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The Zahorski theorem is valid in Gevrey classes

by

Jean S c h m e t s (Liège) and Manuel V a l d i v i a (Valencia)

Abstract. Let {Ω,F,G} be a partition of Rn such that Ω is open, F is Fσ and of
the first category, and G is Gδ . We prove that, for every γ ∈ ]1,∞[, there is an element
of the Gevrey class Γγ which is analytic on Ω, has F as its set of defect points and has G
as its set of divergence points.

1. Introduction. Let f be a real C∞-function on Rn. The set where f
is analytic is of course an open subset of Rn; denote it by Ωf . It is clear
that x belongs to Ωf if and only if the radius of convergence %f (x) of the
Taylor series of f at x is strictly positive and this series represents f on
some neighbourhood of x.

As the set Tf of x ∈ Rn such that %f (x) > 0 is easily seen to be an
Fσ-set, the set Ff = Tf \Ωf is also Fσ and its elements x are characterized
by the fact that %f (x) > 0 and that the Taylor series of f at x represents
f on no neighbourhood of x. By use of a lemma of R. P. Boas ([1], p. 234),
one easily sees that Ff is also a first category set (cf. [3] or [4]).

Finally, one may consider the set Gf = Rn \ Tf , a Gδ-set given by
%f (x) = 0.

It is clear that {Ωf , Gf , Ff} is a partition of Rn.
The Zahorski theorem (cf. [6]) asserts conversely that for every partition

{Ω,F,G} of [0, 1], where Ω is an open subset of [0, 1], F is a first category
Fσ-subset of [0, 1] and G is a Gδ-subset of [0, 1], there is a real C∞-function
f on [0, 1] such that Ω = Ωf , F = Ff and G = Gf . In [3], H. Salzmann and
K. Zeller have provided a shorter proof of the Zahorski theorem and in [4],
J. Siciak has extended this result to Rn.
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The purpose of this paper is to prove that, for every γ ∈ ]1,∞[, the
Zahorski theorem has a solution f belonging to the Gevrey class Γγ .

Let us recall that, for an open subset Ω of Rn and for γ ∈ ]1,∞[, the
Gevrey class Γγ(Ω) is the set of f ∈ C∞(Ω) for which there are constants
a, b > 0 such that

‖Dαf‖Ω ≤ ab|α|(|α|!)γ , ∀α ∈ Nn0 .
If Ω = Rn, we simply write Γγ instead of Γγ(Rn).

It is known that

(a) a function f ∈ C∞(Ω) belongs to Γγ(Ω) if and only if there are
constants c, d > 0 such that

‖Dαf‖Ω ≤ cd|α||α|γ|α|, ∀α ∈ Nn0 .
(b) the Denjoy–Carleman–Mandelbrojt result (cf. [2]) states that, for

every closed ball b of Rn and every γ ∈ ]1,∞[, there is a nonzero function
f ∈ Γγ with support contained in b.

In order to get an efficient way to state the results, for a real C∞-function
f on Rn, let us call the elements of Ωf (resp. Ff ; Gf ) the analytic points
(resp. the defect points; the divergence points) of f .

The purpose of this article is to prove the following result.

Theorem 1.1. For every partition {Ω,F,G} of Rn, where Ω (resp. F ;
G) is an open set (resp. a first category Fσ-set ; a Gδ-set) and every γ ∈
]1,∞[, there is an element of Γγ having Ω (resp. F ; G) as its set of analytic
points (resp. defect points; divergence points).

R e m a r k. It is a direct matter to check that the Zahorski theorem ex-
tends to the case when Rn is replaced by an open or a closed subset of Rn.

2. An auxiliary result. We begin with the following easy result, where,
as usual, Dr(Ω) denotes the space of Cr-functions on the open subset Ω of
Rn which have a compact support contained in Ω.

Proposition 2.1. Let Ω be a nonvoid open subset of Rn. For every
f ∈ C∞(Ω), g ∈ D∞(Ω) and λ > 0, it is well known that

h(x) = π−n/2λn
\
Ω

f(y)g(y)e−λ
2|x−y|2 dy

belongs to C∞(Rn). If moreover a1, a2, b1, b2 > 0 and ζ > 1 are such that

‖Dαf‖Ω ≤ a1b
|α|
1 (|α|!)ζ and ‖Dαg‖Ω ≤ a2b

|α|
2 (|α|!)ζ , ∀α ∈ Nn0 ,

then

‖Dαh‖Rn ≤ a1a2(b1 + b2)|α|(|α|!)ζ , ∀α ∈ Nn0 .
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P r o o f. As g has a compact support contained in Ω, up to extension by
0 on Rn \Ω, we may suppose that the product fg is a D∞-function on Rn
with compact support contained in Ω. So in the definition of h(x), we may
consider that we integrate on Rn. Therefore integrating by parts |α| times
gives

Dαh(x) = π−n/2λn
\
Rn

Dα(fg)(y)e−λ
2|x−y|2 dy,

hence

|Dαh(x)| ≤ π−n/2λn
\
Rn

∑

β≤α

(
α

β

)
|Dβf(y)Dα−βg(y)|e−λ2|x−y|2 dy

≤
∑

β≤α

(
α

β

)
a1a2b

|β|
1 b
|α−β|
2 (|β|!)ζ(|α− β|!)ζ

≤ a1a2(b1 + b2)|α|(|α|!)ζ .

3. Special compact covers of open subsets of Rn. In the following
results, we are going to use systematically the following construction and
notations. Let Ω be a nonvoid open subset of Rn. Then we set

Ωm = (Rn \Ω) ∪ {x ∈ Rn : |x| ≥ m√n}, ∀m ∈ N,
and denote by µ the first positive integer m for which there is at least one
cube Q of the type

n∏

j=1

[2−maj , 2−m(aj + 1)] with a ∈ Zn

contained in Ω and such that d(Q,Ωm) > 2−m
√
n. Let Q1,1, . . . , Q1,p1 be

these cubes (of course, we have p1 ∈ N) and set

H1 =
p1⋃

h=1

Q1,h.

Now we proceed by recursion. If the sets H1, . . . , Hr are obtained, we let
Qr+1,1, . . . , Qr+1,pr+1 denote all the cubes of the type

n∏

j=1

[2−µ−raj , 2−µ−r(aj + 1)] with a ∈ Zn

contained in Ω, disjoint from the interior of H1 ∪ . . . ∪ Hr and such that
d(Q,Ωµ+r) > 2−µ−r

√
n. Then we set

Hr+1 =
pr+1⋃

h=1

Qr+1,h.
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At this point let us remark that

d(Hr,Hr+2) ≥ 2−µ−r, ∀r ∈ N.
Finally, we set

Kr = H1 ∪ . . . ∪Hr, ∀r ∈ N.
It is clear that {Kr : r ∈ N} is a compact cover of Ω such that Kr ⊂ Ko

r+1
for every r ∈ N.

4. The auxiliary functions vr. With this construction in mind and
the notations therein, we now prove the following result.

Proposition 4.1. Let Ω be a nonvoid open subset of Rn and ζ ∈ ]1,∞[.
Then there are integers c, d ∈ N and functions vr−2 ∈ C∞(Rn) for r ∈
{3, 4, 5, . . .} such that

(a) supp(vr−2) ⊂ Kr+1 \Ko
r−2,

(b) vr−2(Rn) ⊂ [0, 1],
(c) vr−2(Hr) = {1},
(d) ‖Dαvr−2‖Rn ≤ c(2r−2d)|α|(|α|!)ζ , ∀α ∈ Nn0 ,

for every integer r > 2.

P r o o f. Let ϕ be an element of C∞(R) for which there are l, d > 0 such
that

ϕ(t) > 0 if |t| < n−1/22−µ−4,

ϕ(t) = 0 if |t| ≥ n−1/22−µ−4,

‖ϕ(s)‖R ≤ lds(s!)ζ , ∀s ∈ N0,
\
R
ϕ(t) dt = 1.

The existence of such a ϕ is provided by the Denjoy–Carleman–Mandelbrojt
theorem (cf. [2]). Then we define

ψ(x) = ϕ(x1) . . . ϕ(xn), ∀x ∈ Rn.
Clearly ψ belongs to C∞(Rn), has compact support equal to [−n−1/22−µ−4,
n−1/22−µ−4]n and satisfies

‖Dαψ‖Rn ≤ lnd|α|(|α|!)ζ , ∀α ∈ Nn0 ,
\
Rn
ψ(x) dx = 1.

Now for every integer r ∈ N, we set

Lr = {x ∈ Rn : d(x,Hr) ≤ 2−µ−r−1},
ψr(x) = 2(r−2)nψ(2r−2x), ∀x ∈ Rn,
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and note that ψr belongs to C∞(Rn) and has a compact support of diameter
2−µ−r−1. Then we set

vr−2(x) = ψr ∗ χLr (x) =
\
Rn
ψr(y)χLr (x− y) dy, ∀x ∈ Rn.

It is well known or easy to check that the function vr−2 belongs to C∞(Rn)
and has the properties (a)–(c) as well as

‖Dαvr−2‖Rn ≤
\
Rn
|Dαψr| dx ≤ `(supp(ψr))‖Dαψr‖Rn ≤ c(2r−2d)|α|(|α|!)ζ

for every α ∈ Nn0 if we set c = ln(n−1/22−µ−3)n, a constant which does not
depend on r > 2 nor on α ∈ Nn0 .

5. Approximation in Gevrey classes and consequences. In the
proof of Theorem 5.2, we shall make use of the following property which
results immediately from the proof of Lemma 5 of [5].

Proposition 5.1 Let r ∈ N and g ∈ Dr(Rn). Then, for every ε > 0,
there is λ0 > 0 such that , for every λ ≥ λ0, the function

h(x) = π−n/2λn
\
Rn
g(y)e−λ

2|x−y|2 dy

belongs to C∞(Rn) (in fact , it is analytic on Rn) and satisfies

‖Dαh−Dαg‖Rn ≤ ε if |α| ≤ r.
Theorem 5.2. Let Ω be a nonvoid open subset of Rn and let ζ, γ be

real numbers such that 1 < ζ < γ. Then, for every f ∈ Γζ(Ω), there is
g ∈ Γγ(Ω) which is analytic on Ω and such that

‖Dαf −Dαg‖Ω\Ks+1 ≤
1
s

if |α| ≤ s and s ≥ 2,

with Ks+1 defined as in the special compact cover of Ω.

P r o o f. Of course there are numbers a, b > 1 such that

‖Dαf‖Ω ≤ ab|α|(|α|!)ζ and ‖Dαvr−2‖Ω ≤ a(2r−2b)|α|(|α|!)ζ
for every integer r ≥ 3 and α ∈ Nn0 .

Now we introduce by recursion a sequence (gs)s∈N in C∞(Rn) such that

‖Dαgs‖Rn ≤ 2s−1as+12(s+1)|α|b|α|(|α|!)ζ , ∀α ∈ Nn0 , ∀s ∈ N.
At this point, to get the functions gs, we just need to consider a strictly

increasing sequence (λs)s∈N of ]0,∞[ but later on we shall make more strin-
gent restrictions on these positive numbers.

We start with

g1(x) = π−n/2λn1
\
Rn
v1(y)f(y)e−λ

2
1|x−y|2 dy, ∀x ∈ Rn,



154 J. Schmets and M. Valdivia

where of course v1f has been extended by 0 on Rn \Ω. By Proposition 2.1,
g1 belongs to C∞(Rn) and satisfies

‖Dαg1‖Rn ≤ a23|α|b|α|(|α|!)ζ ≤ 20a222|α|b|α|(|α|!)ζ
for every α ∈ Nn0 . Now if g1, . . . , gs are obtained, we first remark that we
certainly have

∥∥∥Dα
(
f −

s∑

j=1

gj

)∥∥∥
Ω
≤ ‖Dαf‖Ω +

s∑

j=1

‖Dαgj‖Ω

≤ ab|α|(|α|!)ζ +
s∑

j=1

2j−1aj+12(j+1)|α|b|α|(|α|!)ζ

≤ 2sas+12(s+1)|α|b|α|(|α|!)ζ
for every α ∈ Nn0 and then check by direct use of Proposition 2.1 that the
function gs+1 defined by

gs+1(x) = π−n/2λns+1

\
Rn
vs+1(y)

(
f(y)−

s∑

j=1

gj(y)
)
e−λ

2
s+1|x−y|2 dy

suits our purpose.
Of course we have

∥∥∥Dα
s∑

j=1

gj

∥∥∥
Rn
≤

s∑

j=1

2j−1aj+12(j+1)|α|b|α|(|α|!)ζ

≤ 2sas+12(s+1)|α|b|α|(|α|!)ζ
for every s ∈ N and α ∈ Nn0 .

With this majorant at our disposal, we are in a position to make a more
precise (but not yet final) choice of the numbers λs (we are free to take them
larger but strictly increasing). As we have

lim
|α|→∞

2sas+12(s+1)|α|b|α|(|α|!)ζ
(|α|!)γ = 0, ∀s ∈ N,

there is a strictly increasing sequence (As)s∈N in N such that, for every
s ∈ N,

2sas+12(s+1)|α|b|α|(|α|!)ζ ≤ (|α|!)γ if |α| ≥ As.
Then we can also fix a strictly increasing sequence (Bs)s∈N in N such that

sup
|α|≤As

a(2sb)|α|(|α|!)ζ ≤ Bs, ∀s ∈ N.

Next we introduce the following elements of D∞(Rn):

h1(x) =
{
v1(x)f(x), ∀x ∈ Ω,
0, ∀x ∈ Rn \Ω,
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and, for every integer s ≥ 2,

hs(x) =
{
vs(x)(f(x)−∑s−1

j=1 gj(x)), ∀x ∈ Ω,
0, ∀x ∈ Rn \Ω.

Finally, by recursive use of Proposition 5.1, we may require that the numbers
λs are such that, for every s ∈ N,

‖Dαhs −Dαgs‖Rn ≤ (2s+2+As+1Bs+1)−1 if |α| ≤ As+1.

Now we consider the series

g(x) =
∞∑
s=1

gs(x), ∀x ∈ Ω.

We first prove that g is defined and belongs to C∞(Ω). Indeed, for every
s ∈ N and every α ∈ Nn0 such that |α| ≤ As+1, we get

‖Dαhs+1‖Hs+2 ≤
∑

β≤α

(
α

β

)
‖Dβvs+1‖Hs+2

∥∥∥Dα−β
(
f −

s∑

j=1

gj

)∥∥∥
Hs+2

≤
(∗)

∑

β≤α

(
α

β

)
a(2s+1b)|β|(|β|!)ζ(2s+2+As+1Bs+1)−1

≤
∑

β≤α

(
α

β

)
Bs+1(2s+2+As+1Bs+1)−1

≤ 2−s−2−As+12|α| ≤ 2−s−2

(at (∗), we have used the fact that f −∑s
j=1 gj = hs − gs on Hs+2). As

vs+1(x) = 0 for every x ∈ Ks+1, we get

‖Dαhs+1‖Ks+2 ≤ 2−s−2 if s ∈ N and |α| ≤ As+1,

hence

‖Dαgs+1‖Ks+2 ≤ ‖Dαgs+1 −Dαhs+1‖Ω + ‖Dαhs+1‖Ks+2

≤ (2s+3+As+2Bs+2)−1 + 2−s−2 ≤ 2−s−1

for every s ∈ N and α ∈ Nn0 such that |α| ≤ As+1. Now it is clear that
g ∈ C∞(Ω).

We establish next that g satisfies the inequalities announced in the state-
ment of the theorem—in fact, we are going to prove more. Consider an inte-
ger s ≥ 2 and a multi-index α ∈ Nn0 such that |α| ≤ As—this is certainly the
case if |α| ≤ s. For every x0 ∈ Ω \Ks+1, there is a first integer p ≥ 2 such
that x0 ∈ Ks+p. According to the last established inequality, we of course
have

|Dαgs+r(x0)| ≤ 2−s−r, ∀r ∈ {p− 1, p, p+ 1, . . .}.
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As vs+p−2(Hs+p) = {1}, we also get

∣∣∣Dαf(x0)−Dα

s+p−2∑

j=1

gj(x0)
∣∣∣ = |Dαhs+p−2(x0)−Dαgs+p−2(x0)| ≤ 2−s−p.

Thus

|Dαf(x0)−Dαg(x0)| ≤
∣∣∣Dαf(x0)−Dα

s+p−2∑

j=1

gj(x0)
∣∣∣+

∞∑
r=p−1

|Dαgs+r(x0)|

≤ 2−s−p +
∞∑

r=p−1

2−s−r ≤ 2−s−p + 2−s−p+2 <
1
s
,

and hence

‖Dαf −Dαg‖Ω\Ks+1 ≤
1
s

if s ≥ 2 and |α| ≤ As.
At this step, if we proceed as in the proof of Lemma 6 of [5], we see that

it is possible to select successively the numbers λs in such a way that g is
an analytic function on Ω. (This is our last refinement on the choice of λs.)

We still have to prove that g ∈ Γγ(Ω).
Set

sup
|α|≤A2

‖Dαg‖K3/(|α|!)γ = a1

and consider α ∈ Nn0 and x0 ∈ Ω.
On the one hand, if |α| ≤ A2 and

(i) if x0 ∈ K3, we trivially have

|Dαg(x0)| ≤ ‖Dαg‖K3 ≤ a1(|α|!)γ ,
(ii) if x0 ∈ Ω \K3, we get

|Dαg(x0)| ≤ |Dαf(x0)|+ |Dαf(x0)−Dαg(x0)|
≤ ab|α|(|α|!)ζ +

1
2
≤ 2ab|α|(|α|!)γ .

Hence there are constants a2, b2 > 0 such that

‖Dαg‖Ω ≤ a2b
|α|
2 (|α|!)γ if |α| ≤ A2.

On the other hand, if |α| > A2, we first let s be the integer such that
As < |α| ≤ As+1 (of course s ≥ 2) and then consider the following two
possibilities:

(i) if x0 ∈ Ω \Ks+2, then we have at once

|Dαg(x0)| ≤ |Dαf(x0)|+ |Dαf(x0)−Dαg(x0)|
≤ ab|α|(|α|!)ζ +

1
s+ 1

≤ 2ab|α|(|α|!)γ ,
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(ii) if x0 ∈ Ks+2, we have |Dαgs+r(x0)| ≤ 2−s−r for every r ∈ N, hence
∞∑
r=1

|Dαgs+r(x0)| ≤
∞∑
r=1

2−s−r = 2−s.

But we also have
∣∣∣Dβ

s∑

j=1

gj(x0)
∣∣∣ ≤ 2sas+12(s+1)|β|b|β|(|β|!)ζ

for every β ∈ Nn0 and s ∈ N, hence
∣∣∣Dα

s∑

j=1

gj(x0)
∣∣∣ ≤ (|α|!)γ

since |α| ≥ As. Therefore

|Dαg(x0)| ≤
∣∣∣Dα

s∑

j=1

gj(x0)
∣∣∣+

∞∑
r=1

|Dαgs+r(x0)| ≤ 2−s + (|α|!)γ ≤ 2(|α|!)γ .

Consequently, there are constants a3, b3 > 0 such that

‖Dαg‖Ω ≤ a3b
|α|
3 (|α|!)γ if |α| > A2.

Corollary 5.3. For every open and nonvoid subset Ω of Rn and γ ∈
]1,∞[, there is a function g ∈ Γγ which is

(a) analytic on Ω,
(b) identically 0 on no connected component of Ω,
(c) flat on Rn \ Ω (i.e. identically 0 together with all its derivatives on

Rn \Ω).

P r o o f. If Ω is connected, we choose ζ ∈ ]1, γ[ and f ∈ Γζ(Ω) with
compact support contained in Ko

4 \ K3 and such that ‖f‖Ω > 1/2. Then
Theorem 5.2 provides g ∈ Γγ(Ω) which is analytic on Ω and such that

‖Dαf −Dαg‖Ω\K2+1 ≤
1
2

if |α| ≤ 2

(which implies that g is not identically 0 on Ω) as well as

‖Dαg‖Ω\Ks+1 = ‖Dαg −Dαf‖Ω\Ks+1 ≤
1
s

if |α| ≤ s and s ≥ 3.

It is then well known that extending g by 0 on Rn \Ω provides a solution.
If Ω has a finite number of connected components—say Ω1, . . . , Ωm—

then, for every k ∈ {1, . . . ,m}, there is gk ∈ Γγ which is analytic on Ωk, not
identically 0 on Ωk and flat on Rn \Ωk. It is then clear that g =

∑m
k=1 gk is

a solution.
As Ω always has countably many connected components, to conclude,

we just have to settle the case when {Ωm : m ∈ N} is the set of connected
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components of Ω. For this purpose, fix ζ ∈ ]1, γ[. By the first part of the
proof, for every m ∈ N, there is gm ∈ Γζ which is analytic on Ωm, not
identically 0 on Ωm, flat on Rn \Ωm and such that

‖Dαgm‖Ωm\Km,s+1 ≤
1
s

if |α| ≤ s and s ≥ 2,

where of course Km,r is the rth element of the special cover of Ωm. So, for
every m ∈ N, there are constants am, bm > 1 such that

‖Dαgm‖Rn ≤ amb|α|m (|α|!)ζ , ∀α ∈ Nn0 ,
hence there is an integer km ≥ m such that

amb
|α|
m (|α|!)ζ ≤ (|α|!)γ if |α| ≥ km.

Then we set

cm = ( sup
|α|≤km

amb
|α|
m (|α|!)ζ)−1 and g =

∞∑
m=1

2−mcmgm.

It is clear that g is a function defined on Rn which is analytic on Ω, identi-
cally 0 on no connected component of Ω and identically 0 on Rn\Ω. Now we
prove that g belongs to C∞(Rn) and is flat on Rn\Ω. Let x ∈ Rn\Ω. For ev-
ery integer k ≥ 3, there is r > 0 such that the ball b = {y ∈ Rn : |x− y| ≤ r}
is disjoint from the compact sets K1,k+1, . . . ,Kk,k+1. For every α ∈ Nn0 such
that |α| ≤ k, this leads to

sup
x∈b

∞∑
m=1

2−mcm|Dαgm|

≤ sup
{

sup
m≤k

2−mcm
k

, sup
m>k

2−mcm‖Dαgm‖Rn
}
≤ sup{1/k, 2−k},

hence g belongs to C∞(Rn) and is flat on Rn \ Ω. We still have to prove
that g ∈ Γγ . This is immediate: for every α ∈ Nn0 , we have

‖Dαg‖Rn = sup
m∈N

2−mcm‖Dαgm‖Rn ≤ sup
m∈N

sup{2−m, 2−m(|α|!)γ} ≤ (|α|!)γ

by consideration of the cases |α| ≤ km and |α| > km.

Corollary 5.4. For every γ ∈ ]1,∞[ and nondegenerate compact in-
tervals I, J of R such that J ⊂ Io, there are f ∈ C∞(R) and c > 0 such
that

(a) f has no divergence point ,
(b) f(R) ⊂ [0, 1],
(c) f(R \ I) = {0}, f(Io) ⊂ ]0, 1] and f(J) = {1},
(d) ‖f (k)‖R ≤ ckγk, ∀k ∈ N.
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P r o o f. Let I = [a1, b1] and J = [a2, b2]. We choose ζ ∈ ]1, γ[ and apply
Corollary 5.3 with Ω = ]a1, a2[: there is a nonzero g ∈ Γζ which is analytic
on ]a1, a2[ and such that supp(g) = [a1, a2]. Now we choose k > 0 such that
g1 = kg2 satisfies

T
R g1(x) dx = 1 and define the function f1 on R by

f1(x) =
x\
−∞

g1(t) dt, ∀x ∈ R.

It is clear that f1 belongs to Γζ , is analytic on ]a1, a2[ and satisfies

f1(]−∞, a1]) = {0}, f1(]a1, a2[) ⊂ ]0, 1] and f1([a2,∞[) = {1}.
So it is clear that f1 has no divergence point.

Similarly there is f2 ∈ Γζ which is analytic on ]b2, b1[, has no divergence
point and satisfies

f2(]−∞, b2]) = {0}, f2(]b2, b1[) ⊂ ]0, 1] and f2([b1,∞[) = {1}.
Finally, we set

f(x) = f1(x)f2(b1 + b2 − x), ∀x ∈ R.
Of course f belongs to Γζ and satisfies (a)–(c). Let us establish that f also
satisfies (d). As f ∈ Γζ , there are a, b > 0 such that

‖f (k)‖R ≤ abkkζk, ∀k ∈ N0.

Since

lim
k→∞

abkkζk

kγk
= 0,

there is k0 ∈ N such that abkkζk ≤ kγk for every k ≥ k0; therefore there is
c > 0 such that

‖f (k)‖R ≤ ckγk, ∀k ∈ N.
Proposition 5.5. Let γ ∈ ]1,∞[, let p ∈ N and let I, J be nondegenerate

compact intervals of R such that J ⊂ Io. Then there is m0 ∈ N such that ,
for every integer m ≥ m0, there is a function u ∈ C∞(R) satisfying the
following conditions:

(a) u has no divergence point ,
(b) supp(u) ⊂ I,
(c) ‖u(k)‖R ≤ 2−m, ∀k ∈ {0, 1, . . . ,m},
(d) ‖u(k)‖R ≤ 2kkγk, ∀k ∈ N,
(e) for every x ∈ J , one has either

|u(pm)(x)| ≥ 5−mmγ(p−1)m

or

|u(pm+1)(x)| ≥ 5−(m+1/p)
(
pm+ 1
p+ 1

)γ(p−1)(m+1/p)

.
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P r o o f. Corollary 5.4 provides a function f ∈ C∞(R) and a constant
c > 0 such that f has no divergence point and satisfies

f(R) ⊂ [0, c], f(R \ I) = {0}, f(J) = {1}
as well as

‖f (k)‖R ≤ ckγk, ∀k ∈ N.
For any m ∈ N, we can introduce

a = mγ , b = (22mcmγm)−1,

u(x) = bf(x) sin(ax), ∀x ∈ R.
It is then clear that u is a C∞-function on R satisfying the conditions (a)
and (b) as well as

‖u‖R ≤ bc = (22mmγm)−1 ≤ 2−m.

Moreover, for every x ∈ R and k ∈ N, we have

|u(k)(x)| ≤ b
k∑

h=0

(
k

h

)
|f (h)(x)|ak−h

≤ bc
k∑

h=0

(
k

h

)
hγhak−h ≤ (22mmγm)−1(kγ + a)k,

hence

|u(k)(x)| ≤ (22mmγm)−1(mγ +mγ)m = 2−m if 1 ≤ k ≤ m
as well as

|u(k)(x)| ≤ (22mmγm)−1(kγ + kγ)k ≤ 2kkγk if k > m;

i.e. u also satisfies the conditions (c) and (d).
Now we investigate (e). Let x ∈ J . Of course we have

u(k)(x) = akb sin(kπ/2 + ax), ∀k ∈ N.
Now, for every m ∈ N, we certainly have

sup{|sin(pmπ/2 + ax)|, |sin((pm+ 1)π/2 + ax)|} ≥ 2−1/2.

So on the one hand, if |sin(pmπ/2 + ax)| ≥ 2−1/2, we get

|u(pm)(x)| ≥ 2−1/2apmb = 4−m(
√

2c)−1mγ(p−1)m,

and on the other hand, if |sin((pm+ 1)π/2 + ax)| ≥ 2−1/2, then

|u(pm+1)(x)| ≥ 2−1/2apm+1b = 4−m(
√

2c)−1mγ((p−1)m+1)

≥ 4−(m+1/p)(
√

2c)−1mγ(p−1)(m+1/p)

≥ 4−(m+1/p)(
√

2c)−1
(
pm+ 1
p+ 1

)γ(p−1)(m+1/p)

.
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To conclude, it is enough to take as m0 any positive integer m0 such that

sup{4(
√

2c)1/m0 , 4(
√

2c)1/(m0+1/p)} ≤ 5.

6. Characterizing the sets of divergence points. In this section,
we establish the following result.

Theorem 6.1. For every γ ∈ ]1,∞[ and every Gδ-subset G of Rn, there
is an element of Γγ having G as its set of divergence points.

P r o o f. We proceed in several steps.

S t e p 1: the numbers γj and pj. We fix a strictly increasing sequence
(γj)j∈N0 ⊂ ]1, γ[ and, for every j ∈ N, denote by pj a positive integer such
that pj(γj − γj−1) > γj .

S t e p 2: some auxiliary inequalities and the numbers qr. For every r ∈
N, we certainly have

pr − 1
pr

γr > γr−1 > . . . > γ0 > 1.

Therefore, for every j ∈ {0, . . . , r − 1}, it is a straightforward matter to
check the following limits:

(1) lim
m→∞

5m22prm(prm)γjprm
1

mγr(pr−1)m

= lim
m→∞

(
4.51/prp

γj
r

mγr(pr−1)/pr−γj

)prm
= 0,

(2) lim
m→∞

5m+1/pr22(prm+1)(prm+1)γj(prm+1)
(
pr + 1
prm+ 1

)γr(pr−1)(m+1/pr)

= lim
m→∞

(
4.51/pr (pr + 1)γr(pr−1)/pr

(prm+ 1)γr(pr−1)/pr−γj

)prm+1

= 0,

(3) lim
m→∞

5m(nr)prm(prm+ 1)prm
1

mγr(pr−1)m

= lim
m→∞

(
51/prnrp

γr(pr−1)/pr
r

(prm)γr(pr−1)/pr−1

)prm(prm+ 1
prm

)prm
= 0,

(4) lim
m→∞

5m+1/pr (nr)prm+1(prm+ 2)prm+1
(
pr + 1
prm+ 1

)γr(pr−1)(m+1/pr)

= lim
m→∞

(
51/prnr(pr + 1)γr(pr−1)/pr

(prm+ 1)γr(pr−1)/pr−1

)prm+1(
prm+ 2
prm+ 1

)prm+1

= 0.

With these limits at our disposal, we find that, for every r ∈ N, there is
qr ∈ N such that, for every integer m ≥ qr and j ∈ {1, . . . , r − 1}, we have
the following auxiliary inequalities:
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(I) 4 · 22prm(prm)γjprm < 5−mmγr(pr−1)m,
(II) 4 · 22(prm+1)(prm+ 1)γj(prm+1)

< 5−(m+1/pr)

(
prm+ 1
pr + 1

)γr(pr−1)(m+1/pr)

,

(III) (nr)prm(prm+ 1)prm < 5−mmγr(pr−1)m,

(IV) (nr)prm+1(prm+2)prm+1 < 5−(m+1/pr)

(
prm+ 1
pr + 1

)γr(pr−1)(m+1/pr)

.

S t e p 3: the sets Gl, Qr, Pr, Ir,j and Jr,j. Being a Gδ-subset of Rn, G
is equal to the intersection of a sequence (Gl)l∈N of open subsets of Rn that
we may suppose decreasing.

Proceeding as in the construction of the special compact cover of an
open set, we find that each Gl is the union of countably many compact
cubes Ql,m,h that we may renumber as a sequence, say (Ql,k)k∈N. Then
for every l, k ∈ N, we denote by Pl,k the compact cube in Rn having the
same center as Ql,k and 3

2diam(Ql,k) as diameter. Now we arrange N2 into
a sequence ((lr, kr))r∈N, set

Qr = Qlr,kr and Pr = Plr,kr ,

and let Ir,j and Jr,j for j ∈ {1, . . . , n} be the compact intervals in R such
that

Qr =
n∏

j=1

Jr,j and Pr =
n∏

j=1

Ir,j .

Of course this construction leads to Jr,j ⊂ Io
r,j for every r ∈ N and

j ∈ {1, . . . , n}.
S t e p 4: the functions ur,j and the numbers mr. At this point, every-

thing is set up to introduce the functions ur,j for r ∈ N and j ∈ {1, . . . , n},
as well as the sequence (mr)r∈N of N by the following recursion.

An application of Proposition 5.5 to γ = γ1 and p = p1 leads to an
integer m1 > q1 and to functions u1,1, . . . , u1,n ∈ C∞(R) such that, for
every j ∈ {1, . . . , n},

(a) u1,j has no divergence point,
(b) supp(u1,j) ⊂ I1,j ,
(c) ‖u(k)

1,j ‖R ≤ 2−m1 , ∀k ∈ {0, 1, . . . ,m1},
(d) ‖u(k)

1,j ‖R ≤ 2kkγ1k, ∀k ∈ N,
(e) for every t ∈ J1,j , one has either

|u(p1m1)
1,j (t)| ≥ 5−m1m

γ1(p1−1)m1
1
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or

|u(p1m1+1)
1,j (t)| ≥ 5−(m1+1/p1)

(
p1m1 + 1
p1 + 1

)γ1(p1−1)(m1+1/p1)

.

Now, for an integer r ≥ 2, if the functions ut,j for t ∈ {1, . . . , r − 1}
and j ∈ {1, . . . , n} and the integers m1, . . . ,mr−1 are obtained, we ap-
ply Proposition 5.5 to γ = γr and p = pr and obtain an integer mr >
sup{pr−1mr−1, qr} and functions ur,1, . . . , ur,n ∈ C∞(R) such that, for ev-
ery j ∈ {1, . . . , n},

(a) ur,j has no divergence point,
(b) supp(ur,j) ⊂ Ir,j ,
(c) ‖u(k)

r,j ‖R ≤ 2−mr , ∀k ∈ {0, 1, . . . ,mr},
(d) ‖u(k)

r,j ‖R ≤ 2kkγrk, ∀k ∈ N,
(e) for every t ∈ Jr,j , one has either

|u(prmr)
r,j (t)| ≥ 5−mrmγr(pr−1)mr

r

or

|u(prmr+1)
r,j (t)| ≥ 5−(mr+1/pr)

(
prmr + 1
pr + 1

)γr(pr−1)(mr+1/pr)

.

S t e p 5: the functions ur and u. Finally, for every r ∈ N, we define,

ur(x) = ur,1(x1) . . . ur,n(xn), ∀x ∈ Rn,
and consider the series u =

∑∞
r=1 ur. For every k ∈ N, we certainly have

k ≤ mk. Therefore, for every α ∈ Nn0 ,
∞∑

r=sup{1,|α|}
‖Dαur‖Rn ≤

∞∑

r=sup{1,|α|}
2−nmr ≤ 1;

this implies that u is a bounded C∞-function on Rn. Moreover, for every
α ∈ Nn0 such that |α| ≥ 1, we have

‖Dαu‖Rn ≤
|α|−1∑
r=1

‖Dαur‖Rn +
∞∑

r=|α|
‖Dαur‖Rn

≤
|α|−1∑
r=1

2|α||α|γ|α| + 1 ≤ 3|α||α|γ|α|,

hence u ∈ Γγ .
To conclude, we prove that G is the set of divergence points of u.
On the one hand, if x ∈ Rn does not belong to G, then x 6∈ Gl0 for some

l0, hence x 6∈ Gl for all l ≥ l0. This implies that x belongs to an at most
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finite number of the Pr’s. Therefore for r large enough we have Dαur(x) = 0
for every α ∈ Nn0 and clearly x is not a divergence point of u.

On the other hand, let us prove by contradiction that every element of
G is a divergence point of u. Suppose that x ∈ G is not a divergence point
of u. This implies the existence of s ∈ N such that

|Dβu(x)| ≤ s|β||β||β| if |β| ≥ 1.

As x belongs to each Gl, there is an integer r > 3s such that x ∈ Qr; in
particular, xj ∈ Jr,j for every j ∈ {1, . . . , n}.

Fix j ∈ {1, . . . , n}. The consideration of the property (e) leads to the
following two possibilities.

C a s e 1: We have

(∗) |u(prmr)
r,j (xj)| ≥ 5−mrmγr(pr−1)mr

r .

Then we set αj = prmr and remark that

(1.i) the auxiliary inequality (III) leads to

|u(αj)
r,j (xj)| ≥ (nr)αj (αj + 1)αj ,

(1.ii) the use of (I) in (∗) leads to

r−1∑
t=1

|u(αj)
t,j (xj)|+

∞∑
t=r+1

|u(αj)
t,j (xj)|

≤
r−1∑
t=1

2αjαγtαjj +
∞∑

t=r+1

2−mt ≤ 2
r−1∑
t=1

2prmr (prmr)γtprmr

≤
(∗)

1
2

r−1∑
t=1

2−prmr5−mrmγr(pr−1)mr
r ≤ 1

2
|u(αj)
r,j (xj)|.

C a s e 2: (∗) does not hold. Then we have

|u(prmr+1)
r,j (xj)| ≥ 5−(mr+1/pr)

(
prmr + 1
pr + 1

)γr(pr−1)(mr+1/pr)

,

we set αj = prmr + 1 and remark that

(2.i) the auxiliary inequality (IV) leads to

|u(αj)
r,j (xj)| ≥ (nr)αj (αj + 1)αj ,

(2.ii) the use of (II) in (∗) leads to
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r−1∑
t=1

|u(αj)
t,j (xj)|+

∞∑
t=r+1

|u(αj)
t,j (xj)|

≤
r−1∑
t=1

2αjαγtαjj +
∞∑

t=r+1

2−mt ≤ 2
r−1∑
t=1

2prmr+1(prmr + 1)γt(prmr+1)

≤
(∗)

1
2

r−1∑
t=1

2−(prmr+1)5−(mr+1/pr)
(
prmr + 1
pr + 1

)γr(pr−1)(mr+1/pr)

≤ 1
2
|u(αj)
r,j (xj)|.

So setting α = (α1, . . . , αn) yields

|Dαu(x)| ≥ |Dαur(x)| −
r−1∑
t=1

|Dαut(x)| −
∞∑

t=r+1

|Dαut(x)|

≥ |Dαur(x)| −
n∏

j=1

( r−1∑
t=1

|u(αj)
t,j (xj)|+

∞∑
t=r+1

|u(αj)
t,j (xj)|

)

≥ |Dαur(x)| −
n∏

j=1

1
2
|u(αj)
r,j (xj)| ≥ 1

2
|Dαur(x)|.

For every j ∈ {1, . . . , n}, as αj belongs to {mrpr,mrpr + 1}, we certainly
have αj + 1 ≥ |α|/n. Therefore

|Dαu(x)| ≥ 1
2
|Dαur(x)| = 1

2

n∏

j=1

|u(αj)
r,j (xj)|

≥ 1
2

n∏

j=1

(nr)αj (αj + 1)αj ≥ 1
2

(nr)|α|
( |α|
n

)|α|
=

1
2
r|α||α||α|

and finally, as we have chosen r > 3s, we arrive at the following contradic-
tion:

|Dαu(x)| ≥ 1
2

(3s)|α||α||α| > s|α||α||α|.

7. Proof of Theorem 1.1. We first fix some ζ ∈ ]1, γ[. We next apply
Theorem 6.1 to get u ∈ Γζ having G as its set of divergence points. We then
apply Theorem 5.2 to get h ∈ Γγ(Rn \G−) which is analytic on Rn \ G−
and such that

‖Dαu−Dαh‖(Rn\G−)\Ks+1 ≤
1
s

if |α| ≤ s and s ≥ 2

(where of course Ks is the sth compact set corresponding to the special
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compact cover of the open set Rn \G−). So the function

f : Rn → R, x 7→
{
u(x) if x ∈ G−,
h(x) if x ∈ Rn \G−,

belongs to Γγ , is analytic on Rn \ G− and has G as its set of divergence
points.

We now apply Corollary 5.3 to get g ∈ Γγ which is analytic on Ω, iden-
tically 0 on no connected component of Ω and flat on Rn \Ω; in particular,
g has no divergence point.

To conclude one just has to check that the function f + g suits our
purpose: f+g certainly belongs to Γγ , is analytic on Ω (since Ω ⊂ Rn \G−)
and has G as its set of divergence points. Moreover, no point x of F can be
a divergence point (since F and G are disjoint), nor an analytic point (this
would imply that f + g is analytic on some open ball b centered at x; this
in turn implies that b and G are disjoint, so f must be analytic on b; finally,
g is analytic hence flat on b, contrary to the fact that x must belong to the
boundary of Ω).
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