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Hyperspaces of two-dimensional continua
by

Michael Levin and Yaki Sternfeld (Haifa)

Abstract. Let X be a compact metric space and let C(X) denote the space of subcon-
tinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum
X contains, for every n > 1, a one-dimensional subcontinuum Tj, with dimC(Ty) > n.
This implies that X contains a compact one-dimensional subset T with dim C(T") = cc.

1. Introduction. Let X be a compact metrizable space. 2% denotes the
space of closed subsets of X endowed with the Hausdorff metric, and C(X)
is the subset of 2% which consists of the subcontinua of X. Both 2% and
C(X) are compact.

In [5] the authors proved that if dim X = 2 then dimC(X) = oo. In
this note we improve this result by showing that actually the 1-dimensional
subcontinua of X are responsible for the infinite dimensionality of C(X),
more precisely: for every positive integer n, X contains a one-dimensional
subcontinuum 7, with dimC(7},,) > n, and as a result, X contains a one-
dimensional compact subset T' with dim C(7T") = co. The following problem
is still left open:

QUESTION 1.1. Let X be a 2-dimensional continuum. Does X contain a
1-dimensional subcontinuum T with dimC(T) = oo?

In two extreme cases the answer is affirmative. It is proved in [6] that if
T is a 1-dimensional hereditarily indecomposable continuum then dim C(7")
is either 2 or co. Thus, if X is a 2-dimensional hereditarily indecomposable
continuum then the 1-dimensional continuum 75 C X that we construct with
dim C(T3) > 3, actually satisfies dim C(73) = oo (see [3] for more information
on hyperspaces of finite-dimensional hereditarily indecomposable continua).
Note that this implies that every 3-dimensional continuum X contains a
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1-dimensional subcontinuum 7" with dim C(7") = oo since by [1], X contains
a 2-dimensional hereditarily indecomposable continuum.

The hereditarily indecomposable continua are characterized by the prop-
erty that their subcontinua do not intersect in a non-trivial manner (i.e.
AN B # () implies A C B or B C A). If on the other hand a 2-dimensional
continuum X is rich with mutually intersecting 1-dimensional subcontinua
(e.g. if X is a Peano continuum or if X is the product of two 1-dimensional
continua) then again Question 1.1 has a positive answer for X.

We shall need the following result from [5] and include a short proof
for it.

THEOREM 1.2. Let X be an n-dimensional compact metric space, n < oo.
There exists an n-dimensional hereditarily indecomposable continuum Y and
a light map f of Y into X.

Proof. We have dimX x I = n+ 1, I = [0,1]. By [1] there exists
an n-dimensional hereditarily indecomposable continuum Y C X x I. Let
P : X x I — X be the projection, and set f = P|y. Then f is light since
a component of a fiber of f is a subcontinuum of both Y and I and hence
must be a singleton. =

Recall that a map W : C(X) — RT is called a Whitney map if
W({z}) =0forall x € X and if A C B,A # B in C(X) implies W(A) <
W (B). Whitney maps always exist (see [6]).

Let ¢ : X — @Q be a map of compacta. Set Qo = {2 : z € Q, dim¢y~1(2)
<0}and Q1 = Q\ Qo = {#z € Q : dimy~1(2) > 1}. We shall need the
following result.

THEOREM 1.3. Let X be an n-dimensional compact space, n > 2. There
exist a 1-dimensional compactum Q) and a map ¢ : X — Q such that
dimy~1Qq) =n — 1.

Proof. Let Q be a dendrite with a dense set of nonseparating points. It
is proved in Theorem 2.2 of [7] that for every compact space X and every
0-dimensional o-compact subset F' of X, almost all maps ¢ € C(X, Q) (i.e.
all except a set of first category in the function space) satisfy F' C {x € X :
(Y (x)) = {2}}, and thus ¢H(Q1) € X\ F.

If dim X = n there exists a o-compact 0-dimensional subset F' of X such
that dim(X \ F) < n — 1 ([7], Proposition 3.1). It follows that for almost
all Y € C(X,Q), dim¥~1(Q1) =n — 1 (note that dimt > n — 1 and hence
dim 1 (Q1) > 1 — 1).

Another, more elementary proof of Theorem 1.3 can be obtained by
applying the results of [2]. There Lelek constructs, for each n > 2, a map
f:I" — Q, where Q is a dendrite with dim f~1(Q;) = n—1. (Lelek does not
use the same terminology but it is easy to verify that f indeed satisfies this.)
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Now, if dim X = n, let ¢ : X — I™ be light; then for ¢ = fop: X — @ we
have dim¢y~1(Q;)=n—1. =

The general scheme of our note resembles that of [5] but it includes some
additional ingredients and is more complicated.

2. Proofs

THEOREM 2.1. Let X be a 2-dimensional continuum and let n be a
positive integer. Then X contains a 1-dimensional continuum T, with

dimC(T},) > n.

COROLLARY 2.2. Let X be a 2-dimensional continuum. Then X contains
a 1-dimensional compact subset T such that dimC(T) = oo.

Proof. For each n > 1 let X,, be a 2-dimensional continuum with
diamX, < 1/nand X; D X5 D X3 D ... Let Ty = (), X, (To is a
singleton) and by Theorem 2.1 let T,, C X,, be a 1-dimensional continuum
with dimC(T,,) > n. Take T =J;~, T}, =

LEMMA 2.3. Let f:Y — X be a light map of compacta. For every e > 0
there exist positive reals a(e) and 0(g) such that for every subset B of X
with diam B < 6(¢g), f~1(B) is decomposable as f~1(B) = UZ:I W* with
diam W* < ¢ and dist(W*, W") > a(e) for s # r. (By dist(W?*,W") we
mean inf{d(z®,x") : x* € W*, 2" € W'}, where d is a metric).

Proof. Let € > 0. For x € X, dim f~!(x) = 0. Hence f~!(z) can be
covered by a finite family U, of open subsets of Y with meshif, < ¢ and
a(zx) = min{dist(4,B) : A,B € U,, A # B} > 0. Let V,. denote the union
of the elements of U,. V, is a neighborhood of f~!(z) in Y. Let W, be an
open neighborhood of x in X such that f~1(W,) C V,. By compactness X
is covered by some W, ,..., W, . Let d(¢) be the Lebesgue number of this
cover; i.e. each subset B of X with diamB < ¢ is contained in some W,,,
and the lemma holds with a(e) = min{a(z;): 1 <i<n}. =

LEMMA 2.4. Let K C C(Y) be a decomposition of Y which contains
no singletons and which is closed in C(Y). Let h : Y — K denote the
corresponding (open) quotient map. Let f be a light map of Y into some
continuum X, and let g 1 Y — C(X) be defined by g(y) = f(h(y)). Then for
every positive integer n and every positive real € there exists a positive real
a = a(e,n) such that for every closed subset Yo C Y with dimg(Yy) < n
there exist closed subsets Zy1,...,Z,, of Yo with diamZ; < e, 1 <i<m
such that U:nzl Z; intersects every element of K which is contained in Yy
and for 1 <i < j <m either g(Z;) N g(Z;) =0 or dist(Z;, Z;) > ¢.
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Proof. h and g are continuous since K is closed in C(Y). As K contains
no singletons it follows that inf{diam K : K € K} > 0; and since f is light
we see that inf{diam g(y) : y € Y} = inf{diam f(K) : K € K} = XA > 0.

As all n-dimensional spaces are embeddable in the same Euclidean space
there exists an integer N = N (n) such that for every n-dimensional compact
space H every open cover of H has an open refinement {V1,...,V,.} so that
each V; intersects at most N of the other V. Let ¢ > 0 and n be given. Let
91 = d1(¢) and a(e) be as in Lemma 2.3.

Let 0 < 6 = min{d;/2,A/(6N)} (note that 6 depends on n and ) and
let a1 (g,m) > 0 be small enough such that d(y1,y2) < ai(e,n) in Y implies
that d(f(y1), f(y2)) < d (in X). Finally, let a(e,n) = min{«a(e), a1(e,n)}.

Note that

(i) If By,..., Bx are N subsets of X with diamB; < 36 then {B;}},
do not cover g(y) for all y € Y. Moreover, for every y € Y there exists a
point x € g(y) such that dist(x, B;) > 30 for all 1 <4 < N. (Since g(y) is a
continuum of diameter > A and 6 < \/(6N).)

Let Yy C Y be closed with dim g(Yy) < n. Let {V,...,V,.} be a closed
cover of g(Yp) with mesh < ¢ (mesh with respect to the Hausdorff metric in
C(X)) such that each V; intersects at most N of the other V;. Then

(ii) For every 1 < i <r, for every A € V;, and every z € A, B(z,9) (=
closed d-ball in X with center at x) intersects every B € V; (since otherwise
the Hausdorff distance between A and B would be more than 0).

Now we construct inductively closed subsets W7y, ..., W, of Yj as follows:
pick some A; € V; and x; € Ay, andset Wy = f~1(B(z1,6)) Ng~ (V1) N Y.
Assume that Wi,...,W;_; were constructed as W; = f~1(B(z;,9))
ﬂgil(Vi)ﬂYb where z; € A; € V;, 1 < i < j— 1. Let Aj S Vj. At
most NV of V;, 1 <4 < j — 1, intersect V;. Assume these are V; ..., Vi, .
By (i) there exists a point z; € A; such that dist(x;, B(x;,,39)) > 30 for all
1 <[l < N. Hence

(iii) dist(B(x;,4), B(x;,,6)) > 6 for all 1 <1 < N

and we take W; = f~1(B(x;,8))Ng~1(V;) NYo. It follows from (ii) that W;,

1 < i <, intersects every element of K which is contained in Yy N g~t(V;)

and so Uzzl W; intersects every element of U which is contained in Yj.
From (iii) and the definition of a1 (e, n) we obtain

(iv) for 1 < i < j < r, if g(W;) = V; intersects g(W,;) = V; then
dist(B(x;,0), B(z;,6)) > 0 and hence dist(W;, W;) > ai(e,n) (in Y) since
W; C f~1(B(as,9)).

As § < 61/2 and W; C f~Y(B(w,6)) we may apply Lemma 2.3 to
decompose W; as W; = |2, W7 with diamW} < ¢ and dist(W;*, W;?) >

7
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ale). For 1 <i < j <r,if g(W?)Ng(W)) # 0 then by (iv), dist(W;, W) >
a1(e,n) > a(e,n) and we take Z1,..., Z,, to be an enumeration of {7},

1<i1<r, 1<s<t;. m

Proof of Theorem 2.1. Let X be a 2-dimensional continuum. Ap-
ply Theorems 1.2 and 1.3 to find a 2-dimensional hereditarily indecompos-
able continuum Y with a light map f:Y — X, and a 1-dimensional contin-
uum @ with a map ¢ : X — @ such that dimy~1(Q1) = 1. Let ¢po f = pop
denote the monotone light decomposition of the map ¥ o f : ¥ — @Q with
p:Y — V = p(Y) monotone.

/\
X/\

(The arrows not marked by letters in this dlagram represent maps which
exist, but are not referred to in the sequel.)
Let F7 and F5 be closed disjoint subsets of Y such that

(i) every closed separator between F; and F must have a component
of diameter > r = r(Fy, F) > 0.

Let W : C(Y) — Rt be a Whitney map, and let ¢ > 0 be small enough
such that

(i) mesh W=1(t) < r.

K = W~L(t) is a closed decomposition of Y which contains no singletons.
Let h: Y — W~L(t) denote the quotient map. Let n be a positive integer
and set ¢ = (1/3)dist(F, F») > 0. Let a(e,n) > 0 be the real obtained in
Lemma 2.4. (Note that g = f* o h, where f*: C(Y) — C(X) is defined by
f(A) = f(A), ie. g(y) = f(h(y)).)

Let 0 < ty < t be such that

(iii) mesh W1 () < min{a(e, n),e}.

Let ¢ : Y — W~1(ty) be the quotient map. Then ¢ is an open monotone
map with no trivial fibers. Let s = p A ¢ denote the product of the maps

p and gq, i.e. the fiber of s at y € Y is the intersection of the fibers of p
and ¢ at y (see [4]). Note that as Y is hereditarily indecomposable and
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p and ¢ are monotone, these fibers of p and ¢ at y actually contain one
another. Thus, each fiber of s is either a fiber of p or of ¢q. Let S denote
the range of s and let S denote the decomposition of Y induced by s. Set
Y, ={A: AeSNWL(ty)}, i.e. Y, is the union of those fibers of s which
are fibers of ¢ (and thus are contained in some fiber of p).

Y, is closed in Y. To prove this we show that S N W ™!(ty) is closed in
C(Y). (Note that S may fail to be closed.) Let {Ax}32, € SN W 1(ty)
converge to some A € C(Y). Then A € W~1(tq) since W ~1(t) is closed in
C(Y). Each Ay, is contained in some fiber By, of p, and we may assume that
{By} converges in C(Y') to some continuum B. Clearly A C B and as p is
continuous, B is contained in some fiber of p. Hence A is a fiber of ¢ and is
contained in a fiber of p so A € S and SN W~1(ty) is closed.

We claim that

(iv) dims(Y \ Yy) < 1.

Indeed, Y'\Yj is a union of fibers of s which are also fibers of p (but are not
fibers of q). Hence the decomposition of Y\ Y, induced by the map s|y\y,
is identical to the decomposition induced by p\y\yq. Thus s(Y \ Y,) and
p(Y'\'Y;) are homeomorphic. It follows that dim s(Y'\Y,) = dimp(Y '\ Y;) <
dimV and dim V' < 1 since ¢ : V — @ is light and dim @ = 1.

We also have dim f(Y;) = 1. Indeed, let A € SNW~1(ty). Then A is a
fiber of ¢ which is contained in a fiber B of p. Moreover, A is not a singleton
and as f is light both f(A) and f(B) are nontrivial continua in X. Recall
that ¢ o f = ¢ o p. Hence ¢(f(B)) = ¢(p(B)) and as B is a fiber of p,
»(p(B)) is a singleton and v is constant on f(B). It follows that f(B) is
contained in ¢ ~1(Q;) (which is the union of all fibers of 1) with dimension
> 0) and also that f(Y;) C ¢~ 1(Q1) and as dim¢~1(Q1) < 1, we have
dim f(Yy) < 1.

Set Yo =U{F : E € W~(t), E C Y,}. Thus Y, consists of those fibers of
h which are contained in Y,. Note that the decomposition W ~1(ty) strictly
refines W1(t), so if E € W~1(¢) then E is a union of fibers of ¢.

(v) Yp is closed in Y
since D = {E: E € W™ (t),E C Y,} is closed in C(Y). The latter holds
since if By, € D and Ey — E in C(Y) then E € W™1(t) and E C Y, as
W1(t) is closed in C(Y) and Yy is closed in Y.

And as f(Yp) C f(Y,) we also have

(vi) dim f(Yp) < 1.

(Note that as f is light, dimY, <1 too.)

We claim that dim g(Yp) > n. Once we show this we are done. Indeed,
g(Yo) = {f(h(y)) : y € Yo}. For y € Yy, h(y) € WL(t) is contained in Yj
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and it follows that g(Yy) C C(f(Yp)). This implies that dimC(f(Yp)) > n.
Hence f(Yp) (which is compact by (v) and 1-dimensional by (vi)) must
contain a 1-dimensional component 7T}, with dimC(7},) > n.

Aiming at a contradiction assume dim g(Yy) < n. Then we may apply

Lemma 2.4. Let Z1,...,Z,, C Yy be from the conclusion of Lemma 2.4 for
K =W~L(t). Then

(vii) the sets s(Z;), 1 < i < m, are mutually disjoint.

Indeed, the map s is a factor of g. By this we mean that the fibers of s are
contained in those of g. Hence g(Z;) Ng(Z;) = 0 implies s(Z;) N s(Z;) = 0.
If for some i < j, g(Z;) N g(Z;) # 0 then by Lemma 2.4, dist(Z;, Z;) >
a(e,n). By (iii) each fiber of ¢ has diameter < a(e,n), which implies that
q(Z;) N q(Z;) =0 and as s is a factor of ¢ too, s(Z;) N s(Z;) = 0.

(Vlll) S(F1> N S(Fg) = @

This holds since ¢ and hence s are e-maps (by (iii)) and € = 3 dist(F}, Fb).
The same argument combined with the fact that diamZ; < ¢ also implies
that

(ix) for every 1 < i < m, s(Z;) intersects at most one of the sets s(F})
and s(Fy).

Set Hy = s(F1) U (U{s(Zi) : s(F1) Ns(Z;) # 0}) and Hy = s(Fs) U
(U{s(Z;) : s(F1)Ns(Z;) = 0}). By (ix), H1 N Hy = 0. By (iv), dim s(Y'\ Y,)
< 1 hence there exists a closed subset L of S = s(Y") which separates between
Hy and Hj in S such that dim L N s(Y \ Y,) = 0. Then L also separates
s(Fy) from s(F») and

(x) Lns(UiZ, Zi) = 0.
By (i), s7*(L) has a component M with diam M > r. Then M N (Y \Y,)

Indeed, by (ii) fibers of s have diameter < r. Hence s(M) is a nontrivial
continuum in L. If y € M N (Y \ Y,) then w = s(y) € LN s(Y \ Yy). Since
Y, is a union of fibers of s (those fibers which are also fibers of ¢) we have
s(Y\Y,) = s(Y)\ s(Yy) and hence w € L\ s(Y;) = LNs(Y \Y,). As
s(Yy) is closed and dim L \ s(Y;) =dim L Ns(Y \Y,) =0, {w} is a compo-
nent of L and hence s(M) C {w}, which contradicts the fact that s(M) is
nontrivial.

It follows that M C Y,. Let A € W~1(¢) be such that AN M # 0. As
diamA < r, we have A C M C s~ !(L) (by (ii)). So A C Yy and s(A) C L.
By Lemma 2.4, [J;", Z; intersects A and hence s({J;-, Z;) intersects L,
contradicting (x). This contradiction implies dim g(Yy) > n and concludes
the proof. m
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