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The Banach–Mazur game and σ-porosity

by

Miroslav Z e l e n ý (Praha)

Abstract. It is well known that the sets of the first category in a metric space can
be described using the so-called Banach–Mazur game. We will show that if we change the
rules of the Banach–Mazur game (by forcing the second player to choose large balls) then
we can describe sets which can be covered by countably many closed uniformly porous
sets. A characterization of σ-very porous sets and a sufficient condition for σ-porosity are
also given in the terminology of games.

Let (P, %) be a metric space. The open ball with center x ∈ P and
radius r > 0 is denoted by B(x, r). Such a ball, considered as a set, does not
uniquely determine its center and its radius, therefore a ball will be identified
with the pair (center, radius). From this point of view, two distinct balls need
not be geometrically different. Since inclusion will be used in the usual sense,
the inclusions B1 ⊂ B2, B2 ⊂ B1 do not imply B1 = B2 in general.

The center of an open ball B is denoted by c(B) and its radius by r(B).
The symbol 2 ? B denotes the ball with twice the radius of B and the same
center. The symbol N0 denotes the set of non-negative integers.

Let M ⊂ P , x ∈ P and R > 0. We define

γ(x,R,M) = sup{r > 0 : for some z ∈ P, B(z, r) ⊂ B(x,R) \M},
p(x,M) = lim sup

R→0+
γ(x,R,M)/R, vp(x,M) = lim inf

R→0+
γ(x,R,M)/R.

A set M ⊂ P is said to be porous if p(x,M) > 0 for every x ∈ M ,
uniformly porous if there exists c > 0 such that p(x,M) > c for every
x ∈ M , very porous if vp(x,M) > 0 for every x ∈ M . A countable union
of porous (very porous, respectively) sets is called σ-porous (σ-very porous,
respectively).

The notion of σ-porosity was introduced by E. P. Dolzhenko ([D]) to
describe a certain class of exceptional sets which appears in the study of
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boundary behavior of complex functions. There are many other results de-
scribing sets of exceptional points in terms of σ-porous sets (cf. [Z2]). The
main goal of this paper is to develop methods to prove that certain sets
are “small” in various senses, which are defined using porosity. A result
(Corollary of Theorem 2) was already used to obtain results concerning
differentiation of functions ([Z1]).

Now we define an infinite game G(M) of two players, where M ⊂ P ,
which is closely related to the well known Banach–Mazur game (cf. Remark
below). The first player chooses a ball B1, the second chooses a ball B2 ⊂ B1,
the first chooses a ball B3 ⊂ B2 and so on. The first player wins if

∞⋂
n=1

Bn ∩M 6= ∅,

otherwise the second player wins.
A strategy for the second player in the game G(M) is a sequence of open-

ball-valued mappings (fn)∞n=1 such that fn is defined on all (2n− 1)-tuples
of open balls and

fn(B1, . . . , B2n−1) ⊂ B2n−1 for every n ∈ N.
We say that a decreasing sequence (Bn)kn=1 of open balls, k ∈ N ∪ {∞},

is compatible with the strategy (fn)∞n=1 if

fn(B1, . . . , B2n−1) = B2n for every n ∈ N with 2n ≤ k.
A strategy S for the second player is a winning strategy in the game G(M)
if for every sequence (Bn)∞n=1 compatible with S we have

∞⋂
n=1

Bn ∩M = ∅.

The notions of a strategy for the first player and a winning strategy for the
first player can be defined in the obvious way.

R e m a r k. Our game G(M) and the Banach–Mazur game for M are
closely related, but they are not the same. The Banach–Mazur game is
played with open sets or equivalently with open balls (cf. [K], [O]). The
players of G(M) choose elements from P × (0,∞). These games are in fact
identical in those metric spaces where each open ball uniquely determines its
center and radius. They are also equivalent in general metric spaces because,
if some player has a winning strategy in the Banach–Mazur game for M ,
then the same player has a winning strategy in G(M) and vice versa. If the
winning strategy for the second player should fulfil some extra conditions
concerning centers and radii of balls then differences may appear. It will be
our case.
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Convention. The term family will be used for indexed sets and the
term collection for (non-indexed) sets.

Definition. We say that a family (Bα)α∈A of subsets of P is discrete
if there exists η > 0 such that dist(Bα, Bα′) > η for any distinct α, α′ ∈ A.
We then also say that (Bα)α∈A is discrete with constant η. We say that
(Bα)α∈A is σ-discrete if there exist sets An such that A =

⋃∞
n=1An and the

families (Bα)α∈An are all discrete.

Convention. The discreteness and σ-discreteness of a collection B of
open balls are always understood in the sense of the family indexed by pairs
of centers and radii of balls from B.

Notation. Let D be a set of sequences D = (Dn)∞n=1 of open balls. We
put

D|n = {(Di)ni=1 : D ∈ D} for n ∈ N, and D|∞ = D.

Lemma A. Let (Bα)α∈A be a non-empty family of open balls in P . Then
there exists Q ⊂ A such that (Bα)α∈Q is σ-discrete and for every α ∈ A
there exists α? ∈ Q with

1
2r(Bα?) ≤ r(Bα) ≤ 2r(Bα?) and dist(Bα, Bα?) ≤ r(Bα).

P r o o f. For every n ∈ Z we define

Ln = {α ∈ A : r(Bα) ∈ (2−n, 2−n+1]}.
We let Cn be the maximal subset (with respect to inclusion) of Ln such that
for any distinct elements α, β ∈ Cn we have

dist(Bα, Bβ) > 2−n.

Put Q =
⋃
n∈Z Cn. The family (Bα)α∈Q is clearly σ-discrete. Choose α ∈ A.

There exists n ∈ Z such that α ∈ Ln. Since Cn is maximal with respect to
inclusion, there exists α? ∈ Cn such that dist(Bα, Bα?) ≤ 2−n. Hence

dist(Bα, Bα?) ≤ r(Bα).

We also have

r(Bα) ≥ 2−n ≥ 1
2r(Bα?) and r(Bα) ≤ 2−n+1 ≤ 2r(Bα?).

This proves our lemma.

Lemma B. Let (Bα)α∈A be a σ-discrete family of open balls. For every
α ∈ A, let (Kβ)β∈Cα be a σ-discrete family of open balls contained in Bα.
Then the family (Kβ)β∈C , where C =

⋃
α∈A Cα, is σ-discrete.

P r o o f. We have A =
⋃∞
n=1An, where (Bα)α∈An is a discrete family

with a constant εn > 0. For every α ∈ A we also have Cα =
⋃∞
k=1 Ck,α,
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where (Kβ)β∈Ck,α is a discrete family with a constant ηk,α. For n, k, l ∈ N
we define

Hn,k,l =
⋃
{Ck,α : α ∈ An, ηk,α > 1/l}.

Clearly

C =
⋃
{Ck,α : k ∈ N, α ∈ A} =

⋃
{Hn,k,l : n, k, l ∈ N}.

For two distinct elements ξ, ζ ∈ Hn,k,l we obtain

dist(Kξ,Kζ) > min{εn, 1/l}
and we are done.

Lemma C. Let M ⊂ P . Let S = (fn)∞n=1 be a strategy for the second
player in the game G(M). Then there is a set D of infinite sequences D =
(Dn)∞n=1 of open balls such that

(P1) every D ∈ D is compatible with S,
(P2) for every k ∈ N the family (S2k)S∈D|2k of balls is σ-discrete,
(P3) if k ∈ N0, (Dn)∞n=1 ∈ D, and C2k+1, C2k+2 are open balls such that

(D1, . . . , D2k, C2k+1, C2k+2)

is compatible with S, then there exists (D?
i )∞i=1 ∈ D such that

D?
i = Di for 1 ≤ i ≤ 2k,

1
2r(D

?
2k+2) ≤ r(C2k+2) ≤ 2r(D?

2k+2) and dist(D?
2k+2, C2k+2) ≤ r(C2k+2).

P r o o f. We will define sets Dn, n ∈ N0, of sequences of open balls such
that for every j ∈ N we have:

(P1)j the set Dj contains sequences (Di)
2j
i=1 compatible with S,

(P2)j the family (S2j)S∈Dj is σ-discrete,
(P3)j if (Di)

2j−2
i=1 ∈ Dj−1, C2j−1, C2j are open balls such that

(D1, . . . , D2j−2, C2j−1, C2j)

is compatible with S, then there exists (D?
i )2j
i=1 ∈ Dj such that

D?
i = Di for 1 ≤ i ≤ 2j − 2,

1
2r(D

?
2j) ≤ r(C2j) ≤ 2r(D?

2j) and dist(D?
2j , C2j) ≤ r(C2j).

(P4)j for every (Di)
2j
i=1 ∈ Dj we have (Di)

2j−2
i=1 ∈ Dj−1.

Put D0 = {∅}. Define

U1 = {B ⊂ P : there exists an open ball B1 ⊂ P such that f1(B1) = B}.
Lemma A gives us a σ-discrete collection H1 ⊂ U1 such that for every
B ∈ U1 there exists B? ∈ H1 with

1
2r(B

?) ≤ r(B) ≤ 2r(B?) and dist(B,B?) ≤ r(B).
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For every B ∈ H1 let B1(B) be an open ball such that f1(B1(B)) = B.
Define

D1 = {(B1(B), B) : B ∈ H1}.
The set D1 clearly has the properties (P1)1, (P2)1, (P3)1 and (P4)1.

Now suppose that a set Dj satisfying (P1)j , (P2)j , (P3)j and (P4)j has
been defined. We construct Dj+1 as follows. Fix S = (B1, . . . , B2j) ∈ Dj .
Put

Uj+1(S) = {B : there exists an open ball B2j+1 ⊂ B2j

such that fj+1(B1, . . . , B2j , B2j+1) = B}.
There exists a σ-discrete collection Hj+1(S) ⊂ U j+1(S) such that for every
B ∈ U j+1(S) there exists B? ∈ Hj+1(S) with

1
2r(B

?) ≤ r(B) ≤ 2r(B?) and dist(B,B?) ≤ r(B).

For every B ∈ Hj+1(S) let BS2j+1(B) be an open ball such that

BS2j+1(B) ⊂ B2j and fj+1(B1, . . . , B2j , B
S
2j+1(B)) = B.

Define

Dj+1 = {(B1, . . . , B2j , B
(B1,...,B2j)
2j+1 (B), B) :

(B1, . . . , B2j) ∈ Dj , B ∈ Hj+1(B1, . . . , B2j)}.
The set Dj+1 clearly satisfies the conditions (P1)j+1, (P3)j+1 and

(P4)j+1. We check that (P2)j+1 is also satisfied. The family (S2j)S∈Dj and
the collections Hj+1(S), S ∈ Dj , are σ-discrete. By Lemma B, the family
(S2j+2)S∈Dj+1 is σ-discrete. Thus we have constructed Dj ’s. Now we define

D = {(Di)∞i=1 : for every j ∈ N we have (Di)
2j
i=1 ∈ Dj}.

Then D clearly has the properties (P1)–(P3).

Lemma D. Let (Aα)α∈I be a discrete family of subsets of P .

(i) If each Aα can be covered by countably many closed uniformly porous
sets, then

⋃
α∈I Aα has the same property.

(ii) If each Aα is σ-very porous, then so is
⋃
α∈I Aα.

P r o o f. (i) Let (Aα)α∈I be a discrete family with a constant ε > 0. There
clearly exist sets Bα,n, α ∈ I, n ∈ N, such that

(a) Aα ⊂
⋃∞
n=1Bα,n for every α ∈ I,

(b) for every α ∈ I and n ∈ N there exists cα,n > 0 such that p(x,Bα,n) >
cα,n whenever x ∈ Bα,n,

(c) Bα,n is closed for every α ∈ I, n ∈ N,
(d) dist(Bα,n, Bβ,m) ≥ ε for every α, β ∈ I, α 6= β, n,m ∈ N.

Put
Cn,k =

⋃
{Bα,k : cα,k > 1/n}.
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The discreteness of the family (Bα,k)α∈I implies that Cn,k is closed and
p(x,Cn,k) ≥ 1/n whenever x ∈ Cn,k. We have

⋃

α∈I
Aα ⊂

∞⋃

n,k=1

Cn,k

and we are done.
(ii) The proof of this assertion is straightforward.

Definition. Let D be a set of sequences D = (Di)∞i=1 of open balls.
Then for S ∈ D|k, k ∈ N ∪ {∞}, n ∈ N, n ≤ k, we define the sets

Hn(S,D) = Sn
∖ ⋃{Tn+2 : T ∈ D, Ti = Si, i ≤ n}

and

H0(D) = P
∖ ⋃{T2 : T ∈ D}.

Theorem 1. A set M ⊂ P can be covered by a countable union of closed
uniformly porous sets if and only if there exist a sequence (cn)∞n=1 of positive
numbers and a winning strategy S for the second player in the game G(M)
such that

(1) r(B2n) > cn%(c(B2n−1), c(B2n))

whenever (B1, . . . , B2n) is compatible with S.
P r o o f. First we suppose that there exist closed uniformly porous sets

(An)n∈N covering M . Let cn > 0 be such that p(x,An) > cn for every
x ∈ An. As An’s are closed we see that

(2) p(x,An) > cn for every x ∈ P.
A winning strategy for the second player is the following: In the nth step

he avoids the set An. More precisely: the second player’s answer to the nth
move B(x2n−1, r2n−1) of the first player is a ball B(x2n, r2n) such that

B(x2n, r2n) ⊂ B(x2n−1, r2n−1) \An, r2n > cn%(x2n, x2n−1).

This ball exists because (2) holds. This strategy is clearly winning.
Now suppose that there exist a sequence (cn)∞n=1 of positive numbers and

a winning strategy S = (fn)∞n=1 for the second player in the game G(M)
satisfying (1). Define

I(P ) = {x ∈ P : x is an isolated point of P}.
Observe that M∩I(P ) = ∅, otherwise the first player has a winning strategy
in G(M).
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There exists a set D of sequences of open balls satisfying (P1), (P2) and
(P3) of Lemma C for our strategy S. We have

M ⊂
(
H0(D) ∪

∞⋃
n=1

⋃
{H2n(D,D) : D ∈ D}

) ∖
I(P ).

Indeed, if x 6∈ H0(D) ∪ ⋃∞n=1

⋃{H2n(D,D) : D ∈ D}, then there exists a
sequence D ∈ D such that x ∈ Di for every i ∈ N. Thus x 6∈M .

Now we show that each set H2j(D,D) \ I(P ) (j ∈ N, D ∈ D) can be
covered by countably many closed uniformly porous sets. Let B(y, r) = D2j .
Put

Qn = (B(y, r(1− 2−n)) ∩H2j(D,D)) \ I(P ).

Then Qn is clearly closed (recall that I(P ) is open in P ). Let x ∈ Qn.
Fix R > 0 such that B(x,R) ⊂ D2j and there exists w ∈ P such that
%(x,w) = R. Put

B = fj+1(D1, . . . , D2j , B(x,R)).

We have r(B) > cj+1%(x, c(B)). The property (P3) of Lemma C implies
that there exists a sequence D? ∈ D such that

D?
i = Di for i ≤ 2j, dist(D?

2j+2, B) ≤ r(B)

and
1
2r(D

?
2j+2) ≤ r(B) ≤ 2r(D?

2j+2).

Put

T = %(x, c(B)) + r(B) + dist(B,D?
2j+2) + 2r(D?

2j+2).

We have

D?
2j+2 ⊂ B(x, T ) \H2j(D,D) ⊂ B(x, T ) \Qn,

r(B) ≤ 2R (since w 6∈ B), r(D?
2j+2) ≤ 2r(B) ≤ 4R,

dist(B,D?
2j+2) ≤ r(B) ≤ 2R and %(x, c(B)) ≤ R.

This gives T ≤ 13R. We obtain

γ(x, T,Qn)
T

≥ r(D?
2j+2)

r(B)/cj+1 + r(B) + r(B) + 4r(B)

≥ r(B)/2
(1/cj+1 + 6)r(B)

=
1/2

(1/cj+1 + 6)
= κ > 0.

Now x is not an isolated point of P . Therefore R and T can be arbitrarily
small. Thus we have proved that p(x,Qn) > 1

2κ for every x ∈ Qn. Each Qn
is closed, thus H2j(D,D) \ I(P ) can be covered by countably many closed
uniformly porous sets.
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Fix j ∈ N. The property (P2) implies that there exist sets Sm, m ∈ N,
such that

(i)
⋃∞
m=1 Sm = D|2j,

(ii) the family (S2j)S∈Sm is discrete for every m ∈ N.

Thus we have⋃
{H2j(D,D) : D ∈ D} \ I(P ) =

⋃
{H2j(S,D) : S ∈ D|2j} \ I(P )

=
∞⋃
m=1

⋃
{H2j(S,D) \ I(P ) : S ∈ Sm}.

The sets H2j(S,D) \ I(P ), S ∈ Sm, form a discrete family. Lemma D shows
that their union can be covered by countably many closed uniformly porous
sets.

The set H0(D) is clearly closed. If we replace Qn with H0(D) \ I(P ) and
D2j with P in the proof above we conclude that H0(D) \ I(P ) is a closed
uniformly porous set. This completes the proof.

Theorem 2. A set M ⊂ P is σ-very porous if and only if there exist
a sequence (cn)∞n=1 of positive numbers and a winning strategy S for the
second player in the game G(M) such that

(3) r(B2n) > cnr(B2n−1) whenever (B1, . . . , B2n) is compatible with S.
P r o o f. Consider a σ-very porous set M . We have M =

⋃∞
n=1Mn, where

Mn is very porous for every n ∈ N. For n,m, q ∈ N we define

Mn,m,q = {x ∈Mn : γ(x,R,Mn)/R > 1/m for every R ∈ (0, 1/q)}.
As Mn is very porous we have

Mn =
∞⋃

m,q=1

Mn,m,q.

We order the set N× N × N into a sequence ((nk,mk, qk))∞k=1. Now we are
able to define a winning strategy for the second player. We define

cn = min{1/(3mk) : k ≤ n}.
Clearly cn < 1/2 for every n ∈ N. Let B(x2n−1, r2n−1) be the nth move of
the first player. Let k ∈ N be the largest natural number such that

Mnj ,mj ,qj ∩B(x2n−1, r2n−1) = ∅ for j < k and k ≤ n.
If 1

2r2n−1 ≥ 1/qk, then we define x2n = x2n−1 and r2n = 1
2r2n−1.

Suppose that 1
2r2n−1 < 1/qk. If B

(
x2n−1,

1
2r2n−1

) ∩Mnk,mk,qk = ∅, then
we put x2n = x2n−1 and r2n = 1

2r2n−1. Otherwise there exist a point
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x ∈ B(x2n−1,
1
2r2n−1

) ∩Mnk,mk,qk and a ball B(z, p) such that

B(z, p) ⊂ B
(
x,

1
2
r2n−1

) ∖
Mnk,mk,qk and p >

1
mk
· 1

2
r2n−1.

Put x2n = z and r2n = min
{

1
2r2n−1, p

}
. We have

r2n >
1

2mk
r2n−1 ≥ ckr2n−1 ≥ cnr2n−1.

This strategy satisfies the condition (3). We claim that it is a winning strat-
egy. Suppose that a sequence (B(xn, rn))∞n=1 of open balls is compatible
with our strategy and

∞⋂
n=1

B(xn, rn) ∩M 6= ∅.

This implies that there exists a smallest k0 ∈ N such that B(xn, rn) ∩
Mnk0 ,mk0 ,qk0

6= ∅ for every n ∈ N. Since r2n ≤ 1
2r2n−1 there exists m ∈ N

such that 1
2r2m−1 < 1/qk0 , k0 ≤ m and Mnj ,mj ,qj ∩B(x2m−1, r2m−1) = ∅ for

every j < k0. Both possibilities: B
(
x2m−1,

1
2r2m−1

) ∩Mnk0 ,mk0 ,qk0
empty

or non-empty, imply B(x2m, r2m) ∩ Mnk0 ,mk0 ,qk0
= ∅. This contradiction

proves our claim.
Now suppose that there exist a sequence (cn)∞n=1 of positive numbers and

a winning strategy S = (fn)∞n=1 for the second player in the game G(M)
such that (3) holds.

Define

N(P ) = {x ∈ P : vp(x, {x}) ≤ 0}.
Suppose x ∈ N(P ) ∩M . Choose r1 > 0 such that

γ(x, r1, {x})/r1 < c1

and let B(x, r1) be the first move of the first player in the game G(M). Let

B(x2, r2) = f1(B(x, r1)).

We have r2 > c1r1 and therefore x ∈ B(x2, r2). Suppose that (B1, . . . , B2n)
is compatible with S and x ∈ B2n. Choose r2n+1 > 0 such that

γ(x, r2n+1, {x})/r2n+1 < cn+1

and B(x, r2n+1) ⊂ B2n. Let B(x, r2n+1) be the (n + 1)th move of the first
player. Let

B(x2n+2, r2n+2) = fn+1(B1, . . . , B2n, B(x2n+1, r2n+1)).

We have r2n+2 > cn+1r2n+1. This implies x ∈ B(x2n+2, r2n+2). Thus x ∈⋂∞
n=1Bn ∩M and (Bi)∞i=1 is compatible with S. This contradiction implies

N(P ) ∩M = ∅.
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There exists a set D of sequences of open balls having the properties
(P1)–(P3) of Lemma C for our strategy S. Similarly to the proof of Theo-
rem 1 we have

M ⊂
(
H0(D) ∪

∞⋃
n=1

⋃
{H2n(D,D) : D ∈ D}

) ∖
N(P ).

Since the discreteness argument from the proof of Theorem 1 and Lem-
ma D work as well, it is sufficient to prove that the sets H2j(D,D) \N(P )
(j ≥ 1, D ∈ D) and H0(D) \ N(P ) are very porous. Let x ∈ H2j(D,D) \
N(P ). We have vp(x, {x}) = η, η ∈ (0, 1]. There exists R0 > 0 such that

(4) γ(x,R, {x})/R > 1
2η for every R ∈ (0, R0).

Let R ∈ (0, R0) and B(x,R) ⊂ D2j . Define

B = fj+1
(
D1, . . . , D2j , B

(
x, 1

32ηR
))
.

We have r(B) > cj+1
1
32ηR and c(B) ∈ B(x, 1

32ηR
)
. The property (P3) gives

us a sequence D? ∈ D such that

D?
i = Di for 1 ≤ i ≤ 2j, 1

2r(D
?
2j+2) ≤ r(B) ≤ 2r(D?

2j+2)

and

dist(D?
2j+2, B) ≤ r(B).

We have r(B) < 1
8R, since otherwise

B
(
x, 1

16R
) ⊂ B(c(B), 1

8R
) ⊂ B ⊂ B(x, 1

32ηR
)

and therefore
γ
(
x, 1

16R, {x}
)

1
16R

≤
1
32ηR

1
16R

=
1
2
η,

contrary to (4). For every y ∈ D?
2j+2 we have

%(x, y) ≤ %(x, c(B)) + r(B) + dist(B,D?
2j+2) + 2r(D?

2j+2)

≤ 1
32R+ 1

8R+ 1
8R+ 4 · 1

8R < R.

We conclude that

D?
2j+2 ⊂ B(x,R) \H2j(D,D).

We obtain

γ(x,R,H2j(D,D) \N(P ))
R

≥ r(D?
2j+2)

R
≥

1
2r(B)
R

≥
1
2cj+1

1
32ηR

R
=

1
64
cj+1η > 0.

We proved that H2j(D,D) \ N(P ) is very porous. It is easy to check that
this method also works for H0(D) \N(P ).
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Definition. Let M ⊂ P . Then we say that M is globally very porous if
there exists c > 0 such that for each ball B(x, r) there exists a ball B(y, r′)
such that B(y, r′) ⊂ B(x, r), B(y, r′) ∩M = ∅ and r′ > cr. We say that M
is σ-globally very porous set if it is a countable union of globally very porous
sets.

Lemma E. Let A ⊂ P , where P is a normed linear space. Then A is
σ-very porous if and only if it is σ-globally very porous.

P r o o f. Each σ-globally very porous set is clearly σ-very porous.
If a set A is σ-very porous, then there exist very porous sets An, n ∈ N,

such that A =
⋃∞
n=1An. Put

An,k = {x ∈ An : vp(x,An) > 1/k}.
We have A =

⋃∞
n,k=1An,k and vp(x,An,k) > 1/k for every x ∈ An,k. There-

fore it is sufficient to prove that each set A satisfying vp(x,A) > c > 0 for
every x ∈ A is σ-globally very porous set.

Consider a continuous linear functional ϕ on P and a point x0 ∈ P such
that ‖ϕ‖ = 1, ‖x0‖ = 1 and ϕ(x0) = 1. Define

Cp,q = ϕ−1([p/q, (p+ 1)/q]), p ∈ Z, q ∈ N,
Bq = {x ∈ A : γ(x, r,A)/r > c for r ∈ (0, 1/q]}, q ∈ N.

Clearly
⋃∞
q=1Bq = A and

⋃∞
p=−∞Bq ∩ Cp,q = Bq.

We will show that Bq ∩ Cp,q (p ∈ Z, q ∈ N) is globally very porous.
Consider a ball B(x, r). Then we have the following possibilities:

1) Suppose r > 2/q. If ϕ(x) ≤ p/q, then we put y = x − (r/2)x0 and
r′ = r/4. If ϕ(x) > p/q, then we put y = x+(3r/4)x0 and r′ = r/8. In these
cases we have B(y, r′) ⊂ B(x, r) and B(y, r′) ∩ Cp,q = ∅.

2) Suppose r ≤ 2/q. If B(x, r/2)∩Bq ∩Cp,q = ∅, then we put y = x and
r′ = r/2. If there exists z ∈ B(x, r/2) ∩ Bq ∩ Cp,q, then there exists a ball
B(z0, cr/2) such that B(z0, cr/2) ⊂ B(z, r/2) and B(z0, cr/2)∩Bq = ∅. We
put y = z0 and r′ = cr/2.

We have r′ ≥ min{1/4, 1/8, 1/2, c/2}r. This fact proves our lemma.

Corollary. A subset M of a normed linear space P is σ-globally very
porous if and only if there exist a sequence (cn)∞n=1 of positive numbers and
a winning strategy S for the second player in the game G(M) such that

r(B2n) > cnr(B2n−1) whenever (B1, . . . , B2n) is compatible with S.
Now we derive from Theorem 1 a sufficient condition for σ-porosity using

the following modification of the game G(M). Let M ⊂ P . Two players play



208 M. Zelený

the game G̃(M) with the set M in the same way as in the game G(M) and
the first player wins if

(i) c(B2n−1) ∈M for every n ∈ N,
(ii) M ∩⋂∞n=1Bn 6= ∅,

else the second player wins.

Theorem 3. Let M ⊂ P , (cn)∞n=1 be a sequence of positive numbers and
S = (fn)∞n=1 be a winning strategy for the second player in the game G̃(M)
such that

r(B2n) > cn%(c(B2n−1), c(B2n))

whenever (B1, . . . , B2n) is compatible with S.
Then M is σ-porous.

P r o o f. This proof was suggested by the referee.
Put P ? = P \ (M \M). It is easy to see that P ? is dense in P and the set

M is closed in P ?. We will use the following notation. The symbol B?(z, p)
stands for the open ball in P ? with center z ∈ P ? and radius p > 0. We will
show that the second player has a winning strategy S? in the game G(M)
in the space P ? such that

r(B?2n) > cn%(c(B?2n−1), c(B?2n))

whenever (B?1 , . . . , B
?
2n) is compatible with S?.

We define inductively mappings f?n describing the strategy S?.
Let B?1 be an open ball in P ?. If c(B?1) 6∈ M , then there exists an open

ball B?2 such that c(B?2) = c(B?1) and B?2 ∩ M = ∅, since M is closed
in P ?. We define f?1 (B?1) = B?2 . If c(B?1) ∈ M , then we consider the ball
B1 = B(c(B?1), r(B?1)) in P . Define

B2 = f1(B1).

We have r(B2) > c1%(c(B1), c(B2)). The density of P ? in P implies that
there exists an open ball C such that

C ⊂ B2, r(C) ∈ P ? and r(C) > c1%(c(B?1), c(C)).

We put f?1 (B?1) = B?(c(C), r(C)). Suppose that the mappings f?1 , . . . , f
?
n are

defined. Let (B?1 , . . . , B
?
2n+1) be a sequence of open balls in P ? such that

B?k+1 ⊂ B?k for k ≤ 2n and B?2k = f?k (B?1 , . . . , B
?
2k−1) for k ≤ n.

We distinguish the two cases c(B?2n+1) 6∈ M and c(B?2n+1) ∈ M again and
define the mapping f?n+1 in a similar way to f?1 above. Let (B?n)∞n=1 be a
sequence of open balls compatible with our strategy S?. If there exists n0 ∈ N
such that c(B?2n0−1) 6∈ M , then the second player wins. If c(B?2n−1) ∈ M
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for every n ∈ N, then there exists a sequence (Bn)∞n=1 of open balls in P
compatible with S such that

B?(c(B2n−1), r(B2n−1)) = B?2n−1, B(c(B?2n), r(B?2n)) ⊂ B2n.

Therefore we have
∞⋂
n=1

B?n ⊂
∞⋂
n=1

Bn and
∞⋂
n=1

Bn ∩M = ∅.

Thus the second player wins also in this case. This and Theorem 1 imply
that the set M can be covered by countably many closed uniformly porous
subsets of P ?. These sets are clearly porous in P . Thus the theorem is
proved.

R e m a r k. The condition of Theorem 3 is not a necessary condition. To
show this, consider a closed σ-porous set M ⊂ R such that the set

(5) {x ∈M : p(x,M) = 0}
is dense in M . Such a set can be constructed in this way. If I = [a, b] ⊂ R is a
closed bounded interval, then we define the set {Ik}k∈Z\{0} of open intervals
as follows:

If k > 0, then Ik = (xk, xk−1), where

xn =
a+ b

2
+
b− a
n+ 2

, n ∈ N0.

If k < 0, then Ik = (y|k|−1, y|k|), where

yn =
a+ b

2
− b− a
n+ 2

, n ∈ N0.

The symbol Ik1,...,kn means Jkn , where J = Ik1,...,kn−1 .
Now we are able to define the set M : Put

I = [−1, 1], G =
∞⋃
n=1

⋃
{Ik1,...,kn : kn is even} and M = I \G.

It is not difficult to prove that M is σ-porous and that (5) is dense in M .
We shall show that the first player has a winning strategy in the game

G̃(M) for any sequence (cn)∞n=1. Fix some sequence (cn)∞n=1. Let B(0, r1) be
the first move of the first player such that

γ(0, R,M)/R < 1
2c1 whenever R ∈ (0, r1).

Such an r1 exists since 0 ∈ {x ∈ M : p(x,M) = 0}. The other moves of
the first player are chosen to fulfil B2n+1 ⊂ B2n, c(B2n+1) ∈ {x ∈ M :
p(x,M) = 0} and

γ(c(B2n+1), R,M)/R < 1
2cn+1 whenever R ∈ (0, r(B2n+1)).
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This gives Bn ∩ M 6= ∅ for every n ∈ N. Since M is compact we have⋂∞
n=1Bn ∩M 6= ∅.
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