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An extension of a theorem of
Marcinkiewicz and Zygmund on differentiability

by

S. N. Mukhopadhyay and S. Mitra (Burdwan)

Abstract. Let f be a measurable function such that Ay (z, h; f) = O(|h|*) at each
point z of a set E, where k is a positive integer, A > 0 and Ay(z, h; f) is the symmetric
difference of f at z of order k. Marcinkiewicz and Zygmund [5] proved that if A = k and
if £ is measurable then the Peano derivative f(;) exists a.e. on E. Here we prove that if
A >k — 1 then the Peano derivative f([y)) exists a.e. on £ and that the result is false if
A = k — 1; it is further proved that if A\ is any positive integer and if the approximate
Peano derivative f(y) , exists on E then f(y) exists a.e. on E.

1. Introduction. Let f be a real-valued function defined in some neigh-
bourhood of z. Then f is said to have Peano derivative (resp. approzimate
Peano derivative) at x of order k if there exist real numbers «,., 1 < r <k,
depending on z and f only such that

AL T
f(l‘—Fh) = f(ﬂl’) +er!ar + Hgk(xahvf)v
where
}lbirr%)sk(a:,h,f) =0 (resp. limapeg(z,h, f) =0).
The number «y is called the Peano derivative (resp. approximate Peano
derivative) of f at x of order k and is denoted by f)(z) (resp. f)a(T)).
For convenience we shall write ag = f(x) = fo)(2) = f(0),a().

Suppose that f has Peano derivative (resp. approximate Peano deriva-

tive) at x of order k — 1. For h # 0 we write

k—1

on(o s f) = on(o ) = g | Flat 1) = 3 Mo
r=0
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The upper and lower Peano derivates (resp. approximate Peano derivates)
of f at x of order k are defined by

Fn (@) = lirzlsgpwk(x,h) (resp. f iy a(2) = 1im}§u15 apwi(x,h)),

fay(x) = liminf wy(x,h)  (resp. f . (x) = liminf apwy(z,h)).

- h—0 = (k)2 h—0

The symmetric difference of f at x of order k, where k is a positive
integer, is defined by

k
Ag(z,h) = Ag(x, h; f) = ;(1)’“_i (f)f(x +ih — ];h)

Marcinkiewicz and Zygmund proved in a deep theorem (Theorem 1 of [5])
that if f is measurable and if for a positive integer k,

Ar(z, hy f) = O(|n*)  as h — 0,

for x in a measurable set E then f(;) exists a.e. on E. For k = 2 this is
proved in [9, II, p. 78, Theorem 4.30]. For general k the proof is very long
and involved (it is worth mentioning that the proof offered by Marcinkiewicz
and Zygmund has a lacuna filled by Fejzic and Weil [3]).

The purpose of the present paper is to extend this result. In fact we
prove in Theorem 3.1 that if f is measurable and if for a positive integer k,

Ap(z,h; f) = O(|h*)  ash—0

for x in a set E (not necessarily uniformly), where A > k — 1, then f(y)
exists a.e. on F, [\] denoting the greatest integer not exceeding A. For A = k
this gives the result of Marcinkiewicz and Zygmund cited above. Also we
show in Theorem 3.2 that this result is not true for A = k — 1. Thirdly, in
Theorem 3.4 we show that if we further assume that the approximate Peano
derivative f(_1). exists on E then the above result is true for A = k — 1.
In fact, we prove in Theorem 3.4 that if f is measurable and if

Ag(x, h; f) = O(|n]")  as h —0

for every z in a set F, where k and p are positive integers, and if f(,,) . exists
finitely on E then f(,) exists a.e. on E.
We consider the difference

Ay(x,h) = Ay(z,h; f) = f(x +h) — f(a),
(11) Avn(x7h) :Avn(xvh;f)
:Avn—1<x72h;f)_2niljn—1(x7h;f)7 7122

It is known [5] that there are constants a;,0 < j < k, depending on j
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and k only (with a; = 1) such that

k
(1.2)  Ag(z,h) = Ag(z,h; f) = aof(x) + Zajf(x + 297 ), k> 1,
j=1
the coefficients a; satisfying
k k
Y a;=0, > 2%;=0, s=1,....k-L
§=0 j=1
Throughout the paper R, N, u, pu* will denote the set of reals, the set

of positive integers, Lebesgue measure and Lebesgue outer measure respec-
tively.

THEOREM MZ1. Let f: R — R be measurable and let f,_1)(x) exist for
each x in a measurable set E C R. If
wr(x,h) =0(1) ash—0 forxeE
then fu) erists a.e. on E.

The above theorem was proved by Denjoy [2] for continuous functions.
The theorem in its present form is in Lemma 7 of [5] the proof of which is
long and involves the theory of Fourier series and analytic functions. Later
a real-variable proof was given by Marcinkiewicz [4] (see also [9, II, p. 76,
Theorem 4.24]). A simple and completely different proof is given in [1, p. 54,
Corollaries 20 and 21]; see also [6].

THEOREM MZ2. If f)(x) exists then there is a number A depending
on k only such that

. A T, u;
)\k;ili%k(ukf) = f(k)(f)-

THEOREM MZ3. There are constants Cy, Cy, ..., Cor—1_j such that
2k g
Ap(z,h) = Y CiAp(z+ Lkh+ihh).
i=0
Theorems MZ2 and MZ3 are also due to Marcinkiewicz and Zygmund.

See Art. 9 and Art. 12 respectively of [5] for the proof.
We need the following definition.

DEFINITION. A function f defined in some neighbourhood of a point zq
is said to be smooth at xq if

(1.3) Ag(xg,h; f) =0(h) ash—0,

and f is said to be wuniformly smooth on a set E if (1.3) holds uniformly
on F.
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2. Auxiliary results

LEMMA 2.1. Let 0 be a point of outer density of E, let a, 8 € R with
B8 #0 and let € > 0. For each u > 0 set

B, ={v € [u,2u] : au+ pv € E}.
Then there is a § > 0 such that if 0 < u < ¢ then p*(B,) > u(l —¢).
This is Lemma 1 of [3].

THEOREM 2.2. Let f : R — R be measurable and let fg,_1) erist on a
set B, ke N. If

wr(z,h) =0(1) ash—0 forx e E,
then fy exists finitely a.e. on E.

Proof. Let G be the set of all z such that f(,_;) exists. Then G is
measurable and f(k) and f (k) 2T€ measurable on G (see [6]). Hence the set

is measurable. So by Theorem MZ1, f) exists finitely a.e. on H. Since
E C H, the result follows.
LEMMA 2.3. Let k € N and let f: R — R be measurable. Let
Ap(z,u; f) =0(1) asu— 0
for each x in a set E C R. Then f is bounded in some neighbourhood of
almost every point of E.

Proof. The proof is given in [3, Theorem 2|. We give a proof for com-
pleteness.
For each m € N let

By ={z € E:|Ap(x,u)] <m for 0 < |u| <1/m},
Fo,={z € E:|f(zx)] <m}.
Since E = |J,,,(Em N Fy,), it suffices to prove that f is bounded on some
neighbourhood of every point of outer density of F,, N F,,. Let z¢ be such

a point; suppose xg = 0. By Lemma 2.1 there is § with 0 < 6 < 1/m such
that if 0 < u < § then

W*(B) > u(l —1/(1k)) and 1*(Cy) > u(l — 1/(4k)),
where
B = [u,2u] N E,, N Fpy,
Cr={veu2u:v+u-0v)/2"""1ecF,}, 0<r<k-2.
Fix 0 <u < §. Let
D, ={v € [u,2u] : |f(v+ (u—2v)/2""1)| <m}.
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Then D, is measurable and C,. C D, for 0 < r < k — 2. Now by the
measurability of D,.,
p(BND,)>(1—-2/(4k)u for0<r<k-2,
and hence applying this argument repeatedly,

i (B N ﬂDr> > (1— k/(4k))u > 0.

Choose v € BN(), D,. Since v € Ey, and |(u —v)/2* 71| <u < § < 1/m,
|As(v, (u—v) /2571 < m,
If(W)] <m, [flo4 (u—0)/28""H<m for0<r<k-2.
Hence from (1.2),

[f ()] < 1Ak(v, (u = v) /2] + lao f (0)

k—1
+ ) lajflo+277 (u—wv)/2")]

J=1

k—1
< m[l +3 |aj|}.
§=0
This completes the proof.

LEMMA 2.4. Let Kk € Ny A€ Rand A > k—1. Let f : R — R be
measurable. Let m € N and let

E =E,, = {z:|Ak(z,h)| <m|h|* for 0 < |h| < 1/m}.
Then
Ap(x,h) =O(|h])) as h—0 a.e. on Ep,.
If k > 2 then
Ai(z,h) =0(h") ash—0 ae onBEny, 1<i<k-—1.

Proof. Let zg € E,, be a point of outer density of F,,. We may suppose
that 29 = 0. Let 0 < & < 1/4%. Then by Lemma 2.1 there is § with 0 < § < 1
such that if 0 < u < § then

(2.1) p*(Bij) > (1 —¢e)u and p*(Cy) > (1—¢)u,
where
Bij ={v € [u,2u] : (k/2+ j)(u+i(v—u)/k) € E},
1<i<k 0<j<28 ' —k,
Cr={veu2u:2(ut+v)/2€E}, 0<I<k-1.
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Fix u € (0, min[d/(2m), 1/(m - 2¥)]). Set
Sij ={v € [u,2u] :
| Ak((k/2 + 5)(u+i(v = u)/k),u+i(v — u)/k)| < m(2u)*},
Ty = {v € [u,2u] : |Ap(2 (v + v) /2,2 (v — u) /k)| < m(2Fu)*}.

Since f is measurable, the sets S;;,T; are all measurable. Also B;; C S;;
and C; C T;. Therefore from (2.1),

p(Sij) > 1 —e)u and (1) > (1 —e)u.

Since the complement of (), (), (;(:Si; NT1) with respect to [u, 2u] has mea-
sure < 4*cu, we have

u(ﬂﬂﬂ(sij ﬂTl)> > (1 — d%)u > 0.
A

Let v € (;(;M;(Si; N T1). Then since v € T,

1A (2 (u 4+ v)/2,2 (v — u)/k)| < m(2Fu)?, 0<I<k-1,

and so
a k
D (=1 ( ) F2Mu + 24(v — u)/k:)‘ < m(2ku)?.
i
i=0
Multiplying by |a;4+1| and adding over [ =0,1,...,k — 1 we have
k A=
>0 (4) T anas @t 2o - /)] < ma
i=0 1=0

where

k—1
my = mz lagyq] - 28
1=0

and so by (1.2),

(2.2)

i(—l)’” (lz) Ap(0,u+i(v — u)/k)‘ < myut,

Also since v € S forall 1 <i<kand 0 <j < k=1 _ [k,

|Ap((k/2 + 7)) (u+i(v —u)/k),u+i(v —u)/k)] < m(2u)>
for1<i<k, 0<j<2t1!_p,

Hence from Theorem MZ3,
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(2.3) | AR(0,u+i(v —u)/k)|
2k—1_j
< 3G [A((R/2+ ) (u+ i(v — u) k), u+i(v —u) /k)]
§=0
<mou®  forl<i<Ek,

where

From (2.2) and (2.3),
A (0,u)| < Mu?,
where

"k
M = .
mi + ma ; (Z)
Thus the lemma is proved when v > 0. The proof is similar when u is
negative. This completes the proof of the first part.
By the first part and by Lemma 2.3, f is bounded in some neighbourhood
of almost all points of E. Let S be the set of all points x € E such that f is
bounded in some neighbourhood of x and

(2.4) Ap(z,h) = O(|h])  as h — 0.
Then p*(S) = p*(E). We shall show that for each x € S,
(2.5) Ai(z,h) =0(h') ash—0,i=1,... k-1,

and this will complete the proof.
Let x € S. We may suppose that x = 0. Then by (2.4) there are M >
0 and § > 0 such that f is bounded in [—6,0] and if 0 < |u| < J then
using (1.1),
| Ap_1(0,u) — 2571 Ap_1(0,u/2)] < M|ul>.
Replacing u successively by u/2,u/22,...,u/2" ! we have

| Ap—1(0,1/2) — 2871 Ap_1(0,u/2%)] < Mu/2),

|Ap—1(0,u/2" 1) — 2871 A1 (0,u/2M)] < M|u/2" 1 .
Multiplying these inequalities by 1,2F=1 22(k=1)  o(n=1((k=1) regpec-
tively and adding we get

n—1
| A1 (0,u) — 27D Ay (0,0/27)] < Mlul* D " (1/227F 1)
i=0
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Hence
(2.6) 27D AL_1(0,u/2") /uF
n—1
< Mu RN (122 | A (0,u) /uf Y i 0 < ul < 6.
=0

So by (1.2) and (2.6) there is a constant My such that
2.7) 27D AL (0,u/27) JuF T < My for 6/2F < Ju| < §/2F L.

Now for each w satisfying 0 < |w| < §/2* there is a positive integer n
such that 2"|w| € [§/2%,§/2%!] and hence putting 2"w = u we get, from
(2.7),

| Ap_1(0,w) /" | < M.

Thus

(2.8) Ap—1(0,u) = O(u"1),

which proves (2.5) for i = k — 1. We suppose that

(2.9) A;(0,u) =O0w!) forl1<j<k-—1.

Then there is L > 0 such that for small |u| we have as above
|Aj-1(0,u) — 2771 A;_1(0,u/2)| < Lluf,
A 1(0,uf2) — 27 Ay (0,0/2%)] < Lju/2p,

|A;1(0,u/2" 1) — 277 LA, 1(0,u/2™)] < Lju/2" 7).

Multiplying these inequalities by 1,271, 220-1 2(=1)U~1) regpectively
and adding we get

1A 1(0,u) — 27UV A, (0,u/27)] < 2L|u)’.
Hence
(210)  [2"07DA; 4 (0,0/2") /w7 < 2LJu| + A1 (0,u) /7.

Now just as (2.8) is deduced from (2.6) the following can be deduced from
(2.10):

(2.11) A; 1(0,u) = O(u/ 1),

Thus if (2.9) holds then (2.11) holds. Since (2.8) holds the proof is complete
by induction.

LEMMA 2.5. Under the hypothesis of Lemma 2.4, f(x)) exists and is finite
a.e. on E, [\ denoting the greatest integer not exceeding \.
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Proof. First we consider the case [\| =k — 1. If k = 1 then [A\] = 0 and
so the result is trivially true. Suppose k > 2. Then by Lemma 2.4,

(2.12) Aj(z,u) =0(u") asu—0for1 <i<k-—1

at almost all points of E. So taking ¢ = 1, by the Denjoy—Young—Saks
Theorem [7, p. 271], f’ exists and is finite a.e. on E. If k = 2 then [\] =1
and so the result follows. Therefore we suppose k > 3. Then as above f’
exists and is finite a.e. on E. Suppose that f(,)(z) exists and is finite a.e. on
E for afixed r, 1 <r <k —1. Let S C E be the set of points « such that
Joy(x) exists and (2.12) holds. Then p*(S) = p*(E). Let z € S be fixed.
We may suppose that

foy(w)=0 fori=0,1,...,r
Then from Theorem MZ2,
(2.13) lir%ji(a:,u)/ui =0 fori=1,...,r

Since A,y (x,u) = O(u™+?), there are M > 0 and § > 0 such that
(2.14) |Ar(z,2u) — 2" Ay (z,u)| < Mlu|™t" for 0 < |u| < 4.

Replacing u by u/2,u/22,...,u/2" successively and then multiplying the
terms so obtained by 27,22",...,2"" respectively and then adding them
with (2.14) we get, as in Lemma 2.4,

|A(z,2u) — 27D A (2, u/27)| < 2M |u|"t
Dividing by |u|" and letting n — oo gives, by (2.13),
A (z,2u)] < 2M|u|™*! for |u| < 6,
that is, A.(z,u) = O(u"*!) as u — 0. Repeating these arguments we ulti-
mately get A;(z,u) = O(u"t!) as u — 0, that is,
flx+u)=0@™") asu—0.
Since x € S is arbitrary, by Theorem 2.2, f, 1) exists a.e. on S, that is,
a.e. on E. So by induction f(;_1) exists finitely a.e. on E. Thus the result
is true in this case.

To complete the proof we suppose that the result is true for [A\] = k —
1+7r, r>0.Let [\] =k+7r. Then A =k + 17+ «a, where 0 < a < 1. Since
|Ag(z,u)] < mlul*  for 0 < |u| < 1/m, x € E,

we have

| Az, u)| < mlu/F~7 e for 0 < |u| < 1/m, z € E.

Therefore, since the result is true for [A\] = k—1+7r, we conclude that f(;_14,)
exists and is finite a.e. on E. Since |Ag(x,u)| < mlu|* for 0 < |u| < 1/m
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and z € F and since [\| =k + r,

(2.15) |Ap(z,u)| < mlu**t" for 0 < |u| < 1/m, = € E.
Therefore proceeding as in Lemma 2.4 we conclude that
(2.16) Ap(z,u) = OWFt")  asu— 0

at almost all points of E. Let S be the set of points x of E such that
J(k—14r)(z) exists and (2.16) holds. Then p*(S) = p*(E). Let x € S; we may
suppose that f;)(r) =0 fori=0,1,...,k — 1. Then from Theorem MZ2,

(2.17) lirrbji(a:,u)/ui =0 fori=1,...,k—1.
By (2.16) there are M > 0 and 0 > 0 such that
(2.18) |Ap_1(z,2u) — 25"V Ay (2, u)| < M|u/F*" for 0 < |u| < 6.

Replacing u by u/2,u/22,...,u/2" successively and then multiplying the
inequalities so obtained by 2F—1 22(k=1)  9n(k—1) regpectively and then
adding them with (2.18) we get

| Ap_q(z,2u) — 2 FDE=D AL (2, 0/27)| < 2M |ulFH7
Dividing by |u|*~! and letting n — co we get from this, and from (2.17),
| A (2, 2u)| < 2M Jul"+T,

that is, Ap_1(z,u) = O(uF*7). Repeating these arguments we get A (z,u)
= O(u**tT), that is, f(x + u) = O(uF*"). Since x € S is arbitrary, by
Theorem 2.2, f(j4,) exists a.e. on §, that is, a.e. on E. This shows that
the result is true for [\] = k+4r. This completes the proof of the lemma by
induction.

3. Main results

THEOREM 3.1. Let £ € N and A € R be such that A > k — 1. Let
f:R — R be measurable. If

(3.1) Ap(z, b ) =O(h*) ash—0
for each point x in a set E C R then f(\)) exists and is finite a.e. on E.
Proof. For each positive integer m let
Ep = {2 :|A(z,u)] < mlul* for 0 < |u| < 1/m}.
Then {E,,} is a non-decreasing sequence and by (3.1), E C |J>°_, E,,. By

m=1
Lemma 2.5, f([y)) exists and is finite a.e. on E,, for each m. This completes

the proof.

The following theorem shows that Theorem 3.1 is not true for A = k —1,
k> 2.
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THEOREM 3.2. For each integer k > 2 there exists a function F such that
Ap(w,h; F) = o(h*1)

uniformly for all x, F*=2) exists and is continuous for all x but Fl—1) can
exist at most on a set of measure zero.

To prove the theorem we need the following lemma.

LEMMA 3.3. Let k > 2 be an integer, f be locally integrable and uniformly
smooth for all x and F be the (k — 2)th integral of f. Then

Ap(z,2h; F) = o(h*71)
uniformly for all x.

Proof. The case of k = 2 is trivial. We assume that £ > 2 and k is even.
The case of k odd is similar. Let & = 2m. Since f is uniformly smooth for
all x, for every € > 0 there exists § > 0, independent of x, such that

|(f(x+h)+ f(x—h)—2f(x))/h| <e for 0 < h < ¢ and for all .
So
(3.2) —ct < flx+t)+ flx—1t) —2f(x) <et for0<t<h<d.
Integrating the inequality (3.2) repeatedly 2m — 2 times over [0, h] we get
—eh*™=1/(2m — 1)!

F(z+h)+F(x—h 2? 02 hz;F(Q’) Q%ﬂx}
<eh® =t/ (2m — 1)l
Hence
o p2m—2
(3.3) [F(z+h)+ F(z—h)]/2 - Z ol PO () — mf(m)
= o(R*™1),

uniformly for all . Now using the relations

. (P 0 ifg=0,1,....,p—1
3.4 —1)Pi ()i = R A
. ;( ) <2)Z {p! if g =p,

from (3.3) we get
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Azm($,2h7F)
2m /9m

— (—1)2m—3< ) )F(x—i—2jh—2mh)
i=0 J
2m /o9m

= Z(—l)f( ; F(z — 2jh + 2mh)

i=0 J

— 2m Cgf2m = 2(m — j)h) (20) [2(m — j)h]?m=2 )
2, (j LO e @t e Ty @)
+ o(h?™™1)

_ fit h (20) (5 o Y 2m _ 0
2 iy <>L§< 1>< )(2 2j) ]

(2n)>m—2 N VI -

+[(Qm—2)!]?(56);::0(1) <j )(m 7) ] +o(h2m1)

_ 0(h2m71>

uniformly for all x. This completes the proof.
Proof of Theorem 3.2. Let
flx) = Z n~Y2p " cos(b"x), b > 1 an integer.
n=1
Then f is continuous and uniformly smooth [9, I, p. 47, Theorem 4.10]. For

k=2 let F = f and for k > 2 let F' be the (k — 2)th integral of f. We first
show that

(3.5) lim Ay (w, h; F) JhF1

can exist finitely at most on a set of measure zero. Let k = 2. Then

(3.6)  Au(w,2h; f)/(2h) = [f(z + h) — f(x = h)]/(2R)

_ Z n~Y2sin(b"x)[sin(b"R) / (b"h)).

(3.7) lim A (,2h; £)/(2h)
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exists finitely on a set of positive measure then from (3.6) the series

(3.8) - Z n~ 12 sin(b"x)

is Lebesgue summable on a set of positive measure. Since (3.8) is a lacunary
series, by [9, I, p. 203, Theorem 6.4], > °° | 1/n is convergent, which is a
contradiction. So (3.7) exists finitely at most on a set of measure zero.

Next suppose k > 2. We prove that (3.5) can exist finitely at most on a
set of measure zero. We suppose that k is even. Let k = 2m. Now

A m,l(x,Qh;F noN e m "Ny 2m—
(3.9) 2 (oh)zn—1 Zn Zsin(b"z) (sin(b™R)/ (b™h))*™ L.

If the limit of the left hand side of (3.9) exists on a set of positive measure
as h — 0 then the series (3.8) is (R, 2m — 1) summable and so as in the case
of k =2, 377 1/n would be convergent, which is a contradiction. Thus
the limit of the left hand side of (3.9) as h — 0 can exist at most on a set
of measure zero. If k is odd then it can be similarly proved that (3.5) can
exist finitely at most on a set of measure zero.

Now from Lemma 3.3 and the construction of the function F' we see that
Ap(z,h; F) = o(h*71)

uniformly for all . Also it is clear that F(*~2) exists and is continuous for
all z. To complete the proof we show that F(,_1) can exist at most on a set
of measure zero.

Let, if possible, F{;_1) exist finitely on a set £ of positive measure. Then
forx € F,

k—1

F(x+h)= Z ZiF(j)(x) + o(hk_l)

j=0
and so for x € E, by (3.4),

Ap-1(z,2h; F)
k-1

= Y (e (’“ X 1)F(m 1 2ih— (k— 1)h)

B ()

k—1
(26 — k+1 JnI _
Z F(j)(fL‘) -+ O(hk 1)

Jj=0
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k—1 j k—1 . . A
=> —Fi (@) > (kT <k , 1) (20 — k +1)7 + o(h*71)
j=0 J: i=0 ¢

= (2h)" 1 Fg_py(2) + o(h*),
and so for all x € E,
,llii% Ap—1(x,2h; F)/(2h)F 1 = Fl—1)(2),

which contradicts the fact that (3.5) can exist at most on a set of measure
zero and thus the proof is complete.

Theorem 3.2 shows that in Theorem 3.1 the condition A > k — 1 is
necessary. However, the following theorem shows that this condition can be
relaxed if the existence of f([y)),a is assumed.

THEOREM 3.4. Let k e N, pe N, p<k—1andlet f: R — R be
measurable. Let

Ag(z,u) =0WP)  asu—0,

Jor each point x in a set E. If f,) . exists finitely on E then f,) exists a.e.
on E.

We need the following lemma.
LEMMA 3.5. Let k€ N, pe N and let f : R — R be measurable. Let
E = E, ={x: fi),a(x) exists finitely and
| A (x,u)| < m|u|P for 0 < |u| < 1/m}.
Then f,) exists a.e. on K.

Proof. Let g € F be a point of outer density of E. We suppose

zo = 0= f(z0) = f1),a(20) = ... = f(p),a(0)-
Let 0 <e < 1. Let
G ={z:[f(z)| <elz’/p'}.
Then G is measurable and 0 € G is a point of density of G. Set H = ENG.
Then 0 is a point of outer density of H. Let 0 < n < ¢/(2k). Then by
Lemma 2.1 there is § > 0 such that if 0 < u < § then
p (B) > (1 =nu, p*(C;)>(1-nu,

where

B={veu2u:(ut+v)/2€ H},

Ci={veu2u:v+jlu—v)/ke H}, 0<j<k-1
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Fix v € (0, min(d,1/m)). Let
S ={velu,2u] : |Ar((u+0)/2, (u—0)/Ek)| <m|(u—v)/k["},
Ty ={v e [u,2u] : |f(v+j(u—v)/k)| <elv+ju—v)/k]/p!},
0<j<k-—1.

Since f is measurable, S and 7} are measurable. Also B C S, C; C T; and
hence

u(S) > (1 =nu,  pu(T;) > (1 -n)u.
Therefore

u(ﬁ(s N Tj)) > (1—2kn)u > (1 - e)u.

J
Hence

(ﬂSﬂT ) (u,u+eu) # 0.
T,

J
Chooseve(ﬂl(Sﬂ 5)) N (u,u+eu). Then 0 <v—u<eu<u<l/m
and so

|Ak((u +0)/2, (u = v)/K)| <m|(u—v)/k]P <m(eu)”,

which gives

< > (u+wv)/2+ (4 —k:/2)(u—v)/k)‘ < m(eu)’.

O

Hence

E
=

()] < mleu)? + (’j) (o 4+ §(u—v) /)]

J

Il
o

Since v € Tj for 0 < j <k —1,

k—1
|f(u ]<m€up+z<];>£\v+j (u—v)/k|P/p!

J=

<o 2 (o

<€[m+ oy (5]

This shows that f(u)/uP — 0 as u — 0+.
It can be similarly shown that f(u)/u? — 0 as u — 0—. This completes
the proof of the lemma.
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Proof of Theorem 3.4. For each positive integer m, let
En = {2 fp),a(7) exists finitely and
| Ak (x,u)| < m|u|P for 0 < |u| < 1/m}.
Then {E,,} is a non-decreasing sequence and E C J,,, Eyn. By Lemma 3.5,

f(p) exists a.e. on E,;, and so the result follows.

COROLLARY 3.6. Let p € N, let f : R — R be measurable and let f(x) =0
forx e ECR. If

fle+u) = flz—u) =0W)
or
fle+u)+ flz—u) = 0)
for x € E, then f,) exists a.e. on E.
Proof. Let
Ei={zecFE: f(r+u)— flr—u) =0l)},
Es={zecFE: f(r+u)+ fr—u)=0WP)}.
Then E = E1UE,. Let D; be the set of all points of F; which are also points
of outer density of E;, i = 1,2. Then f(,.(x) =0 for x € Dy U Dy. Also
Ai(z,u) =0WP) asu—0forze Dy,
Ag(z,u) =0WP) asu— 0 forz e Dy.
Hence if p = 1 then by Theorem 3.1, f’ exists finitely a.e. on D; and by
Theorem 3.4, f’ exists finitely a.e. on Do and hence f’ exists a.e. on E. If

p > 2 then by Theorem 3.1, f,) exists finitely a.e. on D; and on Dy and
hence f(,) exists finitely a.e. on E.

The above corollary is a generalization of Lemma 11 of [8, p. 268], since
we are not assuming the measurability of F.
Theorem 3.4 can further be extended to

THEOREM 3.7. Let k e N, p e N, p < k—1andlet f: R — R be
measurable. Let

Ag(z,u) =0WP) asu—0
for each point x in a set E. If f(,_1) .. exists and
—00 < fp)a < f(p)’a <oo onkE
then f,—1) exists and
—00 < fp) < f(p) <o a.e on E.

Proof. The first part follows from Theorem 3.4. The proof of the second
part is similar to that of Theorem 3.4. We give a sketch. The corresponding
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sets in Lemma 3.5 are in this case given by
By = {7 fip_1)(x) exists finitely, |A(z,u)| < m|ul?
for 0 <|ul <1/mand —m < f()a(®) < f(pa(z) <m}
with the assumption that
o= 0= f(w0) = f1),a(z0) = ... = fip—1),a(0),
Gm = {2 [f(x)] < mlz[?/p'},
Ty =A{v € [u,2u] : |f(v+j(u—v)/k)] <mlv+j(u—v)/k["/p'},
0<j<k-1,

and the final step is

0] < [emn+ m( /) > (5]

=0

showing that |f(u)| = O(uP) as u — 0+ and similarly |f(u)| = O(Ju|P) as
u— 0—.

COROLLARY 3.8. Under the hypothesis of Theorem 3.7, if f(p,_1) . €vists
and

—00 < fp)alr) < f(p),a(x) <oco onkE

then f,) exists a.e. on E.

The proof follows from Theorems 3.7 and 2.2.
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