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A note on strange nonchaotic attractors

by

Gerhard K e l l e r (Erlangen)

Abstract. For a class of quasiperiodically forced time-discrete dynamical systems
of two variables (θ, x) ∈ T1 × R+ with nonpositive Lyapunov exponents we prove the
existence of an attractor Γ with the following properties:

1. Γ is the closure of the graph of a function x = φ(θ). It attracts Lebesgue-a.e.
starting point in T1 × R+. The set {θ : φ(θ) 6= 0} is meager but has full 1-dimensional
Lebesgue measure.

2. The omega-limit of Lebesgue-a.e. point in T1 × R+ is Γ , but for a residual set of
points in T1 × R+ the omega limit is the circle {(θ, x) : x = 0} contained in Γ .

3. Γ is the topological support of a BRS measure. The corresponding measure theo-
retical dynamical system is isomorphic to the forcing rotation.

Let X = T1 × [0,∞). We study the dynamical system T : X → X,

T (θ, x) = (θ + ω, f(x) · g(θ))

where ω ∈ R \Q, f : [0,∞)→ [0,∞) is bounded C1 and g : T1 → [0,∞) is
continuous. We assume furthermore that f(0) = 0 and that f is increasing
and strictly concave (i.e. 0 < f ′(x)↘). Define

σ := f ′(0) · exp
( \

log g(θ) dθ
)
.

As g is bounded, the integral in this definition is always well defined, al-
though it may be equal to −∞ in which case it is natural to set σ := 0.
(This happens in particular, if g(θ) = 0 for a set of θ’s of positive Lebesgue
measure.) Finally, if no ambiguity can arise, we use the notation (θn, xn) =
Tn(θ, x). With this notation we define the vertical Lyapunov exponent at
(θ, x) as λ(θ, x) = limn→∞(1/n) log ∂xn/∂x if this limit exists. By λ(θ, x)
we denote the corresponding limit superior. In order to make the dependence
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of ∂xn/∂x on θ more explicit we also use the notation

Ln(θ, x) :=
∂xn
∂x

=
n−1∏

k=0

g(θ + kω) · f ′(xk).

Note also that xn ≤ yn for all n if x and y are on the same θ-fiber and if
x < y.

For a measurable function ψ : T1 → [0,∞) define

λψ :=
\
log g(θ) dθ +

\
log f ′(ψ(θ)) dθ.

(Here and henceforth all integrals with dθ are taken over T1.) λψ is well
defined because log f ′ and log g are both bounded from above. The graph
of ψ is called invariant if

f(ψ(θ)) · g(θ) = ψ(θ + ω) for a.e. θ ∈ T1.

An easy induction yields that in this case for a.e. θ ∈ T1,

T k(θ, ψ(θ)) = (θ + kω, ψ(θ + kω)) for all k ∈ N
and hence

λ(θ, ψ(θ)) = lim
n→∞

1
n

logLn(θ, ψ(θ))(1)

= lim
n→∞

1
n

n−1∑

k=0

[log g(θ + kω) + log f ′(ψ(θ + kω))]

=
\
log g(θ) dθ +

\
log f ′(ψ(θ)) dθ = λψ

for a.e. θ by Birkhoff’s ergodic theorem. (Observe that log g(θ) is bounded
from above.)

Theorem 1. Under the above assumptions there is an upper semicon-
tinuous function φ : T1 → [0,∞) with an invariant graph such that :

1) limn→∞(1/n)
∑n−1
k=0 |xk −φ(θk)| = 0 for a.e. θ ∈ T1 and all x > 0. In

particular , the Lebesgue measure on T1 “lifted” to the graph of φ is a BRS
(Bowen–Ruelle–Sinai) measure for T , i.e.

lim
n→∞

1
n

n−1∑

k=0

v(T k(θ, x)) =
\
T1

v(θ, φ(θ)) dθ

for all v ∈ C(X) and a.e. (θ, x) ∈ X.
2) If σ ≤ 1, then φ ≡ 0 and λ(θ, x) = λφ = log σ for a.e. θ ∈ T1 and

each x ≥ 0.
3) If σ > 1, then λ(θ, x) = λφ < 0 for a.e. θ ∈ T1 and all x > 0. The set

{θ : φ(θ) > 0} has full Lebesgue measure. Furthermore,
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(a) if g(θ̂) = 0 for at least one θ̂ ∈ T1, then the set {θ : φ(θ) > 0} is
at the same time meager and φ is Lebesgue-a.e. discontinuous,

(b) if g(θ) > 0 for all θ ∈ T1, then φ(θ) > 0 for all θ ∈ T1. In this
case φ is continuous, and if g is C1, then so is φ.

4) If σ 6= 1, then |xn − φ(θn)| → 0 exponentially fast for Lebesgue-a.e. θ
and each x > 0.

R e m a r k 1. 1) This type of models was previously investigated in
[2, 6]. I thank A. Pikovsky for pointing out to me the problem addressed here.
Indeed, the map S on T1 ×R, S(θ, x) = (θ+ ω, 2σ tanh(x) cos(2πθ)), which
is studied in [6], has the map T on T1 × [0,∞), T (θ, x) = (θ + ω, f(x)g(θ))
with f(x) = 2σ tanh(x) and g(θ) = |cos(2πθ)| as an obvious 2 : 1-factor (1).

2) Case 3(a) of the theorem is the most interesting one. Let Γ be the
graph of the function φ (which is Lebesgue-a.e. discontinuous). Then Γ
contains the circle {(θ, x) : x = 0}, and it is the ω-limit set of Lebesgue-a.e.
(θ, x). As the Lyapunov exponents of T in θ- and x-direction are 0 and
λφ < 0 respectively, Γ is called a strange nonchaotic attractor.

3) Recently Bellack [1] proved a similar result where the base is a dif-
feomorphic map with a solenoidal attractor. He can show additionally that
the graph of φ is dense in the set {(θ, x) : 0 ≤ x ≤ φ(θ)}. For the proof he
uses essentially the presence of periodic points in the solenoid. In the case
considered here I am not able to prove or disprove this property.

4) Related models were also investigated in [4].

Acknowledgements. I thank W. Jansen and an anonymous referee for
many helpful remarks and corrections to previous versions of this note.

The proof of the theorem is based on the following lemma on functions
with an invariant graph.

Lemma 1. Suppose ψ : T1 → [0,∞) has an invariant graph. Then

1) ψ is bounded and either ψ(θ) = 0 for a.e. θ or ψ(θ) > 0 for a.e. θ.
2) If ψ(θ) > 0 for a.e. θ, then λψ < 0.
3) If ψ(θ) = 0 for a.e. θ and if there is a decreasing sequence of bounded

measurable functions ψn : T1 → [0,∞) such that limn→∞ ψn(θ) = ψ(θ) for
all θ ∈ T1, ψn(θ) > 0 for a.e. θ and such that f(ψn(θ)) ·g(θ) = ψn+1(θ+ω),
then λψ = log σ ≤ 0.

4) If λψ < 0, then |xn − ψ(θn)| → 0 exponentially fast for a.e. θ ∈ T1

and all x > 0.
5) If λψ = 0, then ψ(θ) = 0 for a.e. θ ∈ T1 and limn→∞(1/n)

∑n−1
k=0 xk =

0 for a.e. θ ∈ T1 and all x ≥ 0.

(1) Added in proof: This model was also investigated in a recent preprint by Bezhaeva
and Oseledets (Report Nr. 356, Institut für Dynamische Systeme, Universität Bremen).
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6) If λψ ≤ 0, then λ(θ, x) = λψ for a.e. θ ∈ T1 and all x > 0.
7) If λψ ≤ 0 and if ψ̃ is another measurable function with invariant

graph, then ψ̃ = 0 or ψ̃ = ψ a.e.

P r o o f. 1) As ψ(θ + ω) = f(ψ(θ)) · g(θ) and as f and g are bounded,
also ψ is bounded. Since f(0) = 0, the set {θ : ψ(θ) = 0} is invariant under
rotation by ω. Hence this set has either Lebesgue measure 0 or 1.

3) If σ > 0 we have the following estimate: As f(0) = 0 and f(ψn(θ)) =
ψn+1(θ + ω)/g(θ) and f is strictly concave,

f ′(ψn(θ)) <
f(ψn(θ))
ψn(θ)

=
ψn+1(θ + ω)
ψn(θ)g(θ)

≤ ψn(θ + ω)
ψn(θ)g(θ)

for a.e. θ. In particular, θ 7→ log(ψn(θ + ω)/ψn(θ)) has the integrable mi-
norant θ 7→ log f ′(ψn(θ)) + log g(θ) (observe that

T
log g(θ) dθ = log σ −

log f ′(0) > −∞). Invoking the measure theoretic Lemma 2 that we provide
at the end of the paper, it follows that log(ψn(θ + ω)/ψn(θ)) is integrable
and that

T
log(ψn(θ + ω)/ψn(θ)) dθ = 0. Hence\

log f ′(ψn(θ)) dθ <
\
log

ψn(θ + ω)
ψn(θ)

dθ −
\
log g(θ) dθ

= −
\
log g(θ) dθ

such that λψn < 0.
If σ = 0, we have

T
log g(θ) dθ = −∞ and hence also λψn = −∞ < 0.

In both cases the monotone convergence theorem implies that λψ =
limn→∞ λψn ≤ 0.

2) In the special case ψn = ψ for all n the above reasoning yields λψ < 0.
4) For x ≥ ψ(θ) this is an immediate consequence of the facts that

x 7→ Ln(θ, x) decreases, that limn→∞(1/n) logLn(θ, ψ(θ)) = λψ < 0, and of
the mean value theorem. If ψ = 0 a.e. we are thus done. Otherwise ψ > 0
a.e. and we proceed as follows for 0 < x < ψ(θ): Let

q(x) :=
xf ′(x)
f(x)

if x > 0 and q(0) = 1.

Then q : [0,∞) → R is continuous, 0 < q ≤ 1, and as f is strictly concave,
q(x) = 1 if and only if x = 0. Using the concavity of f once more it follows
that

ψ(θn)− xn
ψ(θn−1)− xn−1

=
f(ψ(θn−1))− f(xn−1)

ψ(θn−1)− xn−1
· g(θn−1)

≤ f ′(xn−1)g(θn−1)

= q(xn−1) · f(xn−1)
xn−1

g(θn−1) = q(xn−1) · xn
xn−1

.
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Hence
ψ(θn)− xn

xn
=
ψ(θn−1)− xn−1

xn−1
· q(xn−1),

and by induction

|ψ(θn)− xn| = xn︸︷︷︸
≤M

·
n−1∏

i=0

q(xi)

︸ ︷︷ ︸
≤1

·
∣∣∣∣
ψ(θ0)− x0

x0

∣∣∣∣ .

If xn → 0, then |ψ(θn) − xn| → 0. Otherwise xn 6→ 0, and it follows that∏n−1
i=0 q(xi)→ 0 so that also in this case |ψ(θn)− xn| → 0. In particular,

lim
n→∞

1
n

n−1∑

k=0

log f ′(xk) = lim
n→∞

1
n

n−1∑

k=0

log f ′(ψ(θk))

because x 7→ log f ′(x) is continuous, and it follows from (1) that

lim
n→∞

1
n

logLn(θ, x) = λψ < 0.

Now the exponential convergence |ψ(θn) − xn| → 0 follows as for x ≥ ψ(θ)
above.

5) If λψ = 0, then ψ = 0 a.e. by 1) and 2) of the lemma. As f and g are
bounded, also the sequence (xk) is bounded, and it suffices to show that for
any ε > 0,

(2) lim
n→∞

Zn
n

:= lim
n→∞

1
n

n−1∑

k=0

1{xk>ε} = 0.

As f is strictly concave, the function κ(x) = f(x)/(xf ′(0)) (x > 0) is de-
creasing with limx→0 κ(x) = 1 and κ(x) < 1 for x > 0.

Given (θ0, x0), fix some δ > 0 and let Aδ = {n ∈ N : Zn/n > δ}. We
observe that

xn = g(θn−1)f(xn−1) = κ(xn−1)g(θn−1)f ′(0)xn−1.

By induction we obtain, for n ∈ Aδ,

xn =
n−1∏

i=0

κ(xi) ·
n−1∏

k=0

(g(θk)f ′(0)) · x0 ≤ κ(ε)nδ · Ln(θ, 0) · x0.

As λ(θ, 0) = λψ = 0 for a.e. θ by assumption and as κ(ε)δ < 1, this proves
that limn∈Aδ,n→∞ xn = 0. As f and g are continuous, it follows that for
each N > 0,

lim
n∈Aδ,n→∞

max
0≤j≤N

xn+j = 0.
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Applying this assertion to N = [δ−1] we obtain some n0 = n0(θ0, x0, δ) such
that for n ≥ n0 we have: If n ∈ Aδ but (n− 1) 6∈ Aδ, then

Zn+j = Zn = Zn−1 + 1 ≤ (n− 1)δ + 1 ≤
{

2(n+ j)δ for 0 ≤ j < N ,
(n+ j)δ for j = N .

In particular, (n+N) 6∈ Aδ, and it follows that Zn ≤ 2nδ for all n ≥ n0.
As δ > 0 was arbitrary, this implies (2).

6) Because of the continuity of f ′ this is an immediate consequence of 4)
and 5).

7) If ψ̃(θ) is not equal to 0 for a.e. θ, then ψ̃(θ) > 0 for a.e. θ by 1).
Applying 4) or 5) to ψ yields in view of the ergodic theorem

\
|ψ̃(θ)− ψ(θ)| dθ = lim

n→∞
1
n

n−1∑

k=0

|ψ̃(θk)− ψ(θk)|

= lim
n→∞

1
n

n−1∑

k=0

|(ψ̃(θ0))k − ψ(θk)| = 0

for a.e. θ0 ∈ T1, i.e. ψ̃ = ψ a.e.

P r o o f o f T h e o r e m 1.

1. The definition of φ. Denote by π1 and π2 the projections from X onto
T1 and [0,∞) respectively. Define for n ∈ N

φn : T1 → [0,∞), φn(θ) = π2 ◦ Tn(θ − nω,M)

where M := sup(θ,x) f(x)g(θ). Then

φn+1(θ) = π2 ◦ Tn(T (θ − (n+ 1)ω,M))

= π2 ◦ Tn(θ − nω, f(M)g(θ − (n+ 1)ω))

where the second argument is bounded byM . As an easy induction argument
shows, π2 ◦ Tn is isotonic as a function of its second argument, and we
conclude that

(3) φn+1(θ) ≤ π2 ◦ Tn(θ − nω,M) = φn(θ).

Hence

φ(θ) := lim
n→∞

φn(θ) = inf
n
φn(θ)

is well defined. As the infimum of a decreasing sequence of continuous func-
tions φ is upper semicontinuous, all sets {θ : φ(θ) < ε} with ε > 0 are open.
Hence {θ : φ(θ) = 0} is a decreasing intersection of open sets. If g(θ̂) = 0
and if we set θ̂n := θ̂ − nω, then φn(θ̂k) = 0 for k = 0, . . . , n − 1 so that
φ̂(θ̂k) = 0 for all k. So, in this case, the sets {θ : φ(θ) < ε} are also dense in
T1 and {θ : φ(θ) = 0} is residual, i.e. {θ : φ(θ) > 0} is meager.
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Observe also that φ has an invariant graph:

f(φ(θ)) · g(θ) = lim
n→∞

f(φn(θ)) · g(θ) = lim
n→∞

π2 ◦ T (θ, φn(θ))(4)

= lim
n→∞

π2 ◦ T (Tn(θ − nω,M)) = lim
n→∞

φn+1(θ + ω)

= φ(θ + ω).

2. Consequences of the lemma. If σ ≤ 1 we apply the lemma to ψ ≡ 0.
As in this case λψ = log σ ≤ 0 by definition of λψ, we conclude from 7) of
the lemma applied to ψ̃ = φ that φ(θ) = 0 for a.e. θ. The rest of assertions
1) and 2) of the theorem follow from 4), 5) and 6) of the lemma. Finally, as
the statements of the theorem are only about a.e. θ ∈ T1, we may assume
that φ ≡ 0.

If σ > 1, we apply 1) and 3) of the lemma to ψ = φ to conclude that
φ(θ) > 0 for a.e. θ. Now 2) of the lemma implies λφ < 0, assertion 1) follows
from 4) of the lemma, and λ(θ, x) = λφ for a.e. θ ∈ T1 and all x > 0
follows from 6) of the lemma. Statement 3(a), i.e. the meagerness of the set
{θ : φ(θ) > 0} in case g(θ̂) = 0, was already proved above, and the proof of
3(b) is deferred to item 3.

Finally, if σ 6= 1, then λφ < 0 by 2) and 3), and assertion 4) follows from
4) of the lemma.

3. The “non-strange” case g > 0, σ > 1. If g(θ) > 0 for all θ, the function
θ 7→ log g(θ) is continuous on T1. In this case (1/n)

∑n−1
k=0 log(f ′(0) · g(θk))

converges uniformly in θ to log σ > 0 by the Kronecker-Weyl equidistribu-
tion theorem. Hence there is n0 > 0 such that Ln0(θ, 0) > σn0/2 > 1 for
all θ ∈ T1, and by continuity there is δ > 0 such that the same estimate
holds for Ln0(θ, x) with 0 ≤ x ≤ δ. Hence, by the mean value theorem, the
x-component of Tn0(θ, δ) is greater than δ.

Define functions

ψn : T1 → [0,∞), ψn(θ) = π2 ◦ Tn(θ − nω, δ) (n ≥ 0)

in analogy with the definition of the functions φn. Then ψn0 > δ = ψ0, and
we obtain an increasing sequence (ψjn0)j≥0 of continuous functions bounded
above by M . Its pointwise limit has an invariant graph (cf. the proof of
(4)) and thus coincides with φ a.e. by Lemma 1.7. Consider the sequence
(ψk+jn0)j≥0 for fixed k. As ψk+jn0(ω) = π2 ◦T k(θ−kω, ψjn0(θ−kω)), as T k

is continuous and as the graph of φ is invariant, the sequence (ψk+jn0)j≥0

converges a.e. to φ, too, and it follows that limn→∞ ψn(θ) = φ(θ) for a.e. θ.
In particular there is some N > n0 such that λψN < (1/2)λφ < 0. Invoking
the equidistribution theorem once more it follows that there is n1 > N such
that



146 G. Keller

1
n

logLn(θ, x) ≤ 1
n

logLn(θ, ψN (θ)) =
1
n

n−1∑

k=0

log(f ′(ψN (θk)) · g(θk))(5)

<
1
2
λψN < 0

for all θ ∈ T1, x ≥ ψN (θ) and n ≥ n1. Hence the sequence (ψn)n≥n1 of
continuous functions converges uniformly (and exponentially fast!) to φ so
that φ is continuous, too.

If g is even continuously differentiable, then

DTn(θ, x)

=
n∏

k=1

DT (θn−k, xn−k) =
n∏

k=1

(
1 0

f(xn−k)g′(θn−k) f ′(xn−k)g(θn−k)

)

=
(

1 0∑n
j=1f(xn−j)g′(θn−j)

∏j−1
k=1f

′(xn−k)g(θn−k)
∏n
k=1f

′(xn−k)g(θn−k)

)

=
(

1 0∑n
j=1 f(xn−j)g′(θn−j)Lj−1(θn−j+1, xn−j+1) Ln(θ, x)

)

and it follows from (5) that

ψ′n(θ) =
∂

∂θ
π2 ◦ Tn(θ − nω, δ)

=
n∑

j=1

f(ψn−j(θ−j))g′(θ−j) · Lj−1(θ−(j−1), ψn−(j−1)(θ−(j−1)))

→
∞∑

j=1

f(φ(θ−j))g′(θ−j) · Lj−1(θ−(j−1), φ(θ−(j−1)))

uniformly as n→∞. Hence φ is differentiable, and φ′ = limn→∞ ψ′n.

The next theorem gives some insight into the dependence of φ and λφ
on the parameter σ for σ close to its critical value 1:

Theorem 2. Fix a map f as above which is normalized to f ′(0) = 1,
and fix a constant K > 0. Consider the function g from above as a param-
eter that can be varied subject to the constraint supθ |g(θ)| ≤ K. (g thus
determines σ.)

1) If a(x) := log f ′(x)/ log(f(x)/x) (0 < x ≤ M) extends continuously
to x = 0 with a(0) > 1, then

λφ = (1− a(0)) · log σ + o(log σ) if σ ↘ 1.

2) If b(x) := − log(f(x)/x) (0 < x ≤M) extends differentiably to x = 0
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with b(0) = 0 and b′(0) > 0, then\
φ(θ) dθ =

log σ
b′(0)

+ o(log σ) if σ ↘ 1.

R e m a r k 2. 1) If f(x) = x/(1 + cxa−1)1/(a−1), a > 1, then a(x) = a
for all x and λφ = (1− a) · log σ exactly.

2) If f(x) = x · e−bx and if b < M−1, then b(x) = bx, f is monotone and
concave on [0,M ], and

T
φ(θ) dθ = (log σ)/b exactly.

P r o o f o f T h e o r e m 2. Without loss of generality we may assume
that f ′(0) = 1. As

φ(θn+1) = f(φ(θn)) · g(θn) = φ(θn) · f(φ(θn)) · g(θn)
φ(θn)

we have

lim
n→∞

1
n

log φ(θn) = lim
n→∞

1
n

n−1∑

k=0

(
log

f(φ(θk))
φ(θk)

+ log g(θk)
)

=
\
log

f(φ(θ))
φ(θ)

dθ +
\
log g(θ) dθ

for a.e. θ, where θn = θ+nω as before. On the other hand, as φ > 0 a.e. and
φ ≤M <∞, we have lim supn→∞(1/n) log φ(θn) = 0 for a.e. θ. Therefore

(6)
\
log

f(φ(θ))
φ(θ)

dθ = −
\
log g(θ) dθ = − log σ.

Observe that f(x) < x for all x > 0 as f ′(0) = 1 and f is strictly concave.
So (6) implies that φ = φg → 0 in measure if log σ ↘ 0. (Here we made use
of the uniform bound M for |fg|.) Hence

λφ = log σ +
\
log f ′(φ(θ)) dθ

= log σ +
\
a(φ(θ)) · log

f(φ(θ))
φ(θ)

dθ

= log σ + a(0) ·
\
log

f(φ(θ))
φ(θ)

dθ +
\
(a(φ(θ))− a(0)) · log

f(φ(θ))
φ(θ)

dθ

= (1− a(0)) · log σ + o(log σ) if log σ ↘ 0,

because φ→ 0 in measure if log σ ↘ 0.
Similarly,

log σ =
\
b(φ(θ)) dθ = b′(0) ·

\
φ(θ) dθ +O

(\
φ(θ)2 dθ

)
,

whence \
φ(θ) dθ =

log σ
b′(0)

+ o(log σ) if log σ ↘ 0.
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We close with a general measure theoretic result used in the proof of
Lemma 1. It was first stated in [3, Lemma 14], but the proof given there
was not quite correct. The present proof is taken from [5] (unpublished).

Lemma 2. Let (Y,F , µ) be a probability space, T : Y → Y a measurable
transformation leaving the measure µ invariant , and f : Y → R a mea-
surable function. If the function f ◦ T − f has a minorant g ∈ L1

µ, then
f ◦ T − f ∈ L1

µ and \
(f ◦ T − f) dµ = 0.

P r o o f. Let fn := max(min(f, n),−n). Then

0 ≤ fn ◦ T − fn ≤ f ◦ T − f on the set {f ◦ T − f ≥ 0} and

0 ≥ fn ◦ T − fn ≥ f ◦ T − f on the set {f ◦ T − f ≤ 0}.
Therefore (fn ◦ T − fn)n>0 is a sequence of bounded functions with com-
mon integrable minorant min(g, 0) and converging to f ◦ T − f . By the
T -invariance of µ it thus follows from Fatou’s lemma that\

(f ◦ T − f) dµ ≤ lim inf
n→∞

\
(fn ◦ T − fn) dµ = 0.

Hence f ◦ T − f ∈ L1
µ. Because of |fn ◦ T − fn| ≤ |f ◦ T − f |, the dominated

convergence theorem finally yields
T

(f ◦ T − f) dµ = 0.
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