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On indecomposability and composants of chaotic continua
by

Hisao Kato (Tsukuba)

Abstract. A homeomorphism f : X — X of a compactum X with metric d is
expansive if there is ¢ > 0 such that if z,y € X and x # y, then there is an integer
n € Z such that d(f™(z), f*(y)) > c¢. A homeomorphism f : X — X is continuum-wise
expansive if there is ¢ > 0 such that if A is a nondegenerate subcontinuum of X, then
there is an integer n € Z such that diam f™(A) > c. Clearly, every expansive homeo-
morphism is continuum-wise expansive, but the converse assertion is not true. In [6], we
defined the notion of chaotic continua of homeomorphisms and proved the existence of
chaotic continua of continuum-wise expansive homeomorphisms. Also, we studied inde-
composability of chaotic continua. In this paper, we investigate further more properties
of indecomposability of chaotic continua and their composants. In particular, we prove
that if f: X — X is a continuum-wise expansive homeomorphism of a plane compactum
X C R? with dim X > 0, then there exists a o-chaotic continuum Z (o = s or u) of f
such that Z is an indecomposable subcontinuum of X and for each z € Z the composant
¢(z) of Z containing z coincides with the continuum-wise o-stable set V7 (z; Z).

1. Introduction. All spaces considered in this paper are assumed to be
separable metric spaces. Maps are continuous functions. By a compactum
we mean a compact metric space. A continuum is a connected, nondegen-
erate compactum. A homeomorphism f : X — X of a compactum X with
metric d is called ezpansive ([14] and [1]) if there is ¢ > 0 such that for any
x,y € X and x # y, there is an integer n € Z such that

d(f" (@), [ (y)) > c.

A homeomorphism f : X — X of a compactum X is continuum-wise ex-
pansive (resp. positively continuum-wise expansive) [5] if there is ¢ > 0 such
that if A is a nondegenerate subcontinuum of X, then there is an integer
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n € Z (resp. a natural number n > 0) such that
diam f"(A) > ¢,

where diam B = sup{d(z,y) | =,y € B} for a set B. Such a positive
number c is called an expansive constant for f. Note that each expansive
homeomorphism is continuum-wise expansive, but the converse assertion is
not true. There are many continuum-wise expansive homeomorphisms which
are not expansive (e.g., see [5]). By the definitions, we see that expansiveness
and continuum-wise expansiveness do not depend on the choice of the metric
d of X. These notions have been extensively studied in topological dynamics,
ergodic theory and continuum theory.

Let X be a compactum. The hyperspace 2¥ of X is the set of all
nonempty closed subsets of X with the Hausdorff metric dg. Let

C(X)={Aec2%| Ais connected}.

Note that 2% and C(X) are compacta (e.g., see [8] or [10]).

A continuum X is decomposable if there are two proper subcontinua A
and B of X such that AUB = X. A continuum X is indecomposable if it
is not decomposable. Let X be a continuum and let p € X. Then the set

¢(p) ={z € X | there is a proper subcontinuum A of X containing p and x}

is called the composant of X containing p. See [8] for some fundamental
properties of indecomposable continua and composants.
For a homeomorphism f: X — X, we define sets of stable and unstable
nondegenerate subcontinua of X as follows (see [6]):
V¥(= V%) = {A| A is a nondegenerate subcontinuum of X such that
lim diam f"(A) = 0},
V(= V}) = {A| A is a nondegenerate subcontinuum of X such that
lim diam f~"(A) = 0}.

n—oo

For each 0 < § < ¢, put
Vi(0;e) ={A € C(X) | diam A > §, and diam f"(A) < ¢ for each n > 0}
Vi(6;e) = {A € C(X) | diam A >, and diam f~"(A) < ¢ for each n > 0}.

Similarly, for each closed subset Z of X and z € Z, the continuum-wise
o-stable sets V7 (x; Z) of f are defined as follows:

V3(x;Z) ={y € Z | there is A € C(Z) such that z,y € A
and lim diam f"(A) = 0},

VW z;Z) ={y € Z | there is A € C(Z) such that z,y € A
and lim diam f~"(A) = 0}.

n—oo
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Let f : X — X be a homeomorphism of a compactum X with dim X > 0.
Then a subcontinuum Z of X is called a o-chaotic continuum of f (where
o =s,u) if

(1) for each x € Z, V9(x; Z) is dense in Z, and

(2) there is 7 > 0 such that for each z € Z and each neighborhood U of
z in X, there is y € U N Z such that

liminfd(f"(z), f"(y)) > 7 incase o =s,
lminfd(f~"(z), f"(y)) > 7 in case o =u.

Note that V7(d;¢) (o0 = u,s) is closed in C(X). Also, note that if f :
X — X is a continuum-wise expansive homeomorphism with an expansive
constant ¢ > 0, then (1) for each 0 < d <e < ¢, V9(d;¢) C V7, and V7 is an
F,-set in C'(X), and (2) V"(z; Z) is a connected F,-set containing z, because
Vi(z:Z2) = Upo(U{A € C(Z) | z € A, diam f~*(A) < e for i > n}) (see
[5, (2.1)]). Similarly, V*(z; Z) is a connected F,-set containing z.

In [6], we showed that if f : X — X is a continuum-wise expansive
homeomorphism of a compactum X with dim X > 0, then there exists a
chaotic continuum of f (see [6, (3.6)]). In this case, if Z is a o-chaotic
continuum of f, then the decomposition {V(z;Z) | z € Z} of Z is an
uncountable family of mutually disjoint, connected F,-sets.

2. Indecomposability of chaotic continua and their composants.
In [6], we studied indecomposability of chaotic continua of continuum-wise
expansive homeomorphisms. In this section, we investigate further prop-
erties of indecomposability of chaotic continua and their composants. We
need the following results.

LEMMA (2.1) (see the proof of [5, (2.3)]). Let f : X — X be a continuum-
wise expansive homeomorphism of a compactum X with an expansive con-
stant ¢ > 0, and let 0 < e < ¢/2. Then there is e > § > 0 such that if A is a
subcontinuum of X with diam A < § and diam f™(A) > € for some m € Z,
then one of the following two conditions holds:

1. If m > 0, then for each n > m and x € f"(A), there is a subcon-
tinuum B of A such that x € f*(B),diam f/(B) < e for 0 < j < n and
diam f"(B) = 4.

2. If m < 0, then for each n > —m and x € f~"(A), there is a subcon-
tinuum B of A such that x € f~™(B),diam f~7(B) < e for 0 < j <n, and
diam f~"(B) = 4.

LEMMA (2.2) ([5, (2.4)]). Let f : X — X be a continuum-wise expansive
homeomorphism of a compactum X with dim X > 0. Then:

1 VY £ 0 or V5 £ 0.
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2. If§ > 0 is as in the above lemma, then for each v > 0 there is a natural
number N () such that if A is a subcontinuum of X with diam A > ~, then
either diam f"(A) > ¢ for each n > N(v) or diam f~"(A) > § for each
n=N(y).

LemMA (2.3) ([4, (1.5) and (1.1)]). Let f : X — X be a continuum-
wise expansive homeomorphism of a compactum X with dim X > 0 and let
c > 0 be an expansive constant for f. Then f is positively continuum-wise
expansive if and only if for any ¢ > € > 0 there is a positive number § > 0
such that if A € C(X) with diam A < 0, then diam f~"(A) < e for any
n >0, and hence A € V",

Note that for a continuum-wise expansive homeomorphism f : X — X,
f is positively continuum-wise expansive if and only if V¥ = (. First, we
shall prove the following theorem.

THEOREM (2.4). Suppose that f : X — X is a positively continuum-wise
expansive homeomorphism of a compactum X with dim X > 0. Then:

(1) There is a u-chaotic continuum Z of f such that Z is indecomposable,
and for each z € Z the composant c(z) of Z containing the point z coincides
with the continuum-wise u-stable set V' (z;Z) of Z.

(2) Z is an indecomposable subcontinuum of X such that for each z € Z,
the composant ¢(z) of Z containing z coincides with V'(z; Z) if and only if
Z 1s a minimal element of the set of all u-chaotic continua of f.

Proof. Let ¢ > 0 be an expansive constant for f and let 0 < € < ¢/2.
Choose § > 0 satisfying the conditions of (2.1) and (2.3). By (2.3), V%(4;¢)
# (). Since f is positively continuum-wise expansive, V3(d;¢e) = ().

For each pair (y;Y) withy € Y € C(X), consider the following condition
(see the proof of [6, (3.6)]):

P(y;Y) ClV"(y;Y)) =Y, and for each n > 0, there is A,, € V¥(4;¢)
such that f~"(y) € A, and f™"(A4,) C V*(y;Y), e,y € f"(A,)
cY.

Also, define
I' ={Y € C(X) | there is y € Y such that P(y;Y") holds}.

By the proof of [6, (3.6)], there is a minimal element of I'. If Z is a
minimal element of I'; then Z is a u-chaotic continuum of f. We shall show
that for each z € Z the composant ¢(z) of Z containing z coincides with
V' (z; Z). Let B be a proper subcontinuum of Z. Choose b € B. Suppose,
on the contrary, that B ¢ V". Then by (2.3) we see that diam f~"(B) > ¢
for each n > 0. Let B’ = Cl(V'(b; B)). By (2.3), P(b; B’) holds. Hence
B’ € I'. Since Z is a minimal element of I') Z = B’ ¢ B. This is a
contradiction. Hence B C V'(b; Z), which implies that for each z € Z,
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c(z) = V¥(z; Z). Since the family {V'(z; Z)(= ¢(2)) | z € Z} is a family of
uncountable disjoint F,-sets, we see that Z is indecomposable.

Next, we shall show (2). If a subcontinuum Z is indecomposable and
c(z) = V¥(z; Z) for each z € Z, we see that Z is a weakly u-chaotic con-
tinuum of f (see [6]) and by [6, (3.7)], Z is a u-chaotic continuum of f.
Since ¢(z) = V¥(z; Z) for each z € Z, we see that Z is a minimal u-chaotic
continuum of f. We shall show the converse assertion. If Z is a u-chaotic
continuum of f, then Z € I'. Hence Z is a minimal element of I" if and only
if Z is a minimal u-chaotic continuum of f. Using this fact and the proof
of (1), we see that if Z is a minimal u-chaotic continuum of f, then Z is
indecomposable and for each z € Z the composant ¢(z) of Z containing z
coincides with V"(z; Z).

A homeomorphism f : X — X of a continuum X is continuum-wise fully
expansive (resp. positively continuum-wise fully expansive) [4] provided that
for any ¢ > 0 and § > 0, there is a natural number N = N(g;6) > 0 such
that if A € C(X) and diam A > ¢, then either du(f"(A),X) < € for all
n>N,ordg(f~"(A),X) <eforalln> N (resp. du(f"(A4),X) < ¢ for all
n>N).

COROLLARY (2.5). If f : X — X is a positively continuum-wise fully
expansive homeomorphism of a continuum X, then X is the only u-chaotic
continuum of f, it is indecomposable and for each x € X the composant c(x)
of X containing x coincides with V*(x; X).

Proof. The proof is similar to the above. By [6, (3.15)], X is a u-chaotic
continuum of f. Since f is positively expansive, we can choose d > 0 as in
(2.1) and (2.3). Let B be any proper subcontinuum of X. We shall show that
B € V". Suppose, on the contrary, that diam f~"(B) > ¢ for each n > 0.
Since B = f"(f~™(B)) and diam f~"(B) > ¢ for all n > 0, du(B,X) =0
and hence X = B, because f is a positively continuum-wise fully expansive
homeomorphism. This implies that for each z € X, ¢(x) = V*(x; X). Also,
we see that X is indecomposable.

Let f: X — X be a map of a compactum X. Consider the following
sets:

(1) Z(f) = {A € 2% | A is f-invariant}.
(2) ZT(f) ={A € Z(f) | dim A > 0}.

(3) MT(f)={A€I*(f)|if BeZ(f) and B is a proper subset of A,
then B is 0-dimensional}, i.e., M (f) is the set of all minimal elements of

(/).

The following theorem is the main result of this paper.
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THEOREM (2.6). Let X be a compactum in the plane R? with dim X > 0.
If f : X — X is a continuum-wise expansive homeomorphism, then for
some o = u or s there is a o-chaotic continuum Z of f such that Z is
indecomposable, and for each z € Z the composant c(z) of Z containing
z coincides with Vo (z;Z). In particular, X contains an indecomposable
chaotic continuum of f.

Proof. By [7, (3.1)], MT(f) # 0. Choose Y € M™(f). Without loss
of generality, we may assume that X =Y, i.e., X € MT(f). Also, by (2.2)
we may assume that V" # (). First, we shall prove that V® = (). Suppose, on
the contrary, that V® # (. Choose A € V5. Note that CI({J;2, f~“(4)) = X
(=Y), because X € M™T(f) (see the proof of 7, (3.1)]). By using this fact
and (2.1), we see that for any z € X, there is a subcontinum A, € V*(4;¢)
with € A,, where J,e are positive numbers as in (2.1). Similarly, we
see that for each x € X, there are two subcontinua A,, B, of X such that
A, € V3(d;¢), B, € V¥(0;¢) and x € A, N B,.

By [3] and [5, (6.2)], X is not locally connected. Hence we can choose a
disk D = (a,b,c,d) in R? (see Figure 1) such that there are components C,,
(n=1,2,...)of DNX satisfying C,N[a, c| # 0 # C,N[b,d], lim,,_,oc C,, = K
is contained in C, where C' is a component of D N X (see [8, p. 245]). We
may assume that there is a sequence Ay, As, ... of elements of V*(§;¢) such
that A, C C,, A, N[a,c] #0 # A, N[b,d]. Choose a sequence By, Ba, ... of
elements of V"(v;¢) such that B, C C,, where v is some positive number.
Note that A; N B; = 0 for i # j. We may assume that lim,,_.. 4, = Ay €
V2(d;¢) and lim, .. B, = By € V%(y;¢). Then By C Ay. Then we see
that diam f"(By) < ¢ for each n € Z (see the proof of [4, (4.10)]). This
is a contradiction. Therefore V® = (), which implies that f is positively
continuum-wise expansive. Consequently, we see that if X € M™(f) and
X is a plane compactum, then either f : X — X or f~! : X — X is
positively continuum-wise expansive. (2.4) implies that there is a desired
chaotic continuum Z in X. This completes the proof.

Let P be a family of compact polyhedra. A continuum X is called a
P-like continuum if for any € > 0 there is an onto map ¢ : X — P such that
P € P and diam g~ !(y) < ¢ for each y € P.

COROLLARY (2.7). Let F be a finite family of graphs and let X be an
F-like continuum. If f: X — X is a continuum-wise expansive homeomor-
phism, then there is a o-chaotic continuum Z of f such that Z is indecom-
posable, and for each z € Z the composant c(z) of Z containing z coincides
with Vo (z; Z).

Proof. Since MT(f) # 0, we can choose Y € M*(f). Let f' = f|Y :
Y — Y. We shall show that either f’ or f'~! is positively continuum-wise
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Fig. 1

expansive. Suppose, on the contrary, that V¥, # 0+ V%,. Then we see that
for each y € Y, there are A, € V}, and B, € V3, such that y € 4, N B,.
Note that A, — B, # (0 # B, — A,, because f’ is continuum-wise expansive
and hence dim(A, N B,) = 0. By using this fact, for each n > 1 we can
easily prove the following condition:

(%), There is a subcontinuum A € V?, and n subcontinua Bi,...,B, €
V%, such that AN B; # 0 and B; N B; =0 (i # j).

Note that B; — A # () for each 4. Since X is F-like, there is an onto map
g: X — G € F such that g(A) Ng(B;) # 0, g(B;) — g(A) # 0 for each
i=1,...,nand g(B;) Ng(Bj) =0 (i # j). Note that F is a finite family of
graphs. This is a contradiction, because (*),, holds for each n. Hence either
f or f'~!is positively continuum-wise expansive. By (2.4), we obtain the
desired chaotic continuum Z of f.

A map f: X — X of a compactum X has sensitive dependence on initial
conditions if there is ¢ > 0 such that for each x € X and each neighborhood
U of z in X there is a point y € U such that d(f™(x), f"(y)) > ¢ for some
n > 0. For any map f: X — X of a compactum X, consider the inverse
limit space (X, f) and the map f : (X, f) — (X, f) defined by

(X, f)=A(zn)ozo | xn € X, f(xp41) =z, for each n},
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and

flxo,z1,...,) = (f(x0),x0,.-.).
Then (X, f) is a compactum and the homeomorphism f : (X, f) — (X, f)
is called the shift map of f. By [7, (5.4)] and (2.5), we obtain the following.

COROLLARY (2.8). Suppose that a map f : G — G of a finite graph G
has sensitive dependence on initial conditions and f : (G, f) — (G, f) is the
shift map of f. Then M™T(f ) = {Y1,..., YN} is nonempty and a finite set
and the following conditions are satisfied:

(1) Y;NY; (i # j) is empty or a finite set of periodic points off.

(2) Both ]? and f_l are chaotic on each Y; in the sense of Devaney,
and there is a continuum Z; in YZ- and a natural number n(i) > 1 such
that Z; is {9 invariant, Un(l) YIR(Z) = Y, FRZ) 0 fR(Z) (0 < k£
k' < n(i) — 1) is empty or a finite set of periodic points offfor each i, and
f"(i) \fk(Zl) is topologically mizing and hence positively continuum-wise fully
expansive. In particular, Z; is a u-chaotic continuum of fv such that Z; is
an indecomposable continuum and for each z € Z;, the composant c(z) of Z;
containing z coincides with V% (z; Z;).

(3) There is an f-invariant closed subset F(f) in Cl((G f) - Uivzl Y:)
such that dim F(f) < 0, and if x € (G, f)— (UZ 1 YUF(f))] and any € > 0,
there is a neighborhood U of z in (G, f) and a natural number n(e) > 1 such
that f*(U) is contained in the e-neighborhood of vazl Y; in (G, f) for each
n > n(e).

3. Examples. In this section, we give some examples which are related
to results obtained in the previous section.

EXAMPLE (3.1). Let S! be the unit circle and f : S' — S be the natural
covering map with degree 2. Consider the inverse limit space X = (S, f)
and the shift map f : (S',f) — (S, f) of f. Then g = f: X — X is
(positively continuum-wise fully) expansive. Note that g x g : X x X —
X x X is a positively continuum-wise expansive homeomorphism. Moreover,
X x X is itself a u-chaotic continuum of g x g, but it is decomposable. For
each z € X, X x {z} and {z} x X are minimal u-chaotic continua of g x g
which are indecomposable.

EXAMPLE (3.2). Let f :T%2 —T? be an Anosov diffeomorphism, say [ ]
on the 2-dimensional torus 72 = S x S*. Then f:T?—=T?is (contmuum—
wise fully) expansive, but neither f nor f~! are positively continuum-wise
expansive. Note that T? is a o-chaotic continuum of f for each o = u,s.
Since f is continuum-wise fully expansive, we see that T2 is the only chaotic
continuum of f (see the proof of (2.5)). In this case, there is no chaotic
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continuum Z of f which is indecomposable. Hence in the statement of
(2.6), we cannot omit the condition that X is a plane compactum.
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