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Bing maps and finite-dimensional maps

by

Michael L e v i n (Haifa)

Abstract. Let X and Y be compacta and let f : X → Y be a k-dimensional map. In
[5] Pasynkov stated that if Y is finite-dimensional then there exists a map g : X → Ik such
that dim(f × g) = 0. The problem that we deal with in this note is whether or not the
restriction on the dimension of Y in the Pasynkov theorem can be omitted. This problem
is still open.

Without assuming that Y is finite-dimensional Sternfeld [6] proved that there exists a
map g : X → Ik such that dim(f×g) = 1. We improve this result of Sternfeld showing that
there exists a map g : X → Ik+1 such that dim(f × g) = 0. The last result is generalized
to maps f with weakly infinite-dimensional fibers.

Our proofs are based on so-called Bing maps. A compactum is said to be a Bing com-
pactum if its compact connected subsets are all hereditarily indecomposable, and a map is
said to be a Bing map if all its fibers are Bing compacta. Bing maps on finite-dimensional
compacta were constructed by Brown [2]. We construct Bing maps for arbitrary compacta.
Namely, we prove that for a compactum X the set of all Bing maps from X to I is a dense
Gδ-subset of C(X, I).

1. Introduction. All spaces are assumed to be separable metrizable.
I = [0, 1]. By a map we mean a continuous function. In [5] Pasynkov stated:

Theorem 1.1. Let f : X → Y be a k-dimensional map of compacta.
Then there exists a map g : X → Ik such that f × g : X → Y × Ik is
0-dimensional.

This theorem is equivalent to

Theorem 1.2 (Toruńczyk [7]). Let f , X and Y be as in Theorem 1.1.
Then there exists a σ-compact subset A of X such that dimA ≤ k − 1 and
dim f |X\A ≤ 0.

Now we will prove the equivalence of these theorems. Let f : X → Y be
a map of compacta. The following statements are equivalent:
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(i) There exists a σ-compact (k − 1)-dimensional subset A of X such
that dim f |X\A ≤ 0;

(ii) For almost all maps g in C(X, Ik), dim(f × g) ≤ 0 (where almost all
= all but a set of first category);

(iii) There exists a map g : X → Ik such that dim(f × g) ≤ 0.

Note that in (i)–(iii) we do not assume that Y is finite-dimensional.
(i)⇒(ii) (cf. [7]). LetA =

⋃
Ai, where the Ai are compact andAi ⊂ Ai+1.

By Hurewicz’s theorem [3] almost all maps in C(X, Ik) are k-to-1 on every
Ai. Let g be such a map. Since Ai ⊂ Ai+1, g is also k-to-1 on A. Let y ∈ Y
and a ∈ Ik. Clearly (f × g)−1(y, a) ⊂ (f−1(y) \A)∪ g−1(a) and as g−1(a) is
finite,

dim(f × g)−1(y, a) = dim(f−1(y) \A) ≤ 0.

(ii)⇒(iii) is obvious and for a proof of (iii)⇒(i) see [6].
In this note we study the following problem which is still open.

Problem 1.3. Do Theorems 1.1 and 1.2 hold without the finite-dimen-
sionality assumption on Y ?

Sternfeld [6] made a significant progress in solving Problem 1.3.

Theorem 1.4 ([6]). Let f : X → Y be a k-dimensional map of compacta.
Then for almost all maps g : X → Ik, dim(f × g) ≤ 1.

Theorem 1.5 ([6]). Let f : X → Y be a k-dimensional map of compacta.
Then there exists a σ-compact (k− 1)-dimensional subset A of X such that
dim f |X\A ≤ 1.

Note that from the proof of the implication (i)⇒(ii) it follows that The-
orem 1.4 can be derived from Theorem 1.5.

The approach of [6] does not allow one to reduce the dimension of f to 0
in Theorems 1.4 and 1.5 by removing a σ-compact finite-dimensional subset
A. This case is left open in [6]. In this note we prove:

Theorem 1.6. Let f : X → Y be a k-dimensional map of compacta.
Then there exists a map g : X → Ik+1 such that dim(f × g) ≤ 0. Equiv-
alently , there exists a σ-compact k-dimensional subset A of X such that
dim f |X\A ≤ 0.

Theorem 1.7. Let f : X → Y be a weakly infinite-dimensional map of
compacta. Then there exists a σ-compact weakly infinite-dimensional subset
A of X such that f |X\A is 0-dimensional.

The last theorem generalizes the analogous result of [6]. There the di-
mension of f |X\A is reduced to 1.

Our approach is based on some auxiliary maps which we will call Bing
maps. A compactum is said to be a Bing space if each of its subcontinua
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is hereditarily indecomposable. We will say that a map is a Bing map if
its fibers are Bing spaces. Bing maps on finite-dimensional compacta were
constructed by Brown [2]. We construct Bing maps on arbitrary compacta.
Namely, we prove:

Theorem 1.8. Let X be a compactum. Almost all maps in C(X, I) are
Bing maps.

See [4] for another application of Bing maps.
In the next section we will also use:

Theorem 1.9 (Bing [1]). Any two disjoint closed subsets of a compactum
can be separated by a Bing compactum.

Theorem 1.10 (Bing [1]). In an n-dimensional (strongly infinite-dimen-
sional) Bing compactum X there exists a point x∈X such that every non-
trivial continuum containing x is n-dimensional (strongly infinite-dimen-
sional).

2. Proofs

P r o o f o f T h e o r e m 1.8. Let Q = {(x1, x2, . . .) : xi ∈ I} be the
Hilbert cube and let

D = {(F0, F1, V0, V1) : Fi, Vi ⊂ Q, Fi are closed and disjoint,

Vi are disjoint neighborhoods of Fi}.
Following [1] we say that A ⊂ Q is D-crooked for D = (F0, F1, V0, V1) ∈ D
if there is a neighborhood G of A in Q such that for every ψ : I → G with
ψ(0) ∈ F0 and ψ(1) ∈ F1 there exist 0 < t0 < t1 < 1 such that ψ(t0) ∈ V1

and ψ(t1) ∈ V0. Clearly

(i) if A is D-crooked then there exists a neighborhood A ⊂ G which is
also D-crooked.

Actually, in [1] it is proved that:

(ii) a compactum A ⊂ Q is a Bing space if and only if A is D-crooked
for every D ∈ D, and

(iii) there exists a sequence D1, D2, . . . ∈ D such that for every com-
pactum A ⊂ Q, A is a Bing space if and only if A is Di-crooked for every Di.

We say that a map g : X ⊂ Q → I is D-crooked if its fibers are D-
crooked.

Let X ⊂ Q be compact and let D ∈ D.

(iv) The set of all D-crooked maps from X to I is open in C(X, I).
Let g : X → I be D-crooked. By (i) for every y ∈ I there is a neighbor-

hood Uy such that g−1(Uy) is also D-crooked. Let ε > 0 be so small that
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every subset of I of diameter ≤ ε is contained in some Uy. One can show
that every map ε-close to g is D-crooked and (iv) follows.

(v) The set of all D-crooked maps from X to I is dense in C(X, I).
Let g : X → I. We will approximate g by a D-crooked map. By an

arbitrary small change of g we may avoid the ends of I and hence it may be
assumed that g(X) does not contain 0 and 1.

Let ε > 0. Take y1 = 0 < y2 < . . . < yn = 1 such that yj+1 − yj < ε. Let
δ > 0 be so small that yj + δ < yj+1 − δ for every j. By Theorem 1.9 take
Bing compacta Sj which separate between g−1([0, yj−δ]) and g−1([yj+δ, 1]),
j = 2, . . . , n−1 (note that we regard the empty set as a Bing space). Modify
g on every Mj = g−1([yj − δ, yj + δ]), j = 2, . . . , n− 1, so that the image of
Mj is contained in [yj − δ, yj + δ] and the fibers of yj − δ, yj and yj + δ are
g−1(yj − δ), Sj and g−1(yj + δ) respectively.

So without loss of generality we may assume that Aj = g−1(yj) are Bing
spaces for all j = 1, . . . , n. Let A =

⋃
Aj . Then A is a Bing space. Let

D = (F0, F1, V0, V1). Take disjoint closed neighborhoods F ′i of Fi such that
F ′i ⊂ Vi and define D′ = (F ′0, F

′
1, V0, V1) and V ′i = intF ′i . By (ii), A is

D′-crooked and by (i) we can take a D′-crooked neighborhood B of A in Q.
We claim that G = B ∪ V ′0 ∪ V ′1 is D-crooked. Let ψ : I → G satisfy

ψ(0) ∈ F0 and ψ(1) ∈ F1. Clearly there exist 0 ≤ b0 < b1 ≤ 1 such that
ψ(bi) ∈ ∂V ′i ⊂ F ′i and ψ([b0, b1]) ⊂ B\(V ′1∪V ′2) ⊂ B. Since B is D′-crooked,
there exist b0 < t0 < t1 < b1 such that ψ(t0) ∈ V1 and ψ(t1) ∈ V0 and
therefore G is D-crooked.

Clearly T = X \G is D-crooked and since T does not meet A, A ∪ T is
also D-crooked. Set Xj = g−1([yj , yj+1]) and Tj = Xj ∩ T . Then Tj does
not meet Aj and Aj+1. So we can take maps g′j : Xj → [yj , yj+1] such
that g′j

−1(yj) = Aj ∪ Tj and g′j
−1(yj+1) = Aj+1. Define g′ : X → I by

g′(x) = g′j(x) for x ∈ Xj . Then g′ is well-defined and ε-close to g. Every
fiber of g′ is contained in either A ∪ T or G. So g′ is D-crooked and (v)
follows.

To complete the proof of the theorem we apply the Baire theorem to
(iii)–(v).

P r o o f o f T h e o r e m 1.6. By Theorem 1.8 take a Bing map ψ : X→I.
Define p = f × ψ and

Dn = {D : D is a continuum contained in a fiber of p, diamD ≥ 1/n}.
Set Bn =

⋃
D∈Dn D and B =

⋃
Bn. Then Bn is compact. Since f is k-

dimensional, dimD ≤ k for every D ∈ Dn.
Let us show that dimψ|Bn ≤ k. Indeed, for every a ∈ I, A = ψ−1(a) is

a Bing compactum. Clearly Bn ∩ A =
⋃{D : D ∈ Dn and D ⊂ A}. Hence

by Theorem 1.10, dim(Bn ∩A) ≤ k. So dimψ|Bn ≤ k.
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By Theorem 1.2 and (ii) in the introduction, for every Bn almost all
maps ϕ in C(X, Ik) satisfy dim(ψ × ϕ)|Bn = 0 and hence almost all maps
ϕ satisfy dim(ψ × ϕ)|B = 0. Let ϕ be such a map. It is easy to see that for
g = ψ × ϕ : X → Ik+1, f × g is 0-dimensional and we are done.

P r o o f o f T h e o r e m 1.7. We need the following

Lemma 2.1. Let f : X → Y be a perfect (= closed with compact fibers)
map with dimY = 0 and let T be the union of trivial components of X.
Then dimT = 0.

P r o o f. Let x ∈ T and let G be a neighborhood of x in X. Take disjoint
open sets V1 and V2 such that x ∈ V1 ⊂ G and f−1(y) ⊂ V where y = f(x)
and V = V1 ∪ V2. Set U = Y \ f(X \ V ). Then V is open and y ∈ U . Let H
be clopen in Y such that y ∈ H ⊂ U . Then V ′ = f−1(H) is also clopen in
X and V ′ ⊂ V . Thus V ′ = V ′1 ∪ V ′2 is a disjoint decomposition of V ′ with
V ′i = V ′ ∩ Vi and therefore the V ′i are clopen in X. Clearly x ∈ V ′1 ⊂ G and
we are done.

Returning to the proof of Theorem 1.7, let ψ, p and Bn be as in the
proof of Theorem 1.6. By the same reasoning we see that the Bn are weakly
infinite-dimensional. Clearly p is also weakly infinite-dimensional. By [6],
Lemma 1, there exists a σ-compact zero-dimensional subset Z of Y × I
such that for every y ∈ Y , Uy = ({y} × I) \ Z is zero-dimensional. Define
A1 = p−1(Z) and A2 =

⋃
n≥1Bn. Set A = A1 ∪ A2 and let us show that A

is the desired set.
Obviously A is σ-compact and weakly infinite-dimensional. Let y ∈ Y .

Define Vy = p−1(Uy) and let Ty = the union of trivial components of Vy. By
Lemma 2.1, dimTy = 0. Clearly Ty = Vy \A2. Also clearly

Ty = Vy \A2 = p−1(Uy) \A2 = p−1(({y} × I) \ Z) \A2

= (p−1({y} × I) \ p−1(Z)) \A2 = (f−1(y) \A1) \A2

= f−1(y) \ (A1 ∪A2) = f−1(y) \A.
So f−1(y) \A is zero-dimensional and we are done.
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