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Forcing tightness in products of fans
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and Tim L a B e r g e (Schenectady, N.Y., and DeKalb, Ill.)

Abstract. We prove two theorems that characterize tightness in certain products
of fans in terms of families of integer-valued functions. We also define several notions of
forcing that allow us to manipulate the structure of the set of functions from some cardinal
θ to ω, and hence, the tightness of these products. These results give new constructions
of first countable <θ-cwH spaces that are not ≤θ-cwH.

1. Introduction. The θ-fan Fθ is the quotient space obtained by identi-
fying the non-isolated points of the product θ× (ω+ 1) to a single point ∞.
(Here θ has the discrete topology and ω + 1 has the order topology.) Thus,
a neighborhood of ∞ is a set of the form

Vg = {∞} ∪ {〈α,m〉 : m > g(α)}, g ∈ ωθ.
When λ ≤ θ, we use sets

Vg × Uf = {(∞,∞)} ∪ {(〈β,m〉, 〈α, n〉) : m > g(β) ∧ n > f(α)},
g ∈ ωθ, f ∈ ωλ,

as a base at (∞,∞) in the product Fθ × Fλ. (Technically, we should also
include points with ∞ in one coordinate, but a result from [LL] says that it
suffices to consider the subspace {(∞,∞)} ∪ (θ × ω)× (λ× ω).)

The tightness t(p,X) of a point p in a topological space X is the supre-
mum of the cardinalities of all A ⊆ X such that p ∈ A, but whenever B ⊆ A
and |B| < |A|, then p 6∈ B. The tightness of X is then t(X) = sup{t(p,X) :
p ∈ X}. The tightness of X is the least upper bound of the cardinalities of
the subsets of X needed to define the closure operator.
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Clearly, the tightness of Fθ is ω, and it is not hard to see that t(Fθ ×
Fλ) = t((∞,∞), Fθ ×Fλ) (details are in [LL]). This motivates the following
definition.

Definition 1.1. Let λ ≤ θ be infinite cardinals and suppose that A ⊆
(θ × ω)× (λ× ω).

(1) If λ < θ, we say that A is (θ, λ)-good if

(a) (∞,∞) ∈ A;
(b) ∀B ∈ A<θ ((∞,∞) 6∈ B); and
(c) ∀E ∈ [λ]<λ ((∞,∞) 6∈ A ∩ ((θ × ω)× (E × ω))).

(2) If λ = θ, we say that A is (θ, θ)-good if (a), (b), and the following are
true:

(c) ∀E ∈ [θ]<θ ((∞,∞) 6∈ A ∩ ((θ × ω)× (E × ω))) and
(d) ∀F ∈ [θ]<θ ((∞,∞) 6∈ A ∩ ((F × ω)× (θ × ω))).

The existence of a (θ, λ)-good set A implies that t(Fθ × Fλ) = θ; more-
over, if either θ′ < θ and λ′ ≤ λ or θ′ ≤ θ and λ′ < λ, then A cannot be
construed as a subset of Fθ′ × Fλ′ . In [LL], it is shown that λω < θ implies
that there are no (θ, λ)-good sets; in particular, GCH implies that there are
no (θ, λ)-good sets whenever θ > λ ≥ cf(λ) > ω.

In this paper, we first prove two theorems that characterize the existence
of certain good sets in terms of integer-valued functions (Section 2). We then
give several forcing constructions of (θ, λ)-good sets (Section 3). Starting
with a regular cardinal θ, the first construction gives a model with a (θ, ω)-
good set but no (θ, ω)-gaps (this model has been obtained independently by
Haim Judah [J]). We then modify this construction to give a (θ, ω)-good set
when θ is a singular cardinal of uncountable cofinality. The final construction
gives models with (θ, λ)-good sets when cf(θ) ≥ ω1 and either λ is regular
and λ ≤ θ or λω ≤ θ.

For the reader’s convenience, we have collected the topological conse-
quences of these results in Section 4 and provided a list of interesting open
questions in Section 5.

2. Characterizing good sets. In this section, we prove two theorems
that characterize the existence of certain good sets in terms of integer-valued
functions. These theorems will use the following relations ≤+ and ≤∗ on ωλ

that generalize the usual notion of ≤∗ on ωω.

Definition 2.1. Let λ be an infinite cardinal, and let f, g ∈ ωλ.

(a) We say f ≤∗ g if for all but finitely many α < λ, f(α) ≤ g(α).
(b) We say f ≤+ g if there is a k ∈ ω such that for all α < λ, either

f(α) ≤ g(α) or f(α) ≤ k.
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Notice that ≤+ is a reflexive, transitive relation on ωλ. We put f =+ g
if there is a k ∈ ω such that for all α ∈ λ, either f(α) = g(α) or both
g(α), f(α) ≤ k. This determines an equivalence relation on ωλ, and the order
on these equivalence classes induced by ≤+ is a partial order. If λ = ω and
we restrict ourselves to strictly increasing functions, then the two notions
≤∗ and ≤+ coincide. Also note that f ≤∗ g always implies f ≤+ g.

The following lemma gives a canonical way to construct a (θ, λ)-good set.
Whenever we refer to a family of functions from some set A into ω as being
bounded or unbounded, we mean with respect to the obvious ≤+ order on
ωA (unless we state explicitly ≤∗). When λ = ω, the two notions of being
bounded or unbounded coincide.

Lemma 2.2. Let λ ≤ θ be infinite cardinals. Assume there is F = {fβ :
β < θ} ⊆ ωλ so that :

(a) F is unbounded ;
(b) each G ∈ [F ]<θ is bounded ;
(c) for all E ∈ [λ]<λ, F¹E = {fβ¹E : β < θ} is bounded.

Then there is a (θ, λ)-good set.

P r o o f. Put A = {(〈β,m〉, 〈α, n〉) : m,n ≤ fβ(α)}. We show:

(I) (∞,∞) ∈ A;
(II) (∞,∞) 6∈ B for all B ∈ [A]<θ;

(III) (∞,∞) 6∈ C whenever C = A∩ ((θ× ω)× (E × ω)) and E ∈ [λ]<λ.

(I) Choose g ∈ ωθ and f ∈ ωλ. We have to show that A intersects Vg×Uf .
By (a), we can choose β < θ so that fβ 6≤+ f . That is, for every k ∈ ω,
there is an αk < λ such that fβ(αk) > f(αk) and fβ(αk) > k. Choose k so
that k ≥ g(β). Then (〈β, fβ(αk)〉, 〈α, fβ(αk)〉) ∈ A ∩ (Vg × Uf ).

(II) Let B ∈ [A]<θ; let G = {β < θ : ∃m,n < ω ∃α < λ ((〈β,m〉,
〈α, n〉) ∈ B)}. Then G ∈ [θ]<θ. By assumption (b), there is an f ∈ ωλ

that is a ≤+-bound for G = {fβ : β ∈ G}. Thus for all β ∈ G, there is a
kβ ∈ ω such that for each α < λ, either fβ(α) ≤ kβ or fβ(α) ≤ f(α). Define
g : θ → ω by g(β) = kβ for β ∈ G, g(β) = 0 otherwise. We have to show
that B ∩ (Vg × Uf ) = ∅. To see this take (〈β,m〉, 〈α, n〉) ∈ B. Then both m
and n are less than or equal to fβ(α); thus either n ≤ fβ(α) ≤ f(α) and
〈α, n〉 6∈ Uf or m ≤ fβ(α) ≤ kβ = g(β) and 〈β,m〉 6∈ Vg.

(III) Similar; using (c) in place of (b).

We also need to recall some facts about (θ, λ)-good sets from [LL]. Given
a set A ⊆ (θ × ω) × (λ × ω), and ordinals β < θ and α < λ, we define
Hβα(A) = Hβα = {(m,n) : m,n ∈ ω and (〈β,m〉, 〈α, n〉) ∈ A}. We say Hβα

is closed downward (abbreviated cdw) if whenever (m,n) ∈ Hβα, n′ ≤ n,
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and m′ ≤ m, then (m′, n′) ∈ Hβα. The proofs of the following lemmas can
be found in [LL].

Lemma 2.3. Suppose there is a (θ, λ)-good set. Then there is a (θ, λ)-good
set A such that each Hβα is finite and cdw.

Lemma 2.4. Suppose A ⊆ (θ × ω)× (λ× ω) and that each Hβα is finite
and cdw. Then A accumulates at (∞,∞) in Fθ × Fλ if and only if

∀f : λ→ ω ∃β < θ ∀m ∈ ω ∃α < λ ((〈β,m〉, 〈α, f(α)〉) ∈ A).

In [G], Gruenhage showed that if there is a (θ, ω)-good set, then θ ≥ b.

Theorem 2.5. The following are equivalent :

(a) there is an F ⊆ ωω of cardinality θ such that F is ≤∗-unbounded ,
but every G ∈ [F ]<θ is ≤∗-bounded ;

(b) there is a (θ, ω)-good set.

P r o o f. (a)⇒(b). By Lemma 2.2.
(b)⇒(a). Suppose that A is a (θ, ω)-good set. Without loss of generality,

we can assume that each Hβk = Hβk(A) is finite and cdw. By Gruenhage’s
result, b ≤ θ; so let {gα : α < b} ⊆ ωω be an unbounded family of strictly
increasing functions. For β < θ and α < b, define a function fβ,α : ω → ω
by

fβ,α(k) =
{

max{n : ∃m (gα(m) ≥ k ∧ (〈β,m〉, 〈k, n〉) ∈ A)},
0 if the above set is empty.

Set F = {fβ,α : β < θ and α < b}; we check that (I) F is <∗-unbounded
and (II) every G ∈ [F ]<θ is <∗-bounded.

(I) Let f ∈ ωω. Using Lemma 2.4 and the fact that A is (θ, ω)-good,
there is a β < θ such that for each m ∈ ω, there is a km ∈ ω such that
(〈β,m〉, 〈km, f(km)〉) ∈ A. Define g ∈ ωω by g(m) = km; then g is finite-to-
one. Because the gα’s are ≤∗-unbounded, there is an α < b such that for
infinitely many m, gα(m) ≥ g(m). Then for each such m, fβ,α(km) ≥ f(km),
so that f is not a ≤∗-bound for F .

(II) Let G ∈ [F ]<θ. Set G = {β < θ : ∃α < b (fβ,α ∈ G)}. Set B =
A ∩ (G × ω) × (ω × ω); then (∞,∞) is not in the closure of B. Choose
g ∈ ωθ and f ∈ ωω so that B ∩ (Vg × Uf ) = ∅. We claim that f is a
≤∗-bound for G. Fix an fβ,α ∈ G. Now, β ∈ G, so (〈β,m〉, 〈k, n〉) 6∈ A
whenever m > g(β) and n > f(k). Stated contrapositively, if (〈β,m〉, 〈k, n〉)
is in A, then either m ≤ g(β) or n ≤ f(k). Take k > gα(g(β)) and any
m such that gα(m) ≥ k; then gα(m) > gα(g(β)). Because gα is strictly
increasing, m > g(β). Thus, if n is such that (〈β,m〉, 〈k, n〉) ∈ A, we must
have n ≤ f(k). Taking the maximum over all such n gives fβ,α(k) ≤ f(k).
Thus, whenever k > gα(g(β)), we have fβ,α(k) ≤ f(k), whence fβ,α ≤∗ f .
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We now provide a consistent characterization of the existence of (θ, θ)-
good sets in terms of families of integer-valued functions. The set-theoretic
conditions we require in order to obtain this characterization are true in the
models obtained by the Levy or Mitchell collapse of a large cardinal to ω2

and when PFA+ holds, so this characterization may be useful in showing
the consistency (relative to a large cardinal) of “there are no (ω2, ω2)-good
sets”.

Recall cov(ω, θ) = min{|C| : C ⊆ [θ]ω ∧ ∀B ∈ [θ]ω ∃C ∈ C (B ⊆ C)}. It
is well known that for all n ∈ ω, cov(ω, ωn) = ωn and that cov(ω, θ) > θ for
θ a cardinal of uncountable cofinality implies there is an inner model with
large cardinals.

Theorem 2.6. Assume b ≤ θ and cov(ω, θ) ≤ θ. Then the following are
equivalent :

(i) there is a (θ, θ)-good set ;
(ii) there is an unbounded family F = {fβ : β < θ} ⊆ ωθ such that every

G ∈ [F ]<θ is bounded and for every B ∈ [θ]<θ, F¹B = {fβ¹B : β < θ} is
bounded.

P r o o f. (ii)⇒(i). This follows from Lemma 2.2.
(i)⇒(ii). Let A be a (θ, θ)-good set. We can assume that each Hβα (de-

fined just before Lemma 2.3) is symmetric, i.e., Hβα = {(n,m) : (m,n) ∈
Hαβ}. Let {Bδ : δ < cov(ω, θ)} enumerate a covering family; for δ <
cov(ω, θ), let rδ : ω → Bδ be a bijection. Let {gγ : γ < b} ⊆ ωω be an
unbounded family of strictly increasing functions.

For β < θ, δ < cov(ω, θ), and γ < b, define a function fβδγ : θ → ω by

fβδγ(α) =
{

max{n : ∃m (gγ(m) ≥ r−1
δ (α) ∧ (〈β,m〉, 〈α, n〉) ∈ A)},

0 if the above set is empty or α 6∈ Bδ.
Set F = {fβδγ : β < θ, δ < cov(ω, θ), and γ < b}. We claim

(I) F is unbounded;
(II) whenever B ∈ [θ]<θ, then F¹B is bounded; and

(III) whenever G ∈ [F ]<θ, then G is bounded.

The proofs of (II) and (III) are similar to those for Theorem 2.5. For
example, to prove (II), fix a B ∈ [θ]<θ, and set A′ = A∩ ((θ×ω)× (B×ω)).
Then (∞,∞) 6∈ A′, so there is a g ∈ ωθ so that A′∩ (Vg×Ug) = ∅. We claim
that g is a bound for F¹B.

To see this, fix β < θ, δ < cov(ω, θ), and γ < b. Take any α ∈ Bδ \
rδ({0, 1, . . . , gγ(g(β))}) and any m with gγ(m) ≥ r−1

δ (α); then gγ(m) >
gγ(g(β)). Because gγ is increasing, m > g(β). Thus, if (〈β,m〉, 〈α, n〉) ∈
A′, we must have n ≤ g(α). Taking the maximum over all such n yields
fβδγ(α) ≤ g(α), so clearly fβδγ ≤∗ g. The proof of (III) is similar.
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To show that (I) is true, we need the following:

Claim. For every f ∈ ωθ, there is a β < θ and a sequence {αm : m ∈ ω}
so that whenever m ∈ ω, either f(αm) ≥ m and (〈β,m〉, 〈αm, f(αm)〉) ∈ A,
or f(αm) < m and (〈β,m〉, 〈αm,m〉) ∈ A.

Suppose otherwise. Then there is an f ∈ ωθ so that for all β < θ, there
is an mβ ∈ ω such that for all α < θ,

(∗) (〈β,mβ〉, 〈α,mβ〉) ∈ A⇒ f(α) ≥ mβ and
(∗∗) (〈β,mβ〉, 〈α, f(α)〉) ∈ A⇒ f(α) < mβ .

Define g ∈ ωθ by g(β) = max{f(β),mβ} + 1. Because (∞,∞) ∈ A,
there are α < β < θ with (〈β, g(β)〉, 〈α, g(α)〉) ∈ A. Now, Hβα is cdw, so
(〈β,mβ〉, 〈α, f(α)〉) ∈ A; by (∗∗), f(α) < mβ . By symmetry, f(β) < mα.
Suppose that mβ ≤ mα (the other case is dual). Then (〈β,mβ〉, 〈α,mβ〉) ∈
A. By (∗), f(α) ≥ mβ , a contradiction. This proves the claim.

To finish the proof of (I), fix f ∈ ωθ, and take β < θ and {αm : m ∈ ω}
as in the claim. Find a δ < cov(ω, θ) so that {αm : m ∈ ω} ⊆ Bδ. Define
h ∈ ωω by h(m) = r−1

δ (αm); then h is finite-to-one. Find a γ < b so
that for infinitely many m, h(m) ≤ gγ(m). Then for such an m, either
f(αm) ≥ m and fβδγ(αm) ≥ f(αm), or f(αm) < m and fβδγ(αm) ≥ m, so
that fβδγ 6≤+ f .

3. Forcing good sets. It is a well known fact, due independently to
Hausdorff [H] and Rothberger [R], that the existence of a (θ, ω)-gap in
(ωω,≤∗) is equivalent to the existence of a well-ordered unbounded sequence
of order type θ in (ωω,≤∗). This means that the existence of a (θ, ω)-gap
implies the existence of a (θ, ω)-good set. It is certainly consistent that the
converse is true (consider, e.g., a model of CH), so it is natural to ask if the
converse is true in ZFC. In fact, when θ ≥ ω2 and cf(θ) ≥ ω1, there is a
model in which there is a (θ, ω)-good set, but only (ω1, ω1)- and (ω1, ω)-gaps.

Before we define the partial orders that give these models, we state some
useful lemmas about product forcing. If F ⊆ ωω and g ∈ ωω, we say that
g >∗ F if g >∗ f for all f ∈ F . We say that a real f in a universe larger
than V is unbounded over V if f 6≤∗ g for all g ∈ ωω ∩ V .

Lemma 3.1. Let P and Q be partial orders. Suppose ḟ is a P-name for
a real and ġ is a Q-name for a real. If °P “ḟ is unbounded over V ”, then
°P×Q “¬(ḟ ≤∗ ġ)”.

P r o o f. Fix n ∈ ω and (p, q) ∈ P×Q. Because °P “ḟ is unbounded over
V ”, there is an l ≥ n such that ∀m ∈ ω (¬(p °P “ḟ(l) ≤ m”)).

Choose a q′ ≤ q and an m ∈ ω so that q′ °Q “ġ(l) = m”. Then we can
find a p′ ≤ p and a k > m such that p′ °P “ḟ(l) = k”. Thus, (p′, q′) °P×Q
“ḟ(l) > ġ(l)”.
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Lemma 3.2. Suppose that ḣ1 and ḣ2 are P-names for reals, ġ is a Q-name
for a real , and (p, q) °P×Q “ḣ1 <

∗ ġ <∗ ḣ2”. Then p °P “∃j ∈ ωω∩V (ḣ1 <
∗

j <∗ ḣ2)”.

P r o o f. Without loss of generality, we assume that for some k′ ∈ ω,

(p, q) °P×Q “∀n ≥ k′ (ḣ1(n) <∗ ġ(n) <∗ ḣ2(n))”.

For each n ∈ ω, define j(n) by taking a q′ ≤ q and an m ∈ ω so that
q′ °Q “ġ(n) = m”, and setting j(n) = m.

We claim that p °P “ḣ1 <
∗ j <∗ ḣ2”. Otherwise, for each k ∈ ω, there

is an n ≥ k and a p′ ≤ p such that p′ °P “¬(ḣ1(n) < j(n) < ḣ2(n))”.
Fix such a p′ and n for the k′ given above, and find a q′ ≤ q such that
q′ °Q “ġ(n) = j(n)”. Then

(p′, q′) °P×Q “(ḣ1(n) < ġ(n) < ḣ2(n))

∧ ¬(ḣ1(n) < j(n) < ḣ2(n)) ∧ (ġ(n) = j(n))”,

a contradiction.

For a set A, CA is the partial order Fn(A × ω, ω) = {p : p is a finite
partial function from A × ω into ω}. VA is the generic extension of V by
CA. We will need the fact, due to Kunen [Ku], that forcing with CA over a
model of CH does not add an ω2-sequence in (ωω,≤∗).

Lemma 3.3. Assume CH and set θ = ω2. In Vθ, let P =
∏
α<θ Pα be a ccc

finite support product of ℵ1-sized partial orders such that
∏
α<β Pα ∈ Vβ. Set

Q = Cθ ? Ṗ, and let H be Q-generic over V . Then there are no well-ordered
ω2-sequences in V [H].

P r o o f. By way of contradiction, let {ḟα : α < ω2} be a collection of
Q-names for a well-ordered ω2-sequence. Without loss of generality, each
ḟα =

⋃
n,m∈ω{(m,n)}×Amn, where Amn is a maximal countable antichain

and each q ∈ Amn has the form q = (c, 〈ṗα1 , . . . , ṗαk〉), where c ∈ Cθ and
ṗαi ∈ Ṗαi . That is, because the supports of conditions in Ṗ are finite, we
can assume that the Cθ part of a condition is strong enough to decide the
support of the Ṗ part.

Define suppt(q) = {α1, . . . , αk} and for each α ∈ ω2,

Aα = suppt(ḟα) =
⋃

m,n∈ω
q∈Amn

suppt(q).

By thinning and re-indexing, we can assume that the Aα’s are a delta
system with root ∆ and that α < α′ < ω2 implies

max∆ < min(Aα \∆) ≤ max(Aα \∆) < min(A′α \∆).
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Set β = max(∆) + 1, and force with Cβ ?
∏
α<β Ṗα. Notice that CH is still

true, so if we force with C[β,θ), we obtain a model V ′ with no ω2-chains. We
can also assume that each ḟα is a

∏
ξ∈Aα\∆ Pξ-name.

Set E = {ξ ∈ ω2 \ β : for some even α, ξ ∈ Aα \ ∆}, and set O =
ω2 \ (E ∪ β). Finally, let PE =

∏
ξ∈E Pξ and PO =

∏
ξ∈O Pξ.

Working in V ′, fix a condition (p, q) ∈ PE × PO such that

(p, q) °PE×PO “∀α < ω2 (α even implies ḟα <∗ ḟα+1 <
∗ ḟα+2)”.

By Lemma 3.2, for each even α < ω2 we can find a pα ≤ p and a jα ∈ ωω∩V ′
such that

pα °P “ḟα <∗ jα <∗ ḟα+2”.

Now, because supports are finite and each |Pα| ≤ ω1, we can find an A ∈
[ω2]ω2 so that whenever α, α′ ∈ A, then pα and pα′ are compatible. But then
α < α′ ∈ A implies that jα <∗ jα′ , contradicting the fact that there are no
ω2-sequences in V ′.

Hechler forcing is the partial order D = {(s, f) : s ∈ ω<ω, f ∈ ωω, and
s ⊆ f}, ordered so that (s, f) ≤ (t, g) if and only if s ⊇ t and ∀n ∈ ω (f(n) ≥
g(n)). Clearly, D is σ-centered and adds a real that eventually dominates all
ground model reals. The following result has been obtained independently
by Judah [J].

Theorem 3.4. Assume V ² CH and set θ = ω2. Then there is a partial
order Q such that whenever H is Q-generic over V , then the following are
true in V [H]:

(1) There is a family F = {fα : α < θ} ⊆ ωω such that :

(a) for all β < θ, {fα : α < β} is bounded ;
(b) F is unbounded.

(2) There are no well-ordered sequences of length ω2 in (ωω,≤∗).

P r o o f. We define Q as a two-step iteration. The first step of the iteration
is simply Cθ. We define the second step by working in Vθ. Let Pβ be DVβ ,
i.e., Hechler forcing in the sense of the model obtained by adding the first
β-many Cohen reals. In Vθ, each Dβ is σ-centered, so the finite support
product P =

∏
β<θ Pβ is ccc. Hence, Q = Cθ ? P is ccc.

Let H be Q-generic; in V [H], define F = {fβ : β < θ}, where fβ is the
βth Cohen real. Let gβ be the Hechler real added by Pβ over Vθ; because
{fα : α < β} ⊆ Vβ , we have fα ≤∗ gβ for each α < β. This establishes (a).

Let ġ be a Q-name for a real. Note that for all β < θ, we have

Q ∼=
[(
Cβ ?

∏

α<β

Ṗα
)
× C[β,θ)

]
?
∏

α≥β
Ṗα.
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By this observation and the fact that Q is ccc, there is a β < θ such that ġ
is a Cβ ?

∏
α<β Pα-name. Because fβ is unbounded over V , Lemma 3.1 and

the fact that ≤∗ is upwards absolute imply that °Q “ḟβ 6≤∗ ġ”. Hence, no
real in V [H] bounds F , so (b) is established.

Note that the partial order we have defined satisfies the hypotheses of
Lemma 3.3, so (2) is also true.

We can also show, via a modification of the “isomorphism of names”
argument originally due to Kunen [Ku], that the forcing construction given
above yields a model with no ω2-sequences when θ is any cardinal (see [Br]
for details). When θ is regular, this gives a model with a (θ, ω)-good set, but
only (ω1, ω1)- and (ω1, ω)-gaps.

The above proof does not quite suffice to produce a (θ, ω)-good set when
θ is a singular cardinal of uncountable cofinality, because we need to bound
all small subfamilies of F . Fortunately, we can use the ccc to accomplish
this.

Theorem 3.5. Suppose V ² GCH and that ω1 ≤ cf(θ) < θ. Then there
is a ccc partial order Q such that whenever H is Q-generic over V , there is
a family F = {fα : α < θ} ⊆ ωω in V [H] such that :

(1) F is unbounded ;
(2) for all G ∈ [F ]<θ, G is bounded.

P r o o f. As before, Q will be a two-step iteration, with first step Cθ. Let
fβ be the βth Cohen real, and set F = {fβ : β < θ}. The second step of
the iteration is defined in Vθ as

∏
A∈[θ]<θ PA, where PA = DVA , i.e., Hechler

forcing in the sense of the model obtained by adding the Cohen reals with
indices in A. We therefore have

Q = Cθ ?
∏

A∈[θ]<θ

ṖA.

Clearly, Q is ccc. As before, F remains unbounded in V [H].
To see that every small family is bounded, take B ∈ [θ]<θ∩V [H]. Because

Q is ccc, there is an A ∈ [θ]<θ ∩ V such that B ⊆ A. Then the Hechler real
added by PA bounds {fβ : β ∈ B}.

Again it can be shown that the model does not contain well-ordered
sequences of length ω2 in (ωω,≤∗).

We next describe notions of forcing for adding (θ, λ)-good sets for some
cardinals that satisfy ω1 ≤ λ ≤ θ. The method will be similar to that used
above—but proving that our iteration is ccc will now be non-trivial.

Theorem 3.6. Let λ ≤ θ cardinals with cf(θ) ≥ ω1. Assume either λ
is regular or λω ≤ θ. There is a ccc partial order P that adds a family
F = {fξ : ξ < θ} ⊆ ωλ satisfying :
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(a) F is ≤+-unbounded ;
(b) for all B ⊆ θ with |B| < θ, {fξ : ξ ∈ B} is ≤∗-bounded ;
(c) for all A ⊆ λ with |A| < λ, F¹A = {fξ¹A : ξ < θ} is ≤∗-bounded.

P r o o f. Let V0 be the ground model. As before, P ∈ V0 will be a two-step
iteration. To define the first step, we start with a function H : θ → [λ]ω that
satisfies either

(1) ∀A ∈ [λ]ω (|ξ < θ : H(ξ) = A}| = θ)

or (in case λ is regular and λω ≤ θ fails)

(2) ∀ξ < θ ∀ζ < λ (ζ ∈ H(ξ)⇒ ζ + 1 ∈ H(ξ)) and
(3) ∀ζ < λ (cf(ζ) = ω ⇒ |{ξ < θ : sup(H(ξ)) = ζ}| = θ).

We define P0 = {c ∈ Cθ×λ : ∀ξ < θ ∀ζ < λ ((ξ, ζ) ∈ dom(c) ⇒ ζ ∈
H(ξ))}, ordered by reverse containment (notice that our notation here is
slightly different from that preceding Lemma 3.3: CA denotes Fn(A,ω)).
Obviously, P0 is forcing isomorphic to Cθ; we think of hξ (the ξth Cohen
real added by P0) as having domain H(ξ). Extend hξ to a function fξ ∈ ωλ
by setting fξ(ζ) = hξ(ζ) for all ζ ∈ H(ξ) and fξ(ζ) = 0 for all ζ 6∈ H(ξ).

Let V1 be the extension of V0 by P0. In V1, we define for each A ⊆ λ with
|A| < λ and A ∈ V0 and for each B ⊆ θ with |B| < θ and B ∈ V0 partial
orders QA and RB as follows: QA = {〈s, F 〉 : s ∈ CA ∧ F ∈ [θ]<ω} ordered
so that 〈s, F 〉 ≤ 〈s′, F ′〉 if and only if s ⊇ s′, F ⊇ F ′ and

∀ξ ∈ F ′ ∀ζ ∈ dom(s) \ dom(s′) (fξ(ζ) ≤ s(ζ)).

Similarly, RB = {〈t, G〉 : t ∈ Cλ ∧G ∈ [B]<ω}, ordered in the same way as
QA: 〈t, G〉 ≤ 〈t′, G′〉 if and only if t ⊇ t′, G ⊇ G′ and

∀ξ ∈ G′ ∀ζ ∈ dom(t) \ dom(t′) (fξ(ζ) ≤ t(ζ)).

In V1, let P1 =
∏
AQA ×

∏
B RB be the finite support product of the

QA’s and RB ’s. In V0, let P = P0?Ṗ1. Also in V0, let 〈Aα : α < λ′〉 enumerate
[λ]<λ and 〈Bβ : β < θ′〉 enumerate [θ]<θ.

Claim. P1 is ccc in V1.

To prove the claim, it suffices to show that for every A ∈ [λ′]<ω and
B ∈ [θ′]<ω, the partial order P0 ? (

∏
α∈A Q̇Aα ×

∏
β∈B ṘBβ ) is ccc in V0. For

each γ ∈ ω1, fix a condition

pγ = 〈cγ , 〈〈sγα, F γα 〉 : α ∈ A〉, 〈〈tγβ , Gγβ〉 : β ∈ B〉〉.
We do not need to work with names because conditions are finite partial
functions, so we can assume the P0 part of a condition is strong enough to
decide the second part. For c ∈ P0, set d(c) = {ξ < θ : ∃ζ ∈ H(ξ) ((ξ, ζ) ∈
dom(c))}.
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By applying a delta-system argument, we can assume that there are c,
sα, Fα, tβ , and Gβ such that for all γ < ω1, all α ∈ A, and all β ∈ B,

pγ = 〈c ∪ cγ , 〈〈sα ∪ sγα, Fα ∪ F γα 〉 : α ∈ A〉, 〈〈tβ ∪ tγβ , Gβ ∪Gγβ〉 : β ∈ B〉〉
and for every γ < δ < ω1, α ∈ A, and β ∈ B, each of d(cγ) ∩ d(cδ),
d(c)∩ d(cγ), dom(sγα)∩dom(sδα), F γα ∩F δα, dom(tγβ)∩dom(tδβ), and Gγβ ∩Gδβ
is the empty set (this also uses the countability of the sets H(ξ)).

We now define for all γ < ω1,

P (γ) = d(cγ) ∪
⋃

α∈A
F γα ∪

⋃

β∈B
Gγβ ,

Q(γ) =
⋃

α∈A
dom(sγα) ∪

⋃

β∈B
dom(tγβ), and

P = d(c) ∪
⋃

α∈A
Fα ∪

⋃

β∈B
Gβ .

It is now easy to find γ < δ < ω1 such that

(i) ∅ = P (γ) ∩ P = P ∩ P (δ) = P (γ) ∩ P (δ);
(ii) Q(γ) ∩ {ζ < λ : ∃ξ ∈ d(cδ) ∪ d(c) ((ξ, ζ) ∈ dom(cδ))} = ∅;

(iii) Q(δ) ∩ {ζ < λ : ∃ξ ∈ d(cγ) ∪ d(c) ((ξ, ζ) ∈ dom(cγ))} = ∅.
We claim that pγ and pδ are compatible. To see this, note that by (i)–(iii),

we can find a ĉ ⊇ cγ ∪ cδ such that

(∗) if ξ ∈ P (γ) ∪ P and ζ ∈ H(ξ) ∩ Q(δ), then 〈ξ, ζ〉 ∈ dom(ĉ) and
ĉ(ξ, ζ) = 0;

(∗∗) if ξ ∈ P (δ) ∪ P and ζ ∈ H(ξ) ∩ Q(γ), then 〈ξ, ζ〉 ∈ dom(ĉ) and
ĉ(ξ, ζ) = 0.

Consider the condition

p = 〈ĉ, 〈〈sα ∪ sγα ∪ sδα, Fα ∪ F γα ∪ F δα〉 : α ∈ A〉,
〈〈tβ ∪ tγβ ∪ tδβ , Gβ ∪Gγβ ∪Gδβ〉 : β ∈ B〉〉;

we show that p ≤ pγ (p ≤ pδ is similar).
Clearly, all inclusion relations are met. Notice that by (∗) and (∗∗) we

have for all α ∈ A, all ζ ∈ dom(sδα), and all ξ ∈ Fα ∪ F γα ,

0 = ĉ(ξ, ζ) ≤ sδα(ζ), or ζ 6∈ H(ξ),

and for β ∈ B, ζ ∈ dom(tγβ), and ξ ∈ Gβ ∪Gγβ ,

0 = ĉ(ξ, ζ) ≤ tδβ(ζ), or ζ ∈ H(ξ),

so that p ≤ pγ . This establishes the claim.



222 J. Brendle and T. LaBerge

Let V2 be the extension of V1 by P1; notice that (b) and (c) of the
theorem are true by genericity. To complete the proof of the theorem, we
need to show:

Claim. F is unbounded in V2.

By way of contradiction, suppose that there is a P-name ḟ for an element
of ωλ such that °P “∀ξ < θ (ḟξ ≤+ ḟ)”. (We will see later that P factors
nicely, so if this statement is only forced by some non-trivial condition p,
we can replace V0 with an initial extension obtained from a generic that
contains p, and then argue as below.)

Assume first cf(λ) ≥ ω1 and λω ≤ θ. Using condition (1) of the function
H, construct, by recursion on γ < ω1, conditions pγ = 〈cγ , 〈〈sγα, F γα 〉 : α ∈
Aγ〉, 〈〈tγβ , Gγβ〉 : β ∈ Bγ〉〉, where

cγ ° “〈sγα, F γα 〉 ∈ Q̇Aα for α ∈ Aγ and 〈tγβ , Gγβ〉 ∈ ṘBβ for β ∈ Bγ”,

ordinals αγ < λ and βγ < θ, and integers kγ < ω such that if

A(γ) =
⋃

α∈Aγ
Aα and B(γ) =

⋃

β∈Bγ
Bβ ,

then

(i) if cf(γ) = ω, then αγ = sup{αδ : δ < γ};
(ii) if γ is a successor ordinal, then ∀δ < γ (αγ > αδ and αγ 6∈ A(δ));

(iii) ∀δ < γ (βγ 6∈ {βδ} ∪B(δ) ∪ d(cδ));
(iv) H(βγ) ⊇ {αδ : δ < γ}; and
(v) pγ °P “∀ζ < λ (ḟβγ (ζ) ≤ kγ or ḟβγ (ζ) ≤ ḟ(ζ))”.

To avoid having to work with names, we are again assuming that the
P0 part of a condition is strong enough to decide the P1 part. Also notice
that by conditions (i) and (ii) of the recursion, S0 = {αγ : γ < ω1} is club
in α′ = sup{αγ : γ < ω1}. Thus S ⊆ S0 is stationary in α′ if and only if
S̃ = {γ < ω1 : αγ ∈ S} is stationary in ω1.

We now define regressive functions a, b, c : ω1 → [ω1]<ω and k : ω1 → ω
by:

a(γ) =
{
δ < γ : (Aγ ∩Aδ) \

⋃

ε<δ

Aε 6= ∅
}

;

b(γ) =
{
δ < γ : (Bγ ∩Bδ) \

⋃

ε<δ

Bε 6= ∅
}

;

c(γ) =
{
δ < γ : (d(cγ) ∩ d(cδ)) \

⋃

ε<δ

d(cε) 6= ∅
}

; and

k(γ) = kγ .
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By Fodor’s lemma, we can find ∆a,∆b,∆c ∈ [ω1]<ω, a k0 ∈ ω, and a sta-
tionary S̃1 ⊆ ω1 such that for γ ∈ S̃1, a(γ) = ∆a, b(γ) = ∆b, c(γ) = ∆c and
k(γ) = k0.

Set A =
⋃
γ∈∆a A(γ) and B =

⋃
γ∈∆b B(γ) ∪ ⋃γ∈∆c d(cγ). Then for

γ 6= γ′ ∈ S̃1, we have

(a) (Aγ ∩Aγ′) \⋃δ∈∆a Aδ = ∅;
(b) (Bγ ∩Bγ′) \⋃δ∈∆b Bδ = ∅; and

(c) (d(cγ) ∩ d(cγ
′
)) \B = ∅.

We now factor P0 as P0
0 × P1

0, where

P0
0 = {c ∈ P0 : ∀ζ < λ ∀ξ < θ ((ξ, ζ) ∈ dom(c)⇒ ξ ∈ B ∨ ζ ∈ A)}

and

P1
0 = {c ∈ P0 : ∀ζ < λ ∀ξ < θ ((ξ, ζ) ∈ dom(c)⇒ ξ 6∈ B ∧ ζ 6∈ A)}.

In turn, if we set A =
⋃
δ∈∆a A

δ, B =
⋃
δ∈∆b B

δ,

P0
1 =

∏

α∈A
QAα ×

∏

β∈B
RBβ , and P1

1 =
∏

α 6∈A
QAα ×

∏

β 6∈B
RBβ ,

then P can be factored as

P = (P0
0 ? Ṗ0

1) ? (P1
0 ? Ṗ1

1).

Let G0 be P0 = P0
0 ? Ṗ0

1-generic over V0, and let V 0 = V0[G0]. In V 0, set
P1 = P1

0 ? Ṗ1
1.

We claim that G0 can be chosen so that S̃0 = {γ ∈ S̃1 : pγ¹P0 ∈ G0} is
a stationary subset of ω1 in V 0. Otherwise, we can find a P0-name Ċ for a
club subset of ω1 such that °P0 “∀γ < ω1 (γ ∈ Ċ ⇒ pγ¹P0 6∈ Ġ0)”. Because
P0 is ccc, we can find a club C0 ∈ V0 such that °P0 “C0 ⊆ Ċ”. Take a
γ ∈ C0 ∩ S̃1; then

pγ¹P0 °P0 “pγ¹P0 ∈ Ġ0 and γ ∈ Ċ”,

a contradiction.
Let S0 = {αγ : γ ∈ S̃0}. For γ ∈ S̃0, define

e(αγ) = max{ζ < αγ : (βγ , ζ) ∈ dom(cγ)}.
(When we are talking about cγ (or other parts of conditions), we really mean
cγ¹P1

0—this is ok because we have chosen cγ so that cγ¹P0
0 ∈ G0.) Notice

that e is regressive on S0, so there is a stationary T 0 ⊆ S0 and a ζ0 < α′ so
that ∀γ ∈ T 0 (e(γ) = ζ0). Set T̃ 0 = {γ < ω1 : αγ ∈ T 0}.

Now choose δ0 < ω1 so that αδ0 6∈ A and αδ0 > ζ0. Recall that αδ0 ∈
H(βγ) whenever γ > δ0 and γ ∈ T̃ 0. Also notice that without loss of gen-
erality βγ 6∈ B for γ ∈ T̃ 0. Let Ġ1 be the canonical name for a P1-generic
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filter over V 0. We claim that

(∗) °P1 “∀k ∈ ω ∃γ ∈ T̃ 0 (pγ ∈ Ġ1 ∧ ḟβγ (αδ0) = k)”.

To see this, suppose that p1 ∈ P1 and k ∈ ω. Say

p1 = 〈c1, 〈〈s1
α, F

1
α〉 : α ∈ A1〉, 〈〈t1β , G1

β〉 : β ∈ B1〉〉.
By conditions (a)–(c), we can find a γ ∈ T̃ 0 such that the following

intersections are all empty: d(c1) ∩ (d(cγ) ∪ {βγ}), A1 ∩Aγ , and B1 ∩Bγ .
Set pγ0 = 〈cγ ∪ {〈(βγ , αδ0), k〉}, 〈〈sγα, F γα 〉 : α ∈ Aγ〉, 〈〈tγβ , Gγβ〉 : β ∈ Bγ〉〉;

then p1∪pγ0 is a condition extending both p1 and pγ0 that forces ḟβγ (αδ0) = k.
This establishes (∗).

Let G1 be P1-generic over V 0, and set V 1 = V 0[G1] = V2. Let k1 =
ḟ [G1](αδ0). By (∗), there is a k ∈ ω and a γ ∈ T̃ 0 so that k > k0, k1 and
ḟβγ [G1](αδ0) = k. This contradicts the fact that each ḟβγ [G1](ζ) is forced
to be less than either k0 or ḟ [G1](ζ). This establishes the claim and the
theorem in most cases.

In case λ is regular and λω ≤ θ fails, we use conditions (2) and (3) of the
function H to carry out a similar construction, replacing (ii) and (iv) by

(ii)′ ∀δ < γ (αγ > max{αδ, sup(A(δ))}); and
(iv)′ sup(H(βγ)) = αγ (and thus cf(αγ) = ω).

The rest of the argument is very similar to the first case, and we leave it to
the reader to figure out the details.

In case cf(λ) = ω, we write λ =
⋃
n λn where λn < λn+1 < λ and the λn

are regular. We again do a similar construction, this time producing ordinals
αγn < λn; (i), (ii) and (iv) are generalized to

(i)′′ if cf(γ) = ω, then αγn = sup{αδn : δ < γ} for all n;
(ii)′′ if γ is a successor ordinal, then ∀n ∀δ < γ (αγn > αδn and, if A(δ)∩λn

is bounded in λn, then αγn > sup(A(δ))); and
(iv)′′ H(βγ) ⊇ {αδn : n ∈ ω ∧ δ < γ}.

The proof continues as before. Notice that there must be n ∈ ω so that
A ∩ {αγn : γ < ω1} is bounded in {αγn : γ < ω1}. We complete the argument
with all αγ replaced by αγn.

4. Topological consequences. As shown in [LL], the existence of a
(θ, λ)-good set is equivalent to the existence of a first countable <θ-cwH
space X with a closed discrete set D of cardinality θ such that D is not
separated and

λ = min{|E| : E ⊆ D, D \ E is separated, and

∀F ∈ [E]<|E| ((D \ E) ∪ F is separated)}.



Forcing tightness in products of fans 225

By these results, Theorem 3.5 gives a new example of a first countable
space in which cwH fails for the first time at a singular cardinal. Notice that
this space is easier to construct than the examples in [FS] and [K], and can
be made cwH by removing a countable closed discrete set.

Suppose that λ < θ are uncountable cardinals that satisfy the hypotheses
of Theorem 3.6. The (θ, λ)-good set constructed by Theorem 3.6 gives a new
consistent example of a first countable, <θ-cwH space X that is not ≤θ-cwH.
The set of non-isolated points of X is the union of two disjoint closed discrete
sets D and E, where |D| = θ, |E| = λ, both D and E are separated, but D
and E are not contained in disjoint open sets. Thus, X can be made cwH
by removing the small closed discrete set E.

When λ = θ satisfy the hypotheses of Theorem 3.6 and are singular, the
space X obtained resembles the first countable <θ-cwH not ≤θ-cwH space
constructed in [FS], though the models in which the constructions take place
may be quite different. In both spaces, the set of non-isolated points is the
union of two disjoint closed discrete sets of cardinality θ, each of which is
separated, but that are not contained in a pair of disjoint open sets.

When θ is singular and greater than λω, we obtain a first countable space
in which cwH fails for the first time at θ, yet the space can be made cwH
by removing a closed discrete set of cardinality λ.

5. Questions. We have shown for many cardinals λ ≤ θ that “there
is a (θ, λ)-good set” is consistent. On the other hand, under GCH, there
are no (θ, λ)-good sets when ω1 ≤ cf(λ) ≤ λ < θ, so for these cardinals, the
existence of a (θ, λ)-good set is independent of ZFC. There are no (θ, θ)-good
sets when θ is singular of countable cofinality (see [LL]), so we ask:

(1) Is it consistent to have a (θ, λ)-good set when cf(θ) = ω and ω1 ≤
cf(λ) ≤ λ < θ?

(2) Suppose that ω = cf(λ) < λ. Is there, in ZFC, a cardinal θ such that
λ < θ ≤ λω and there is a (θ, λ)-good set?

Of course, the most important question, originally asked by Dow and
Todorčević, is:

(3) Does ZFC imply the existence of an (ω2, ω2)-good set?

Todorčević [T] showed that ¤(ω2) implies that there is a (ω2, ω2)-good
set. So at least a weakly compact cardinal is required to produce a model
with no (ω2, ω2)-good sets. Fleissner used Eωω2

(i.e., “there is a non-reflecting
stationary subset of ω2 consisting of ordinals of countable cofinality”) to
construct a first countable, <ω2-cwH space that is not ≤ω2-cwH, so Eωω2

can also be used to produce an (ω2, ω2)-good set.
Recall that Beaudoin (and independently, Magidor) showed that PFA



226 J. Brendle and T. LaBerge

is consistent with Eωω2
, while PFA+ implies that stationary sets reflect. We

conclude with:

(4) Does PFA+ imply that there are no (ω2, ω2)-good sets?
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