact,
a contradiction.

Since Vα is a dense subset of V α and is the union of <κ-many compact
sets, any σ-discrete cover of V α by open sets with compact closures has
cardinality less than κ. Since V α is paracompact, it follows that L(V α) < κ.
Thus there is γ(α) < κ such that V α ⊂ Vγ(α). Let C ⊂ κ be a club such that
δ ∈ C and α < δ implies γ(α) < δ. Let S′ = S ∩ C. Then S′ is stationary
and {∂Vα : α ∈ S′} is a closed discrete collection in X (since each Uβ meets
at most one member of the collection).

For each α ∈ S′, choose µ(α) ∈ κ such that Uµ(α) ∩ ∂Vα 6= ∅. Note that
µ(α) 6= µ(α′) for distinct α, α′ ∈ S′. Let Oα denote Uµ(α). By complete
regularity, we can find a compact Gδ-set Kα ⊂ Oα with Kα ∩ ∂Vα 6= ∅.
Let U(α) be the modification of the open cover U obtained by removing Kα

from each member of {Uγ : γ ≥ α, γ 6= µ(α)}. This modification is still a
cover of X by open σ-compact sets. Let H ′α = Oα \

⋃
(U(α) \ {Oα}) and

let Hα = H ′α ∩ ∂Vα. Note that Kα ∩ ∂Vα ⊂ Hα; so ∅ 6= Hα ⊂ ∂Vα ∩ Oα
and H ′α ∩ Vα = ∅. By Lemma 6, there is a countable subset Yα of Vα such
that Yα → H ′α; note that in fact Yα → Hα. We finish the proof as in
Case 1. Let B(α) be a compact neighborhood of Hα with B(α) ⊂ Oα. Then
{B(α) : α ∈ S′} and {Yα : α ∈ S′} satisfy the hypotheses of both Lemma 1
and Lemma 5.

If κ > ω1, apply Lemma 5 and the fact that κ is regular to obtain a
stationary subset A of S′ satisfying the conlusion of Lemma 5 (i.e., β 6=
α ∈ A implies Yα ∩ B(β) = ∅). If κ = ω1, we know we are considering part
(c) or (d). If (c), by MA(ω1), there is a stationary subset A of S′ satisfying
the conclusion of Lemma 1. If (d), follow the proof as in Case 1 but choose
n such that Wn ∩ S′ is stationary, and then use Lemma 2 to conclude the
existence of a stationary A as in the other cases. (Again, in any case, we
only need a stationary A which satisfies the conclusion of Lemma 1 or 2.)

Let H =
⋃
α∈AHα and K = X\⋃α∈AB(α)◦. We aim for a contradiction

by showing that H and K cannot be separated in X. To this end, suppose
G is an open set containing H, and let Gα = G ∩ B(α)◦. By the property
of A, Yα \

⋃
β∈A\{α}B(β) is infinite. Since Yα → Hα, we can choose a point

yα ∈ Gα ∩ [Yα \
⋃
β∈A\{α}B(β)]. Now yα ∈ Uβ(α) for some β(α) < α (since

yα ∈ Vα), so by the pressing-down lemma, the set E(β) = {yα : α ∈ A and
β(α) = β} is uncountable for some β < κ. Since Uβ is σ-compact, such an
E(β) must have a limit point y in Uβ . But E(β) is relatively discrete in
X \K, so y ∈ G ∩K. That completes the proof.
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