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An extension of a theorem of
Marcinkiewicz and Zygmund on differentiability

by

S. N. M u k h o p a d h y a y and S. M i t r a (Burdwan)

Abstract. Let f be a measurable function such that ∆k(x, h; f) = O(|h|λ) at each
point x of a set E, where k is a positive integer, λ > 0 and ∆k(x, h; f) is the symmetric
difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if λ = k and
if E is measurable then the Peano derivative f(k) exists a.e. on E. Here we prove that if
λ > k − 1 then the Peano derivative f([λ]) exists a.e. on E and that the result is false if
λ = k − 1; it is further proved that if λ is any positive integer and if the approximate
Peano derivative f(λ),a exists on E then f(λ) exists a.e. on E.

1. Introduction. Let f be a real-valued function defined in some neigh-
bourhood of x. Then f is said to have Peano derivative (resp. approximate
Peano derivative) at x of order k if there exist real numbers αr, 1 ≤ r ≤ k,
depending on x and f only such that

f(x+ h) = f(x) +
k∑
r=1

hr

r!
αr +

hk

k!
εk(x, h, f),

where

lim
h→0

εk(x, h, f) = 0 (resp. lim ap
h→0

εk(x, h, f) = 0).

The number αk is called the Peano derivative (resp. approximate Peano
derivative) of f at x of order k and is denoted by f(k)(x) (resp. f(k),a(x)).
For convenience we shall write α0 = f(x) = f(0)(x) = f(0),a(x).

Suppose that f has Peano derivative (resp. approximate Peano deriva-
tive) at x of order k − 1. For h 6= 0 we write

ωk(x, h; f) = ωk(x, h) =
k!
hk

[
f(x+ h)−

k−1∑
r=0

hr

r!
αr

]
.

1991 Mathematics Subject Classification: Primary 26A24.
The work of the second author was supported by a CSIR grant of India.

[21]



22 S. N. Mukhopadhyay and S. Mitra

The upper and lower Peano derivates (resp. approximate Peano derivates)
of f at x of order k are defined by

f (k)(x) = lim sup
h→0

ωk(x, h) (resp. f (k),a(x) = lim sup ap
h→0

ωk(x, h)),

f (k)(x) = lim inf
h→0

ωk(x, h) (resp. f
(k),a

(x) = lim inf ap
h→0

ωk(x, h)).

The symmetric difference of f at x of order k, where k is a positive
integer, is defined by

∆k(x, h) = ∆k(x, h; f) =
k∑

i=0

(−1)k−i
(
k

i

)
f

(
x+ ih− k

2
h

)
.

Marcinkiewicz and Zygmund proved in a deep theorem (Theorem 1 of [5])
that if f is measurable and if for a positive integer k,

∆k(x, h; f) = O(|h|k) as h→ 0,

for x in a measurable set E then f(k) exists a.e. on E. For k = 2 this is
proved in [9, II, p. 78, Theorem 4.30]. For general k the proof is very long
and involved (it is worth mentioning that the proof offered by Marcinkiewicz
and Zygmund has a lacuna filled by Fejzic and Weil [3]).

The purpose of the present paper is to extend this result. In fact we
prove in Theorem 3.1 that if f is measurable and if for a positive integer k,

∆k(x, h; f) = O(|h|λ) as h→ 0

for x in a set E (not necessarily uniformly), where λ > k − 1, then f([λ])
exists a.e. on E, [λ] denoting the greatest integer not exceeding λ. For λ = k
this gives the result of Marcinkiewicz and Zygmund cited above. Also we
show in Theorem 3.2 that this result is not true for λ = k − 1. Thirdly, in
Theorem 3.4 we show that if we further assume that the approximate Peano
derivative f(k−1),a exists on E then the above result is true for λ = k − 1.
In fact, we prove in Theorem 3.4 that if f is measurable and if

∆k(x, h; f) = O(|h|p) as h→ 0

for every x in a set E, where k and p are positive integers, and if f(p),a exists
finitely on E then f(p) exists a.e. on E.

We consider the difference

(1.1)

∆̃1(x, h) = ∆̃1(x, h; f) = f(x+ h)− f(x),

∆̃n(x, h) = ∆̃n(x, h; f)

= ∆̃n−1(x, 2h; f)− 2n−1∆̃n−1(x, h; f), n ≥ 2.

It is known [5] that there are constants aj , 0 ≤ j ≤ k, depending on j
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and k only (with ak = 1) such that

(1.2) ∆̃k(x, h) = ∆̃k(x, h; f) = a0f(x) +
k∑

j=1

ajf(x+ 2j−1h), k ≥ 1,

the coefficients aj satisfying
k∑

j=0

aj = 0,
k∑

j=1

2jsaj = 0, s = 1, . . . , k − 1.

Throughout the paper R, N, µ, µ∗ will denote the set of reals, the set
of positive integers, Lebesgue measure and Lebesgue outer measure respec-
tively.

Theorem MZ1. Let f : R→ R be measurable and let f(k−1)(x) exist for
each x in a measurable set E ⊂ R. If

ωk(x, h) = O(1) as h→ 0 for x ∈ E
then f(k) exists a.e. on E.

The above theorem was proved by Denjoy [2] for continuous functions.
The theorem in its present form is in Lemma 7 of [5] the proof of which is
long and involves the theory of Fourier series and analytic functions. Later
a real-variable proof was given by Marcinkiewicz [4] (see also [9, II, p. 76,
Theorem 4.24]). A simple and completely different proof is given in [1, p. 54,
Corollaries 20 and 21]; see also [6].

Theorem MZ2. If f(k)(x) exists then there is a number λk depending
on k only such that

λk lim
u→0

∆̃k(x, u; f)
uk

= f(k)(x).

Theorem MZ3. There are constants C0, C1, . . . , C2k−1−k such that

∆̃k(x, h) =
2k−1−k∑

i=0

Ci∆k

(
x+ 1

2kh+ ih, h
)
.

Theorems MZ2 and MZ3 are also due to Marcinkiewicz and Zygmund.
See Art. 9 and Art. 12 respectively of [5] for the proof.

We need the following definition.

Definition. A function f defined in some neighbourhood of a point x0

is said to be smooth at x0 if

(1.3) ∆2(x0, h; f) = o(h) as h→ 0,

and f is said to be uniformly smooth on a set E if (1.3) holds uniformly
on E.
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2. Auxiliary results

Lemma 2.1. Let 0 be a point of outer density of E, let α, β ∈ R with
β 6= 0 and let ε > 0. For each u > 0 set

Bu = {v ∈ [u, 2u] : αu+ βv ∈ E}.
Then there is a δ > 0 such that if 0 < u < δ then µ∗(Bu) > u(1− ε).

This is Lemma 1 of [3].

Theorem 2.2. Let f : R → R be measurable and let f(k−1) exist on a
set E, k ∈ N. If

ωk(x, h) = O(1) as h→ 0 for x ∈ E,
then f(k) exists finitely a.e. on E.

P r o o f. Let G be the set of all x such that f(k−1) exists. Then G is
measurable and f (k) and f

(k)
are measurable on G (see [6]). Hence the set

H = {x ∈ G : −∞ < f
(k)

(x) ≤ f (k)(x) <∞}
is measurable. So by Theorem MZ1, f(k) exists finitely a.e. on H. Since
E ⊂ H, the result follows.

Lemma 2.3. Let k ∈ N and let f : R→ R be measurable. Let

∆̃k(x, u; f) = O(1) as u→ 0

for each x in a set E ⊂ R. Then f is bounded in some neighbourhood of
almost every point of E.

P r o o f. The proof is given in [3, Theorem 2]. We give a proof for com-
pleteness.

For each m ∈ N let

Em = {x ∈ E : |∆̃k(x, u)| < m for 0 < |u| < 1/m},
Fm = {x ∈ E : |f(x)| < m}.

Since E =
⋃
m(Em ∩ Fm), it suffices to prove that f is bounded on some

neighbourhood of every point of outer density of Em ∩ Fm. Let x0 be such
a point; suppose x0 = 0. By Lemma 2.1 there is δ with 0 < δ < 1/m such
that if 0 < u < δ then

µ∗(B) > u(1− 1/(4k)) and µ∗(Cr) > u(1− 1/(4k)),

where
B = [u, 2u] ∩ Em ∩ Fm,
Cr = {v ∈ [u, 2u] : v + (u− v)/2k−r−1 ∈ Fm}, 0 ≤ r ≤ k − 2.

Fix 0 < u < δ. Let

Dr = {v ∈ [u, 2u] : |f(v + (u− v)/2k−r−1)| <m}.
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Then Dr is measurable and Cr ⊂ Dr for 0 ≤ r ≤ k − 2. Now by the
measurability of Dr,

µ∗(B ∩Dr) ≥ (1− 2/(4k))u for 0 ≤ r ≤ k − 2,

and hence applying this argument repeatedly,

µ∗
(
B ∩

⋂
r

Dr

)
≥ (1− k/(4k))u > 0.

Choose v ∈ B ∩⋂rDr. Since v ∈ Em and |(u− v)/2k−1| < u < δ < 1/m,

|∆̃k(v, (u− v)/2k−1)| < m,

|f(v)| < m, |f(v + (u− v)/2k−r−1)| < m for 0 ≤ r ≤ k − 2.

Hence from (1.2),

|f(u)| ≤ |∆̃k(v, (u− v)/2k−1)|+ |a0f(v)|

+
k−1∑

j=1

|ajf(v + 2j−1(u− v)/2k−1)|

≤ m
[
1 +

k−1∑

j=0

|aj |
]
.

This completes the proof.

Lemma 2.4. Let k ∈ N, λ ∈ R and λ > k − 1. Let f : R → R be
measurable. Let m ∈ N and let

E = Em = {x : |∆k(x, h)| < m|h|λ for 0 < |h| < 1/m}.
Then

∆̃k(x, h) = O(|h|λ) as h→ 0 a.e. on Em.

If k ≥ 2 then

∆̃i(x, h) = O(hi) as h→ 0 a.e. on Em, 1 ≤ i ≤ k − 1.

P r o o f. Let x0 ∈ Em be a point of outer density of Em. We may suppose
that x0 = 0. Let 0 < ε < 1/4k. Then by Lemma 2.1 there is δ with 0 < δ < 1
such that if 0 < u < δ then

(2.1) µ∗(Bij) > (1− ε)u and µ∗(Cl) > (1− ε)u,
where

Bij = {v ∈ [u, 2u] : (k/2 + j)(u+ i(v − u)/k) ∈ E},
1 ≤ i ≤ k, 0 ≤ j ≤ 2k−1 − k,

Cl = {v ∈ [u, 2u] : 2l(u+ v)/2 ∈ E}, 0 ≤ l ≤ k − 1.



26 S. N. Mukhopadhyay and S. Mitra

Fix u ∈ (0,min[δ/(2m), 1/(m · 2k)]). Set

Sij = {v ∈ [u, 2u] :

|∆k((k/2 + j)(u+ i(v − u)/k), u+ i(v − u)/k)| < m(2u)λ},
Tl = {v ∈ [u, 2u] : |∆k(2l(u+ v)/2, 2l(v − u)/k)| < m(2ku)λ}.

Since f is measurable, the sets Sij , Tl are all measurable. Also Bij ⊂ Sij
and Cl ⊂ Tl. Therefore from (2.1),

µ(Sij) > (1− ε)u and µ(Tl) > (1− ε)u.
Since the complement of

⋂
i

⋂
j

⋂
l(Sij ∩Tl) with respect to [u, 2u] has mea-

sure ≤ 4kεu, we have

µ
(⋂

i

⋂

j

⋂

l

(Sij ∩ Tl)
)
≥ (1− 4kε)u > 0.

Let v ∈ ⋂i
⋂
j

⋂
l(Sij ∩ Tl). Then since v ∈ Tl,

|∆k(2l(u+ v)/2, 2l(v − u)/k)| < m(2ku)λ, 0 ≤ l ≤ k − 1,

and so
∣∣∣∣
k∑

i=0

(−1)k−i
(
k

i

)
f(2lu+ 2li(v − u)/k)

∣∣∣∣ < m(2ku)λ.

Multiplying by |al+1| and adding over l = 0, 1, . . . , k − 1 we have
∣∣∣∣
k∑

i=0

(−1)k−i
(
k

i

) k−1∑

l=0

al+1f(2lu+ 2li(v − u)/k)
∣∣∣∣ < m1u

λ,

where

m1 = m

k−1∑

l=0

|al+1| · 2kλ

and so by (1.2),

(2.2)
∣∣∣∣
k∑

i=0

(−1)k−i
(
k

i

)
∆̃k(0, u+ i(v − u)/k)

∣∣∣∣ < m1u
λ.

Also since v ∈ Sij for all 1 ≤ i ≤ k and 0 ≤ j ≤ 2k−1 − k,

|∆k((k/2 + j)(u+ i(v − u)/k), u+ i(v − u)/k)| < m(2u)λ

for 1 ≤ i ≤ k, 0 ≤ j ≤ 2k−1 − k.
Hence from Theorem MZ3,
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(2.3) |∆̃k(0, u+ i(v − u)/k)|

≤
2k−1−k∑

j=0

|Cj | · |∆k((k/2 + j)(u+ i(v − u)/k), u+ i(v − u)/k)|

≤ m2u
λ for 1 ≤ i ≤ k,

where

m2 =
2k−1−k∑

j=0

|Cj | · 2λ.

From (2.2) and (2.3),

|∆̃k(0, u)| < Muλ,

where

M = m1 +m2

k∑

i=1

(
k

i

)
.

Thus the lemma is proved when u > 0. The proof is similar when u is
negative. This completes the proof of the first part.

By the first part and by Lemma 2.3, f is bounded in some neighbourhood
of almost all points of E. Let S be the set of all points x ∈ E such that f is
bounded in some neighbourhood of x and

(2.4) ∆̃k(x, h) = O(|h|λ) as h→ 0.

Then µ∗(S) = µ∗(E). We shall show that for each x ∈ S,

(2.5) ∆̃i(x, h) = O(hi) as h→ 0, i = 1, . . . , k − 1,

and this will complete the proof.
Let x ∈ S. We may suppose that x = 0. Then by (2.4) there are M >

0 and δ > 0 such that f is bounded in [−δ, δ] and if 0 < |u| ≤ δ then
using (1.1),

|∆̃k−1(0, u)− 2k−1∆̃k−1(0, u/2)| < M |u|λ.
Replacing u successively by u/2, u/22, . . . , u/2n−1, we have

|∆̃k−1(0, u/2)− 2k−1∆̃k−1(0, u/22)| < M |u/2|λ,
...

|∆̃k−1(0, u/2n−1)− 2k−1∆̃k−1(0, u/2n)| < M |u/2n−1|λ.
Multiplying these inequalities by 1, 2k−1, 22(k−1), . . . , 2(n−1)(k−1) respec-
tively and adding we get

|∆̃k−1(0, u)− 2n(k−1)∆̃k−1(0, u/2n)| < M |u|λ
n−1∑

i=0

(1/2λ−k+1)i.
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Hence

(2.6) |2n(k−1)∆̃k−1(0, u/2n)/uk−1|

≤M |u|λ−k+1
n−1∑

i=0

(1/2λ−k+1)i + |∆̃k−1(0, u)/uk−1| if 0 < |u| ≤ δ.

So by (1.2) and (2.6) there is a constant M2 such that

(2.7) |2n(k−1)∆̃k−1(0, u/2n)/uk−1| ≤M2 for δ/2k ≤ |u| ≤ δ/2k−1.

Now for each ω satisfying 0 < |ω| ≤ δ/2k there is a positive integer n
such that 2n|ω| ∈ [δ/2k, δ/2k−1] and hence putting 2nω = u we get, from
(2.7),

|∆̃k−1(0, ω)/ωk−1| ≤M2.

Thus

(2.8) ∆̃k−1(0, u) = O(uk−1),

which proves (2.5) for i = k − 1. We suppose that

(2.9) ∆̃j(0, u) = O(uj) for 1 < j ≤ k − 1.

Then there is L > 0 such that for small |u| we have as above

|∆̃j−1(0, u)− 2j−1∆j−1(0, u/2)| < L|u|j ,
|∆̃j−1(0, u/2)− 2j−1∆̃j−1(0, u/22)| < L|u/2|j ,
...

|∆̃j−1(0, u/2n−1)− 2j−1∆̃j−1(0, u/2n)| < L|u/2n−1|j .
Multiplying these inequalities by 1, 2j−1, 22(j−1), . . . , 2(n−1)(j−1) respectively
and adding we get

|∆̃j−1(0, u)− 2n(j−1)∆̃j−1(0, u/2n)| < 2L|u|j .
Hence

(2.10) |2n(j−1)∆̃j−1(0, u/2n)/uj−1| < 2L|u|+ |∆̃j−1(0, u)/uj−1|.
Now just as (2.8) is deduced from (2.6) the following can be deduced from
(2.10):

(2.11) ∆̃j−1(0, u) = O(uj−1).

Thus if (2.9) holds then (2.11) holds. Since (2.8) holds the proof is complete
by induction.

Lemma 2.5. Under the hypothesis of Lemma 2.4, f([λ]) exists and is finite
a.e. on E, [λ] denoting the greatest integer not exceeding λ.
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P r o o f. First we consider the case [λ] = k− 1. If k = 1 then [λ] = 0 and
so the result is trivially true. Suppose k ≥ 2. Then by Lemma 2.4,

(2.12) ∆̃i(x, u) = O(ui) as u→ 0 for 1 ≤ i ≤ k − 1

at almost all points of E. So taking i = 1, by the Denjoy–Young–Saks
Theorem [7, p. 271], f ′ exists and is finite a.e. on E. If k = 2 then [λ] = 1
and so the result follows. Therefore we suppose k ≥ 3. Then as above f ′

exists and is finite a.e. on E. Suppose that f(r)(x) exists and is finite a.e. on
E for a fixed r, 1 ≤ r < k − 1. Let S ⊂ E be the set of points x such that
f(r)(x) exists and (2.12) holds. Then µ∗(S) = µ∗(E). Let x ∈ S be fixed.
We may suppose that

f(i)(x) = 0 for i = 0, 1, . . . , r.

Then from Theorem MZ2,

(2.13) lim
u→0

∆̃i(x, u)/ui = 0 for i = 1, . . . , r.

Since ∆̃r+1(x, u) = O(ur+1), there are M > 0 and δ > 0 such that

(2.14) |∆̃r(x, 2u)− 2r∆̃r(x, u)| < M |u|r+1 for 0 < |u| < δ.

Replacing u by u/2, u/22, . . . , u/2n successively and then multiplying the
terms so obtained by 2r, 22r, . . . , 2nr respectively and then adding them
with (2.14) we get, as in Lemma 2.4,

|∆̃r(x, 2u)− 2r(n+1)∆̃r(x, u/2n)| < 2M |u|r+1.

Dividing by |u|r and letting n→∞ gives, by (2.13),

|∆̃r(x, 2u)| ≤ 2M |u|r+1 for |u| < δ,

that is, ∆̃r(x, u) = O(ur+1) as u → 0. Repeating these arguments we ulti-
mately get ∆̃1(x, u) = O(ur+1) as u→ 0, that is,

f(x+ u) = O(ur+1) as u→ 0.

Since x ∈ S is arbitrary, by Theorem 2.2, f(r+1) exists a.e. on S, that is,
a.e. on E. So by induction f(k−1) exists finitely a.e. on E. Thus the result
is true in this case.

To complete the proof we suppose that the result is true for [λ] = k −
1 + r, r ≥ 0. Let [λ] = k + r. Then λ = k + r + α, where 0 ≤ α < 1. Since

|∆k(x, u)| < m|u|λ for 0 < |u| < 1/m, x ∈ E,
we have

|∆k(x, u)| < m|u|k−1+r+α for 0 < |u| < 1/m, x ∈ E.
Therefore, since the result is true for [λ] = k−1+r, we conclude that f(k−1+r)

exists and is finite a.e. on E. Since |∆k(x, u)| < m|u|λ for 0 < |u| < 1/m
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and x ∈ E and since [λ] = k + r,

(2.15) |∆k(x, u)| < m|u|k+r for 0 < |u| < 1/m, x ∈ E.
Therefore proceeding as in Lemma 2.4 we conclude that

(2.16) ∆̃k(x, u) = O(uk+r) as u→ 0

at almost all points of E. Let S be the set of points x of E such that
f(k−1+r)(x) exists and (2.16) holds. Then µ∗(S) = µ∗(E). Let x ∈ S; we may
suppose that f(i)(x) = 0 for i = 0, 1, . . . , k − 1. Then from Theorem MZ2,

(2.17) lim
u→0

∆̃i(x, u)/ui = 0 for i = 1, . . . , k − 1.

By (2.16) there are M > 0 and δ > 0 such that

(2.18) |∆̃k−1(x, 2u)− 2k−1∆̃k−1(x, u)| < M |u|k+r for 0 < |u| < δ.

Replacing u by u/2, u/22, . . . , u/2n successively and then multiplying the
inequalities so obtained by 2k−1, 22(k−1), . . . , 2n(k−1) respectively and then
adding them with (2.18) we get

|∆̃k−1(x, 2u)− 2(n+1)(k−1)∆̃k−1(x, u/2n)| < 2M |u|k+r.

Dividing by |u|k−1 and letting n→∞ we get from this, and from (2.17),

|∆̃k−1(x, 2u)| ≤ 2M |u|k+r,

that is, ∆̃k−1(x, u) = O(uk+r). Repeating these arguments we get ∆̃1(x, u)
= O(uk+r), that is, f(x + u) = O(uk+r). Since x ∈ S is arbitrary, by
Theorem 2.2, f(k+r) exists a.e. on S, that is, a.e. on E. This shows that
the result is true for [λ] = k+r. This completes the proof of the lemma by
induction.

3. Main results

Theorem 3.1. Let k ∈ N and λ ∈ R be such that λ > k − 1. Let
f : R→ R be measurable. If

(3.1) ∆k(x, h; f) = O(|h|λ) as h→ 0

for each point x in a set E ⊂ R then f([λ]) exists and is finite a.e. on E.

P r o o f. For each positive integer m let

Em = {x : |∆k(x, u)| < m|u|λ for 0 < |u| < 1/m}.
Then {Em} is a non-decreasing sequence and by (3.1), E ⊂ ⋃∞m=1Em. By
Lemma 2.5, f([λ]) exists and is finite a.e. on Em for each m. This completes
the proof.

The following theorem shows that Theorem 3.1 is not true for λ = k−1,
k ≥ 2.
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Theorem 3.2. For each integer k ≥ 2 there exists a function F such that

∆k(x, h;F ) = o(hk−1)

uniformly for all x, F (k−2) exists and is continuous for all x but F(k−1) can
exist at most on a set of measure zero.

To prove the theorem we need the following lemma.

Lemma 3.3. Let k ≥ 2 be an integer , f be locally integrable and uniformly
smooth for all x and F be the (k − 2)th integral of f . Then

∆k(x, 2h;F ) = o(hk−1)

uniformly for all x.

P r o o f. The case of k = 2 is trivial. We assume that k > 2 and k is even.
The case of k odd is similar. Let k = 2m. Since f is uniformly smooth for
all x, for every ε > 0 there exists δ > 0, independent of x, such that

|(f(x+ h) + f(x− h)− 2f(x))/h| < ε for 0 < h < δ and for all x.

So

(3.2) −εt < f(x+ t) + f(x− t)− 2f(x) < εt for 0 < t < h < δ.

Integrating the inequality (3.2) repeatedly 2m− 2 times over [0, h] we get

−εh2m−1/(2m− 1)!

< F (x+ h) + F (x− h)− 2
m−2∑

i=0

h2i

(2i)!
F (2i)(x)− 2

h2m−2

(2m− 2)!
f(x)

< εh2m−1/(2m− 1)!.

Hence

(3.3) [F (x+ h) + F (x− h)]/2−
m−2∑

i=0

h2i

(2i)!
F (2i)(x)− h2m−2

(2m− 2)!
f(x)

= o(h2m−1),

uniformly for all x. Now using the relations

(3.4)
p∑

i=0

(−1)p−i
(
p

i

)
iq =

{
0 if q = 0, 1, . . . , p− 1,
p! if q = p,

from (3.3) we get
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∆2m(x, 2h;F )

=
2m∑

j=0

(−1)2m−j
(

2m
j

)
F (x+ 2jh− 2mh)

=
2m∑

j=0

(−1)j
(

2m
j

)
F (x− 2jh+ 2mh)

=
2m∑

j=0

(−1)j
(

2m
j

)
1
2

[F (x+ 2(m− j)h) + F (x− 2(m− j)h)]

=
2m∑

j=0

(−1)j
(

2m
j

)[m−2∑

i=0

[2(m− j)h]2i

(2i)!
F (2i)(x) +

[2(m− j)h]2m−2

(2m− 2)!
f(x)

]

+ o(h2m−1)

=
m−2∑

i=0

h2i

(2i)!
F (2i)(x)

[ 2m∑

j=0

(−1)j
(

2m
j

)
(2m− 2j)2i

]

+
[

(2h)2m−2

(2m− 2)!
f(x)

2m∑

j=0

(−1)j
(

2m
j

)
(m− j)2m−2

]
+ o(h2m−1)

= o(h2m−1)

uniformly for all x. This completes the proof.

P r o o f o f T h e o r e m 3.2. Let

f(x) =
∞∑
n=1

n−1/2b−n cos(bnx), b > 1 an integer.

Then f is continuous and uniformly smooth [9, I, p. 47, Theorem 4.10]. For
k = 2, let F = f and for k > 2 let F be the (k− 2)th integral of f . We first
show that

(3.5) lim
h→0

∆k−1(x, h;F )/hk−1

can exist finitely at most on a set of measure zero. Let k = 2. Then

∆1(x, 2h; f)/(2h) = [f(x+ h)− f(x− h)]/(2h)(3.6)

= −
∞∑
n=1

n−1/2 sin(bnx)[sin(bnh)/(bnh)].

If

(3.7) lim
h→0

∆1(x, 2h; f)/(2h)
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exists finitely on a set of positive measure then from (3.6) the series

(3.8) −
∞∑
n=1

n−1/2 sin(bnx)

is Lebesgue summable on a set of positive measure. Since (3.8) is a lacunary
series, by [9, I, p. 203, Theorem 6.4],

∑∞
n=1 1/n is convergent, which is a

contradiction. So (3.7) exists finitely at most on a set of measure zero.

Next suppose k > 2. We prove that (3.5) can exist finitely at most on a
set of measure zero. We suppose that k is even. Let k = 2m. Now

(3.9)
∆2m−1(x, 2h;F )

(2h)2m−1 = −
∞∑
n=1

n−1/2 sin(bnx)(sin(bnh)/(bnh))2m−1.

If the limit of the left hand side of (3.9) exists on a set of positive measure
as h→ 0 then the series (3.8) is (R, 2m−1) summable and so as in the case
of k = 2,

∑∞
n=1 1/n would be convergent, which is a contradiction. Thus

the limit of the left hand side of (3.9) as h → 0 can exist at most on a set
of measure zero. If k is odd then it can be similarly proved that (3.5) can
exist finitely at most on a set of measure zero.

Now from Lemma 3.3 and the construction of the function F we see that

∆k(x, h;F ) = o(hk−1)

uniformly for all x. Also it is clear that F (k−2) exists and is continuous for
all x. To complete the proof we show that F(k−1) can exist at most on a set
of measure zero.

Let, if possible, F(k−1) exist finitely on a set E of positive measure. Then
for x ∈ E,

F (x+ h) =
k−1∑

j=0

hj

j!
F(j)(x) + o(hk−1)

and so for x ∈ E, by (3.4),

∆k−1(x, 2h;F )

=
k−1∑

i=0

(−1)k−1−i
(
k − 1
i

)
F (x+ 2ih− (k − 1)h)

=
k−1∑

i=0

(−1)k−1−i
(
k − 1
i

)[ k−1∑

j=0

(2i− k + 1)jhj

j!
F(j)(x) + o(hk−1)

]
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=
k−1∑

j=0

hj

j!
F(j)(x)

k−1∑

i=0

(−1)k−1−i
(
k − 1
i

)
(2i− k + 1)j + o(hk−1)

= (2h)k−1F(k−1)(x) + o(hk−1),

and so for all x ∈ E,

lim
h→0

∆k−1(x, 2h;F )/(2h)k−1 = F(k−1)(x),

which contradicts the fact that (3.5) can exist at most on a set of measure
zero and thus the proof is complete.

Theorem 3.2 shows that in Theorem 3.1 the condition λ > k − 1 is
necessary. However, the following theorem shows that this condition can be
relaxed if the existence of f([λ]),a is assumed.

Theorem 3.4. Let k ∈ N, p ∈ N, p ≤ k − 1 and let f : R → R be
measurable. Let

∆k(x, u) = O(up) as u→ 0,

for each point x in a set E. If f(p),a exists finitely on E then f(p) exists a.e.
on E.

We need the following lemma.

Lemma 3.5. Let k ∈ N, p ∈ N and let f : R→ R be measurable. Let

E = Em = {x : f(p),a(x) exists finitely and

|∆k(x, u)| < m|u|p for 0 < |u| < 1/m}.
Then f(p) exists a.e. on E.

P r o o f. Let x0 ∈ E be a point of outer density of E. We suppose

x0 = 0 = f(x0) = f(1),a(x0) = . . . = f(p),a(x0).

Let 0 < ε < 1. Let

G = {x : |f(x)| ≤ ε|x|p/p!}.
Then G is measurable and 0 ∈ G is a point of density of G. Set H = E ∩G.
Then 0 is a point of outer density of H. Let 0 < η < ε/(2k). Then by
Lemma 2.1 there is δ > 0 such that if 0 < u < δ then

µ∗(B) > (1− η)u, µ∗(Cj) > (1− η)u,

where

B = {v ∈ [u, 2u] : (u+ v)/2 ∈ H},
Cj = {v ∈ [u, 2u] : v + j(u− v)/k ∈ H}, 0 ≤ j ≤ k − 1.
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Fix u ∈ (0,min(δ, 1/m)). Let

S = {v ∈ [u, 2u] : |∆k((u+ v)/2, (u− v)/k)| < m|(u− v)/k|p},
Tj = {v ∈ [u, 2u] : |f(v + j(u− v)/k)| ≤ ε|v + j(u− v)/k|p/p!},

0 ≤ j ≤ k − 1.

Since f is measurable, S and Tj are measurable. Also B ⊂ S, Cj ⊂ Tj and
hence

µ(S) > (1− η)u, µ(Tj) > (1− η)u.

Therefore

µ
(⋂

j

(S ∩ Tj)
)
> (1− 2kη)u > (1− ε)u.

Hence (⋂

j

(S ∩ Tj)
)
∩ (u, u+ εu) 6= ∅.

Choose v ∈ (⋂j(S ∩ Tj)
) ∩ (u, u + εu). Then 0 < v − u < εu < u < 1/m

and so

|∆k((u+ v)/2, (u− v)/k)| < m|(u− v)/k|p < m(εu)p,

which gives
∣∣∣∣
k∑

j=0

(−1)k−j
(
k

j

)
f((u+ v)/2 + (j − k/2)(u− v)/k)

∣∣∣∣ < m(εu)p.

Hence

|f(u)| < m(εu)p +
k−1∑

j=0

(
k

j

)
|f(v + j(u− v)/k)|.

Since v ∈ Tj for 0 ≤ j ≤ k − 1,

|f(u)| < m(εu)p +
k−1∑

j=0

(
k

j

)
ε|v + j(u− v)/k|p/p!

≤ m(εu)p + (ε/p!)
k−1∑

j=0

(
k

j

)
(3u)p

≤ ε
[
m+ (3p/p!)

k−1∑

j=0

(
k

j

)]
up.

This shows that f(u)/up → 0 as u→ 0+.
It can be similarly shown that f(u)/up → 0 as u→ 0−. This completes

the proof of the lemma.
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P r o o f o f T h e o r e m 3.4. For each positive integer m, let

Em = {x : f(p),a(x) exists finitely and

|∆k(x, u)| < m|u|p for 0 < |u| < 1/m}.
Then {Em} is a non-decreasing sequence and E ⊂ ⋃mEm. By Lemma 3.5,
f(p) exists a.e. on Em and so the result follows.

Corollary 3.6. Let p ∈ N, let f : R→ R be measurable and let f(x) = 0
for x ∈ E ⊂ R. If

f(x+ u)− f(x− u) = O(up)

or

f(x+ u) + f(x− u) = O(up)

for x ∈ E, then f(p) exists a.e. on E.

P r o o f. Let
E1 = {x ∈ E : f(x+ u)− f(x− u) = O(up)},
E2 = {x ∈ E : f(x+ u) + f(x− u) = O(up)}.

Then E = E1∪E2. Let Di be the set of all points of Ei which are also points
of outer density of Ei, i = 1, 2. Then f(p),a(x) = 0 for x ∈ D1 ∪D2. Also

∆1(x, u) = O(up) as u→ 0 for x ∈ D1,

∆2(x, u) = O(up) as u→ 0 for x ∈ D2.

Hence if p = 1 then by Theorem 3.1, f ′ exists finitely a.e. on D1 and by
Theorem 3.4, f ′ exists finitely a.e. on D2 and hence f ′ exists a.e. on E. If
p ≥ 2 then by Theorem 3.1, f(p) exists finitely a.e. on D1 and on D2 and
hence f(p) exists finitely a.e. on E.

The above corollary is a generalization of Lemma 11 of [8, p. 268], since
we are not assuming the measurability of E.

Theorem 3.4 can further be extended to

Theorem 3.7. Let k ∈ N, p ∈ N, p ≤ k − 1 and let f : R → R be
measurable. Let

∆k(x, u) = O(up) as u→ 0

for each point x in a set E. If f(p−1),a exists and

−∞ < f (p),a ≤ f (p),a <∞ on E

then f(p−1) exists and

−∞ < f (p) ≤ f (p) <∞ a.e. on E.

P r o o f. The first part follows from Theorem 3.4. The proof of the second
part is similar to that of Theorem 3.4. We give a sketch. The corresponding
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sets in Lemma 3.5 are in this case given by

Em = {x : f(p−1),a(x) exists finitely, |∆k(x, u)| < m|u|p
for 0 < |u| < 1/m and −m < f (p),a(x) ≤ f (p),a(x) < m}

with the assumption that

x0 = 0 = f(x0) = f(1),a(x0) = . . . = f(p−1),a(x0),

Gm = {x : |f(x)| ≤ m|x|p/p!},
Tj = {v ∈ [u, 2u] : |f(v + j(u− v)/k)| ≤ m|v + j(u− v)/k|p/p!},

0 ≤ j ≤ k − 1,

and the final step is

|f(u)| ≤
[
εm+m(3p/p!)

k−1∑

j=0

(
k

j

)]
up

showing that |f(u)| = O(up) as u → 0+ and similarly |f(u)| = O(|u|p) as
u→ 0−.

Corollary 3.8. Under the hypothesis of Theorem 3.7, if f(p−1),a exists
and

−∞ < f (p),a(x) ≤ f (p),a(x) <∞ on E

then f(p) exists a.e. on E.

The proof follows from Theorems 3.7 and 2.2.
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