The Zahorski theorem is valid in Gevrey classes

by
Jean Schmets (Liège) and Manuel Valdivia (Valencia)

Abstract

Let $\{\Omega, F, G\}$ be a partition of \mathbb{R}^{n} such that Ω is open, F is F_{σ} and of the first category, and G is G_{δ}. We prove that, for every $\left.\gamma \in\right] 1, \infty[$, there is an element of the Gevrey class Γ_{γ} which is analytic on Ω, has F as its set of defect points and has G as its set of divergence points.

1. Introduction. Let f be a real C_{∞}-function on \mathbb{R}^{n}. The set where f is analytic is of course an open subset of \mathbb{R}^{n}; denote it by Ω_{f}. It is clear that x belongs to Ω_{f} if and only if the radius of convergence $\varrho_{f}(x)$ of the Taylor series of f at x is strictly positive and this series represents f on some neighbourhood of x.

As the set T_{f} of $x \in \mathbb{R}^{n}$ such that $\varrho_{f}(x)>0$ is easily seen to be an F_{σ}-set, the set $F_{f}=T_{f} \backslash \Omega_{f}$ is also F_{σ} and its elements x are characterized by the fact that $\varrho_{f}(x)>0$ and that the Taylor series of f at x represents f on no neighbourhood of x. By use of a lemma of R. P. Boas ([1], p. 234), one easily sees that F_{f} is also a first category set (cf. [3] or [4]).

Finally, one may consider the set $G_{f}=\mathbb{R}^{n} \backslash T_{f}$, a G_{δ}-set given by $\varrho_{f}(x)=0$.

It is clear that $\left\{\Omega_{f}, G_{f}, F_{f}\right\}$ is a partition of \mathbb{R}^{n}.
The Zahorski theorem (cf. [6]) asserts conversely that for every partition $\{\Omega, F, G\}$ of $[0,1]$, where Ω is an open subset of $[0,1], F$ is a first category F_{σ}-subset of $[0,1]$ and G is a G_{δ}-subset of $[0,1]$, there is a real C_{∞}-function f on $[0,1]$ such that $\Omega=\Omega_{f}, F=F_{f}$ and $G=G_{f}$. In [3], H. Salzmann and K. Zeller have provided a shorter proof of the Zahorski theorem and in [4], J. Siciak has extended this result to \mathbb{R}^{n}.

[^0]The purpose of this paper is to prove that, for every $\gamma \in] 1, \infty[$, the Zahorski theorem has a solution f belonging to the Gevrey class Γ_{γ}.

Let us recall that, for an open subset Ω of \mathbb{R}^{n} and for $\left.\gamma \in\right] 1, \infty[$, the Gevrey class $\Gamma_{\gamma}(\Omega)$ is the set of $f \in \mathrm{C}_{\infty}(\Omega)$ for which there are constants $a, b>0$ such that

$$
\left\|\mathrm{D}^{\alpha} f\right\|_{\Omega} \leq a b^{|\alpha|}(|\alpha|!)^{\gamma}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}
$$

If $\Omega=\mathbb{R}^{n}$, we simply write Γ_{γ} instead of $\Gamma_{\gamma}\left(\mathbb{R}^{n}\right)$.
It is known that
(a) a function $f \in \mathrm{C}_{\infty}(\Omega)$ belongs to $\Gamma_{\gamma}(\Omega)$ if and only if there are constants $c, d>0$ such that

$$
\left\|\mathrm{D}^{\alpha} f\right\|_{\Omega} \leq c d^{|\alpha|}|\alpha|^{\gamma|\alpha|}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}
$$

(b) the Denjoy-Carleman-Mandelbrojt result (cf. [2]) states that, for every closed ball b of \mathbb{R}^{n} and every $\left.\gamma \in\right] 1, \infty[$, there is a nonzero function $f \in \Gamma_{\gamma}$ with support contained in b.

In order to get an efficient way to state the results, for a real C_{∞}-function f on \mathbb{R}^{n}, let us call the elements of Ω_{f} (resp. $F_{f} ; G_{f}$) the analytic points (resp. the defect points; the divergence points) of f.

The purpose of this article is to prove the following result.
Theorem 1.1. For every partition $\{\Omega, F, G\}$ of \mathbb{R}^{n}, where Ω (resp. F; $G)$ is an open set (resp. a first category F_{σ}-set; a G_{δ}-set) and every $\gamma \in$ $] 1, \infty\left[\right.$, there is an element of Γ_{γ} having Ω (resp. $F ; G$) as its set of analytic points (resp. defect points; divergence points).

Remark. It is a direct matter to check that the Zahorski theorem extends to the case when \mathbb{R}^{n} is replaced by an open or a closed subset of \mathbb{R}^{n}.
2. An auxiliary result. We begin with the following easy result, where, as usual, $\mathrm{D}_{r}(\Omega)$ denotes the space of C_{r}-functions on the open subset Ω of \mathbb{R}^{n} which have a compact support contained in Ω.

Proposition 2.1. Let Ω be a nonvoid open subset of \mathbb{R}^{n}. For every $f \in \mathrm{C}_{\infty}(\Omega), g \in \mathrm{D}_{\infty}(\Omega)$ and $\lambda>0$, it is well known that

$$
h(x)=\pi^{-n / 2} \lambda^{n} \int_{\Omega} f(y) g(y) e^{-\lambda^{2}|x-y|^{2}} d y
$$

belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$. If moreover $a_{1}, a_{2}, b_{1}, b_{2}>0$ and $\zeta>1$ are such that

$$
\left\|\mathrm{D}^{\alpha} f\right\|_{\Omega} \leq a_{1} b_{1}^{|\alpha|}(|\alpha|!)^{\zeta} \quad \text { and } \quad\left\|\mathrm{D}^{\alpha} g\right\|_{\Omega} \leq a_{2} b_{2}^{|\alpha|}(|\alpha|!)^{\zeta}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}
$$

then

$$
\left\|\mathrm{D}^{\alpha} h\right\|_{\mathbb{R}^{n}} \leq a_{1} a_{2}\left(b_{1}+b_{2}\right)^{|\alpha|}(|\alpha|!)^{\zeta}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}
$$

Proof. As g has a compact support contained in Ω, up to extension by 0 on $\mathbb{R}^{n} \backslash \Omega$, we may suppose that the product $f g$ is a D_{∞}-function on \mathbb{R}^{n} with compact support contained in Ω. So in the definition of $h(x)$, we may consider that we integrate on \mathbb{R}^{n}. Therefore integrating by parts $|\alpha|$ times gives

$$
\mathrm{D}^{\alpha} h(x)=\pi^{-n / 2} \lambda^{n} \int_{\mathbb{R}^{n}} \mathrm{D}^{\alpha}(f g)(y) e^{-\lambda^{2}|x-y|^{2}} d y
$$

hence

$$
\begin{aligned}
\left|\mathrm{D}^{\alpha} h(x)\right| & \leq \pi^{-n / 2} \lambda^{n} \int_{\mathbb{R}^{n}} \sum_{\beta \leq \alpha}\binom{\alpha}{\beta}\left|\mathrm{D}^{\beta} f(y) \mathrm{D}^{\alpha-\beta} g(y)\right| e^{-\lambda^{2}|x-y|^{2}} d y \\
& \leq \sum_{\beta \leq \alpha}\binom{\alpha}{\beta} a_{1} a_{2} b_{1}^{|\beta|} b_{2}^{|\alpha-\beta|}(|\beta|!)^{\zeta}(|\alpha-\beta|!)^{\zeta} \\
& \leq a_{1} a_{2}\left(b_{1}+b_{2}\right)^{|\alpha|}(|\alpha|!)^{\zeta} .
\end{aligned}
$$

3. Special compact covers of open subsets of \mathbb{R}^{n}. In the following results, we are going to use systematically the following construction and notations. Let Ω be a nonvoid open subset of \mathbb{R}^{n}. Then we set

$$
\Omega_{m}=\left(\mathbb{R}^{n} \backslash \Omega\right) \cup\left\{x \in \mathbb{R}^{n}:|x| \geq m \sqrt{n}\right\}, \quad \forall m \in \mathbb{N}
$$

and denote by μ the first positive integer m for which there is at least one cube Q of the type

$$
\prod_{j=1}^{n}\left[2^{-m} a_{j}, 2^{-m}\left(a_{j}+1\right)\right] \quad \text { with } a \in \mathbb{Z}^{n}
$$

contained in Ω and such that $\mathrm{d}\left(Q, \Omega_{m}\right)>2^{-m} \sqrt{n}$. Let $Q_{1,1}, \ldots, Q_{1, p_{1}}$ be these cubes (of course, we have $p_{1} \in \mathbb{N}$) and set

$$
H_{1}=\bigcup_{h=1}^{p_{1}} Q_{1, h}
$$

Now we proceed by recursion. If the sets H_{1}, \ldots, H_{r} are obtained, we let $Q_{r+1,1}, \ldots, Q_{r+1, p_{r+1}}$ denote all the cubes of the type

$$
\prod_{j=1}^{n}\left[2^{-\mu-r} a_{j}, 2^{-\mu-r}\left(a_{j}+1\right)\right] \quad \text { with } a \in \mathbb{Z}^{n}
$$

contained in Ω, disjoint from the interior of $H_{1} \cup \ldots \cup H_{r}$ and such that $\mathrm{d}\left(Q, \Omega_{\mu+r}\right)>2^{-\mu-r} \sqrt{n}$. Then we set

$$
H_{r+1}=\bigcup_{h=1}^{p_{r+1}} Q_{r+1, h}
$$

At this point let us remark that

$$
\mathrm{d}\left(H_{r}, H_{r+2}\right) \geq 2^{-\mu-r}, \quad \forall r \in \mathbb{N} .
$$

Finally, we set

$$
K_{r}=H_{1} \cup \ldots \cup H_{r}, \quad \forall r \in \mathbb{N} .
$$

It is clear that $\left\{K_{r}: r \in \mathbb{N}\right\}$ is a compact cover of Ω such that $K_{r} \subset K_{r+1}^{\mathrm{o}}$ for every $r \in \mathbb{N}$.
4. The auxiliary functions v_{r}. With this construction in mind and the notations therein, we now prove the following result.

Proposition 4.1. Let Ω be a nonvoid open subset of \mathbb{R}^{n} and $\left.\zeta \in\right] 1, \infty[$. Then there are integers $c, d \in \mathbb{N}$ and functions $v_{r-2} \in \mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ for $r \in$ $\{3,4,5, \ldots\}$ such that
(a) $\operatorname{supp}\left(v_{r-2}\right) \subset K_{r+1} \backslash K_{r-2}^{\mathrm{o}}$,
(b) $v_{r-2}\left(\mathbb{R}^{n}\right) \subset[0,1]$,
(c) $v_{r-2}\left(H_{r}\right)=\{1\}$,
(d) $\left\|\mathrm{D}^{\alpha} v_{r-2}\right\|_{\mathbb{R}^{n}} \leq c\left(2^{r-2} d\right)^{|\alpha|}(|\alpha|!)^{\zeta}, \forall \alpha \in \mathbb{N}_{0}^{n}$,
for every integer $r>2$.
Proof. Let φ be an element of $\mathrm{C}_{\infty}(\mathbb{R})$ for which there are $l, d>0$ such that

$$
\begin{aligned}
& \varphi(t)>0 \quad \text { if }|t|<n^{-1 / 2} 2^{-\mu-4}, \\
& \varphi(t)=0 \quad \text { if }|t| \geq n^{-1 / 2} 2^{-\mu-4}, \\
& \left\|\varphi^{(s)}\right\|_{\mathbb{R}} \leq l d^{s}(s!)^{\zeta}, \quad \forall s \in \mathbb{N}_{0}, \quad \int_{\mathbb{R}} \varphi(t) d t=1 .
\end{aligned}
$$

The existence of such a φ is provided by the Denjoy-Carleman-Mandelbrojt theorem (cf. [2]). Then we define

$$
\psi(x)=\varphi\left(x_{1}\right) \ldots \varphi\left(x_{n}\right), \quad \forall x \in \mathbb{R}^{n} .
$$

Clearly ψ belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$, has compact support equal to $\left[-n^{-1 / 2} 2^{-\mu-4}\right.$, $\left.n^{-1 / 2} 2^{-\mu-4}\right]^{n}$ and satisfies

$$
\left\|\mathrm{D}^{\alpha} \psi\right\|_{\mathbb{R}^{n}} \leq l^{n} d^{|\alpha|}(|\alpha|!)^{\zeta}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}, \quad \int_{\mathbb{R}^{n}} \psi(x) d x=1 .
$$

Now for every integer $r \in \mathbb{N}$, we set

$$
\begin{aligned}
& L_{r}=\left\{x \in \mathbb{R}^{n}: \mathrm{d}\left(x, H_{r}\right) \leq 2^{-\mu-r-1}\right\}, \\
& \psi_{r}(x)=2^{(r-2) n} \psi\left(2^{r-2} x\right), \quad \forall x \in \mathbb{R}^{n},
\end{aligned}
$$

and note that ψ_{r} belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ and has a compact support of diameter $2^{-\mu-r-1}$. Then we set

$$
v_{r-2}(x)=\psi_{r} * \chi_{L_{r}}(x)=\int_{\mathbb{R}^{n}} \psi_{r}(y) \chi_{L_{r}}(x-y) d y, \quad \forall x \in \mathbb{R}^{n} .
$$

It is well known or easy to check that the function v_{r-2} belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ and has the properties (a)-(c) as well as

$$
\left\|\mathrm{D}^{\alpha} v_{r-2}\right\|_{\mathbb{R}^{n}} \leq \int_{\mathbb{R}^{n}}\left|\mathrm{D}^{\alpha} \psi_{r}\right| d x \leq \ell\left(\operatorname{supp}\left(\psi_{r}\right)\right)\left\|\mathrm{D}^{\alpha} \psi_{r}\right\|_{\mathbb{R}^{n}} \leq c\left(2^{r-2} d\right)^{|\alpha|}(|\alpha|!)^{\zeta}
$$

for every $\alpha \in \mathbb{N}_{0}^{n}$ if we set $c=l^{n}\left(n^{-1 / 2} 2^{-\mu-3}\right)^{n}$, a constant which does not depend on $r>2$ nor on $\alpha \in \mathbb{N}_{0}^{n}$.
5. Approximation in Gevrey classes and consequences. In the proof of Theorem 5.2, we shall make use of the following property which results immediately from the proof of Lemma 5 of [5].

Proposition 5.1 Let $r \in \mathbb{N}$ and $g \in \mathrm{D}_{r}\left(\mathbb{R}^{n}\right)$. Then, for every $\varepsilon>0$, there is $\lambda_{0}>0$ such that, for every $\lambda \geq \lambda_{0}$, the function

$$
h(x)=\pi^{-n / 2} \lambda^{n} \int_{\mathbb{R}^{n}} g(y) e^{-\lambda^{2}|x-y|^{2}} d y
$$

belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ (in fact, it is analytic on $\left.\mathbb{R}^{n}\right)$ and satisfies

$$
\left\|\mathrm{D}^{\alpha} h-\mathrm{D}^{\alpha} g\right\|_{\mathbb{R}^{n}} \leq \varepsilon \quad \text { if }|\alpha| \leq r
$$

Theorem 5.2. Let Ω be a nonvoid open subset of \mathbb{R}^{n} and let ζ, γ be real numbers such that $1<\zeta<\gamma$. Then, for every $f \in \Gamma_{\zeta}(\Omega)$, there is $g \in \Gamma_{\gamma}(\Omega)$ which is analytic on Ω and such that

$$
\left\|\mathrm{D}^{\alpha} f-\mathrm{D}^{\alpha} g\right\|_{\Omega \backslash K_{s+1}} \leq \frac{1}{s} \quad \text { if }|\alpha| \leq s \text { and } s \geq 2
$$

with K_{s+1} defined as in the special compact cover of Ω.
Proof. Of course there are numbers $a, b>1$ such that

$$
\left\|\mathrm{D}^{\alpha} f\right\|_{\Omega} \leq a b^{|\alpha|}(|\alpha|!)^{\zeta} \quad \text { and } \quad\left\|\mathrm{D}^{\alpha} v_{r-2}\right\|_{\Omega} \leq a\left(2^{r-2} b\right)^{|\alpha|}(|\alpha|!)^{\zeta}
$$

for every integer $r \geq 3$ and $\alpha \in \mathbb{N}_{0}^{n}$.
Now we introduce by recursion a sequence $\left(g_{s}\right)_{s \in \mathbb{N}}$ in $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ such that

$$
\left\|\mathrm{D}^{\alpha} g_{s}\right\|_{\mathbb{R}^{n}} \leq 2^{s-1} a^{s+1} 2^{(s+1)|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}, \forall s \in \mathbb{N} .
$$

At this point, to get the functions g_{s}, we just need to consider a strictly increasing sequence $\left(\lambda_{s}\right)_{s \in \mathbb{N}}$ of $] 0, \infty$ [but later on we shall make more stringent restrictions on these positive numbers.

We start with

$$
g_{1}(x)=\pi^{-n / 2} \lambda_{1}^{n} \int_{\mathbb{R}^{n}} v_{1}(y) f(y) e^{-\lambda_{1}^{2}|x-y|^{2}} d y, \quad \forall x \in \mathbb{R}^{n},
$$

where of course $v_{1} f$ has been extended by 0 on $\mathbb{R}^{n} \backslash \Omega$. By Proposition 2.1, g_{1} belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ and satisfies

$$
\left\|\mathrm{D}^{\alpha} g_{1}\right\|_{\mathbb{R}^{n}} \leq a^{2} 3^{|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta} \leq 2^{0} a^{2} 2^{2|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta}
$$

for every $\alpha \in \mathbb{N}_{0}^{n}$. Now if g_{1}, \ldots, g_{s} are obtained, we first remark that we certainly have

$$
\begin{aligned}
\left\|\mathrm{D}^{\alpha}\left(f-\sum_{j=1}^{s} g_{j}\right)\right\|_{\Omega} & \leq\left\|\mathrm{D}^{\alpha} f\right\|_{\Omega}+\sum_{j=1}^{s}\left\|\mathrm{D}^{\alpha} g_{j}\right\|_{\Omega} \\
& \leq a b^{|\alpha|}(|\alpha|!)^{\zeta}+\sum_{j=1}^{s} 2^{j-1} a^{j+1} 2^{(j+1)|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta} \\
& \leq 2^{s} a^{s+1} 2^{(s+1)|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta}
\end{aligned}
$$

for every $\alpha \in \mathbb{N}_{0}^{n}$ and then check by direct use of Proposition 2.1 that the function g_{s+1} defined by

$$
g_{s+1}(x)=\pi^{-n / 2} \lambda_{s+1}^{n} \int_{\mathbb{R}^{n}} v_{s+1}(y)\left(f(y)-\sum_{j=1}^{s} g_{j}(y)\right) e^{-\lambda_{s+1}^{2}|x-y|^{2}} d y
$$

suits our purpose.
Of course we have

$$
\begin{aligned}
\left\|\mathrm{D}^{\alpha} \sum_{j=1}^{s} g_{j}\right\|_{\mathbb{R}^{n}} & \leq \sum_{j=1}^{s} 2^{j-1} a^{j+1} 2^{(j+1)|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta} \\
& \leq 2^{s} a^{s+1} 2^{(s+1)|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta}
\end{aligned}
$$

for every $s \in \mathbb{N}$ and $\alpha \in \mathbb{N}_{0}^{n}$.
With this majorant at our disposal, we are in a position to make a more precise (but not yet final) choice of the numbers λ_{s} (we are free to take them larger but strictly increasing). As we have

$$
\lim _{|\alpha| \rightarrow \infty} \frac{2^{s} a^{s+1} 2^{(s+1)|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta}}{(|\alpha|!)^{\gamma}}=0, \quad \forall s \in \mathbb{N},
$$

there is a strictly increasing sequence $\left(A_{s}\right)_{s \in \mathbb{N}}$ in \mathbb{N} such that, for every $s \in \mathbb{N}$,

$$
2^{s} a^{s+1} 2^{(s+1)|\alpha|} b^{|\alpha|}(|\alpha|!)^{\zeta} \leq(|\alpha|!)^{\gamma} \quad \text { if }|\alpha| \geq A_{s}
$$

Then we can also fix a strictly increasing sequence $\left(B_{s}\right)_{s \in \mathbb{N}}$ in \mathbb{N} such that

$$
\sup _{|\alpha| \leq A_{s}} a\left(2^{s} b\right)^{|\alpha|}(|\alpha|!)^{\zeta} \leq B_{s}, \quad \forall s \in \mathbb{N}
$$

Next we introduce the following elements of $\mathrm{D}_{\infty}\left(\mathbb{R}^{n}\right)$:

$$
h_{1}(x)= \begin{cases}v_{1}(x) f(x), & \forall x \in \Omega \\ 0, & \forall x \in \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

and, for every integer $s \geq 2$,

$$
h_{s}(x)= \begin{cases}v_{s}(x)\left(f(x)-\sum_{j=1}^{s-1} g_{j}(x)\right), & \forall x \in \Omega, \\ 0, & \forall x \in \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

Finally, by recursive use of Proposition 5.1, we may require that the numbers λ_{s} are such that, for every $s \in \mathbb{N}$,

$$
\left\|\mathrm{D}^{\alpha} h_{s}-\mathrm{D}^{\alpha} g_{s}\right\|_{\mathbb{R}^{n}} \leq\left(2^{s+2+A_{s+1}} B_{s+1}\right)^{-1} \quad \text { if }|\alpha| \leq A_{s+1}
$$

Now we consider the series

$$
g(x)=\sum_{s=1}^{\infty} g_{s}(x), \quad \forall x \in \Omega
$$

We first prove that g is defined and belongs to $\mathrm{C}_{\infty}(\Omega)$. Indeed, for every $s \in \mathbb{N}$ and every $\alpha \in \mathbb{N}_{0}^{n}$ such that $|\alpha| \leq A_{s+1}$, we get

$$
\begin{aligned}
\left\|\mathrm{D}^{\alpha} h_{s+1}\right\|_{H_{s+2}} & \leq \sum_{\beta \leq \alpha}\binom{\alpha}{\beta}\left\|\mathrm{D}^{\beta} v_{s+1}\right\|_{H_{s+2}}\left\|\mathrm{D}^{\alpha-\beta}\left(f-\sum_{j=1}^{s} g_{j}\right)\right\|_{H_{s+2}} \\
& \leq \sum_{\beta \leq \alpha}\binom{\alpha}{\beta} a\left(2^{s+1} b\right)^{|\beta|}(|\beta|!)^{\zeta}\left(2^{s+2+A_{s+1}} B_{s+1}\right)^{-1} \\
& \leq \sum_{\beta \leq \alpha}\binom{\alpha}{\beta} B_{s+1}\left(2^{s+2+A_{s+1}} B_{s+1}\right)^{-1} \\
& \leq 2^{-s-2-A_{s+1}} 2^{|\alpha|} \leq 2^{-s-2}
\end{aligned}
$$

(at $(*)$, we have used the fact that $f-\sum_{j=1}^{s} g_{j}=h_{s}-g_{s}$ on H_{s+2}). As $v_{s+1}(x)=0$ for every $x \in K_{s+1}$, we get

$$
\left\|\mathrm{D}^{\alpha} h_{s+1}\right\|_{K_{s+2}} \leq 2^{-s-2} \quad \text { if } s \in \mathbb{N} \text { and }|\alpha| \leq A_{s+1}
$$

hence

$$
\begin{aligned}
\left\|\mathrm{D}^{\alpha} g_{s+1}\right\|_{K_{s+2}} & \leq\left\|\mathrm{D}^{\alpha} g_{s+1}-\mathrm{D}^{\alpha} h_{s+1}\right\|_{\Omega}+\left\|\mathrm{D}^{\alpha} h_{s+1}\right\|_{K_{s+2}} \\
& \leq\left(2^{s+3+A_{s+2}} B_{s+2}\right)^{-1}+2^{-s-2} \leq 2^{-s-1}
\end{aligned}
$$

for every $s \in \mathbb{N}$ and $\alpha \in \mathbb{N}_{0}^{n}$ such that $|\alpha| \leq A_{s+1}$. Now it is clear that $g \in \mathrm{C}_{\infty}(\Omega)$.

We establish next that g satisfies the inequalities announced in the statement of the theorem - in fact, we are going to prove more. Consider an integer $s \geq 2$ and a multi-index $\alpha \in \mathbb{N}_{0}^{n}$ such that $|\alpha| \leq A_{s}$-this is certainly the case if $|\alpha| \leq s$. For every $x_{0} \in \Omega \backslash K_{s+1}$, there is a first integer $p \geq 2$ such that $x_{0} \in K_{s+p}$. According to the last established inequality, we of course have

$$
\left|\mathrm{D}^{\alpha} g_{s+r}\left(x_{0}\right)\right| \leq 2^{-s-r}, \quad \forall r \in\{p-1, p, p+1, \ldots\}
$$

As $v_{s+p-2}\left(H_{s+p}\right)=\{1\}$, we also get

$$
\left|\mathrm{D}^{\alpha} f\left(x_{0}\right)-\mathrm{D}^{\alpha} \sum_{j=1}^{s+p-2} g_{j}\left(x_{0}\right)\right|=\left|\mathrm{D}^{\alpha} h_{s+p-2}\left(x_{0}\right)-\mathrm{D}^{\alpha} g_{s+p-2}\left(x_{0}\right)\right| \leq 2^{-s-p} .
$$

Thus

$$
\begin{aligned}
\left|\mathrm{D}^{\alpha} f\left(x_{0}\right)-\mathrm{D}^{\alpha} g\left(x_{0}\right)\right| & \leq\left|\mathrm{D}^{\alpha} f\left(x_{0}\right)-\mathrm{D}^{\alpha} \sum_{j=1}^{s+p-2} g_{j}\left(x_{0}\right)\right|+\sum_{r=p-1}^{\infty}\left|\mathrm{D}^{\alpha} g_{s+r}\left(x_{0}\right)\right| \\
& \leq 2^{-s-p}+\sum_{r=p-1}^{\infty} 2^{-s-r} \leq 2^{-s-p}+2^{-s-p+2}<\frac{1}{s}
\end{aligned}
$$

and hence

$$
\left\|\mathrm{D}^{\alpha} f-\mathrm{D}^{\alpha} g\right\|_{\Omega \backslash K_{s+1}} \leq \frac{1}{s} \quad \text { if } s \geq 2 \text { and }|\alpha| \leq A_{s} .
$$

At this step, if we proceed as in the proof of Lemma 6 of [5], we see that it is possible to select successively the numbers λ_{s} in such a way that g is an analytic function on Ω. (This is our last refinement on the choice of λ_{s}.)

We still have to prove that $g \in \Gamma_{\gamma}(\Omega)$.
Set

$$
\sup _{|\alpha| \leq A_{2}}\left\|D^{\alpha} g\right\|_{K_{3}} /(|\alpha|!)^{\gamma}=a_{1}
$$

and consider $\alpha \in \mathbb{N}_{0}^{n}$ and $x_{0} \in \Omega$.
On the one hand, if $|\alpha| \leq A_{2}$ and
(i) if $x_{0} \in K_{3}$, we trivially have

$$
\left|\mathrm{D}^{\alpha} g\left(x_{0}\right)\right| \leq\left\|\mathrm{D}^{\alpha} g\right\|_{K_{3}} \leq a_{1}(|\alpha|!)^{\gamma},
$$

(ii) if $x_{0} \in \Omega \backslash K_{3}$, we get

$$
\begin{aligned}
\left|\mathrm{D}^{\alpha} g\left(x_{0}\right)\right| & \leq\left|\mathrm{D}^{\alpha} f\left(x_{0}\right)\right|+\left|\mathrm{D}^{\alpha} f\left(x_{0}\right)-\mathrm{D}^{\alpha} g\left(x_{0}\right)\right| \\
& \leq a b^{|\alpha|}(|\alpha|!)^{\zeta}+\frac{1}{2} \leq 2 a b^{|\alpha|}(|\alpha|!)^{\gamma} .
\end{aligned}
$$

Hence there are constants $a_{2}, b_{2}>0$ such that

$$
\left\|\mathrm{D}^{\alpha} g\right\|_{\Omega} \leq a_{2} b_{2}^{|\alpha|}(|\alpha|!)^{\gamma} \quad \text { if }|\alpha| \leq A_{2}
$$

On the other hand, if $|\alpha|>A_{2}$, we first let s be the integer such that $A_{s}<|\alpha| \leq A_{s+1}$ (of course $s \geq 2$) and then consider the following two possibilities:
(i) if $x_{0} \in \Omega \backslash K_{s+2}$, then we have at once

$$
\begin{aligned}
\left|\mathrm{D}^{\alpha} g\left(x_{0}\right)\right| & \leq\left|\mathrm{D}^{\alpha} f\left(x_{0}\right)\right|+\left|\mathrm{D}^{\alpha} f\left(x_{0}\right)-\mathrm{D}^{\alpha} g\left(x_{0}\right)\right| \\
& \leq a b^{|\alpha|}(|\alpha|!)^{\zeta}+\frac{1}{s+1} \leq 2 a b^{|\alpha|}(|\alpha|!)^{\gamma},
\end{aligned}
$$

(ii) if $x_{0} \in K_{s+2}$, we have $\left|\mathrm{D}^{\alpha} g_{s+r}\left(x_{0}\right)\right| \leq 2^{-s-r}$ for every $r \in \mathbb{N}$, hence

$$
\sum_{r=1}^{\infty}\left|\mathrm{D}^{\alpha} g_{s+r}\left(x_{0}\right)\right| \leq \sum_{r=1}^{\infty} 2^{-s-r}=2^{-s}
$$

But we also have

$$
\left|\mathrm{D}^{\beta} \sum_{j=1}^{s} g_{j}\left(x_{0}\right)\right| \leq 2^{s} a^{s+1} 2^{(s+1)|\beta|} b^{|\beta|}(|\beta|!)^{\zeta}
$$

for every $\beta \in \mathbb{N}_{0}^{n}$ and $s \in \mathbb{N}$, hence

$$
\left|\mathrm{D}^{\alpha} \sum_{j=1}^{s} g_{j}\left(x_{0}\right)\right| \leq(|\alpha|!)^{\gamma}
$$

since $|\alpha| \geq A_{s}$. Therefore

$$
\left|\mathrm{D}^{\alpha} g\left(x_{0}\right)\right| \leq\left|\mathrm{D}^{\alpha} \sum_{j=1}^{s} g_{j}\left(x_{0}\right)\right|+\sum_{r=1}^{\infty}\left|\mathrm{D}^{\alpha} g_{s+r}\left(x_{0}\right)\right| \leq 2^{-s}+(|\alpha|!)^{\gamma} \leq 2(|\alpha|!)^{\gamma}
$$

Consequently, there are constants $a_{3}, b_{3}>0$ such that

$$
\left\|\mathrm{D}^{\alpha} g\right\|_{\Omega} \leq a_{3} b_{3}^{|\alpha|}(|\alpha|!)^{\gamma} \quad \text { if }|\alpha|>A_{2}
$$

Corollary 5.3. For every open and nonvoid subset Ω of \mathbb{R}^{n} and $\gamma \in$ $] 1, \infty\left[\right.$, there is a function $g \in \Gamma_{\gamma}$ which is
(a) analytic on Ω,
(b) identically 0 on no connected component of Ω,
(c) flat on $\mathbb{R}^{n} \backslash \Omega$ (i.e. identically 0 together with all its derivatives on $\left.\mathbb{R}^{n} \backslash \Omega\right)$.

Proof. If Ω is connected, we choose $\zeta \in] 1, \gamma\left[\right.$ and $f \in \Gamma_{\zeta}(\Omega)$ with compact support contained in $K_{4}^{o} \backslash K_{3}$ and such that $\|f\|_{\Omega}>1 / 2$. Then Theorem 5.2 provides $g \in \Gamma_{\gamma}(\Omega)$ which is analytic on Ω and such that

$$
\left\|\mathrm{D}^{\alpha} f-\mathrm{D}^{\alpha} g\right\|_{\Omega \backslash K_{2+1}} \leq \frac{1}{2} \quad \text { if }|\alpha| \leq 2
$$

(which implies that g is not identically 0 on Ω) as well as

$$
\left\|\mathrm{D}^{\alpha} g\right\|_{\Omega \backslash K_{s+1}}=\left\|\mathrm{D}^{\alpha} g-\mathrm{D}^{\alpha} f\right\|_{\Omega \backslash K_{s+1}} \leq \frac{1}{s} \quad \text { if }|\alpha| \leq s \text { and } s \geq 3 .
$$

It is then well known that extending g by 0 on $\mathbb{R}^{n} \backslash \Omega$ provides a solution.
If Ω has a finite number of connected components-say $\Omega_{1}, \ldots, \Omega_{m}$ then, for every $k \in\{1, \ldots, m\}$, there is $g_{k} \in \Gamma_{\gamma}$ which is analytic on Ω_{k}, not identically 0 on Ω_{k} and flat on $\mathbb{R}^{n} \backslash \Omega_{k}$. It is then clear that $g=\sum_{k=1}^{m} g_{k}$ is a solution.

As Ω always has countably many connected components, to conclude, we just have to settle the case when $\left\{\Omega_{m}: m \in \mathbb{N}\right\}$ is the set of connected
components of Ω. For this purpose, fix $\zeta \in] 1, \gamma[$. By the first part of the proof, for every $m \in \mathbb{N}$, there is $g_{m} \in \Gamma_{\zeta}$ which is analytic on Ω_{m}, not identically 0 on Ω_{m}, flat on $\mathbb{R}^{n} \backslash \Omega_{m}$ and such that

$$
\left\|\mathrm{D}^{\alpha} g_{m}\right\|_{\Omega_{m} \backslash K_{m, s+1}} \leq \frac{1}{s} \quad \text { if }|\alpha| \leq s \text { and } s \geq 2,
$$

where of course $K_{m, r}$ is the r th element of the special cover of Ω_{m}. So, for every $m \in \mathbb{N}$, there are constants $a_{m}, b_{m}>1$ such that

$$
\left\|\mathrm{D}^{\alpha} g_{m}\right\|_{\mathbb{R}^{n}} \leq a_{m} b_{m}^{|\alpha|}(|\alpha|!)^{\zeta}, \quad \forall \alpha \in \mathbb{N}_{0}^{n}
$$

hence there is an integer $k_{m} \geq m$ such that

$$
a_{m} b_{m}^{|\alpha|}(|\alpha|!)^{\zeta} \leq(|\alpha|!)^{\gamma} \quad \text { if }|\alpha| \geq k_{m} .
$$

Then we set

$$
c_{m}=\left(\sup _{|\alpha| \leq k_{m}} a_{m} b_{m}^{|\alpha|}(|\alpha|!)^{\zeta}\right)^{-1} \quad \text { and } \quad g=\sum_{m=1}^{\infty} 2^{-m} c_{m} g_{m}
$$

It is clear that g is a function defined on \mathbb{R}^{n} which is analytic on Ω, identically 0 on no connected component of Ω and identically 0 on $\mathbb{R}^{n} \backslash \Omega$. Now we prove that g belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ and is flat on $\mathbb{R}^{n} \backslash \Omega$. Let $x \in \mathbb{R}^{n} \backslash \Omega$. For every integer $k \geq 3$, there is $r>0$ such that the ball $b=\left\{y \in \mathbb{R}^{n}:|x-y| \leq r\right\}$ is disjoint from the compact sets $K_{1, k+1}, \ldots, K_{k, k+1}$. For every $\alpha \in \mathbb{N}_{0}^{n}$ such that $|\alpha| \leq k$, this leads to

$$
\begin{aligned}
& \sup _{x \in b} \sum_{m=1}^{\infty} 2^{-m} c_{m}\left|\mathrm{D}^{\alpha} g_{m}\right| \\
& \quad \leq \sup \left\{\sup _{m \leq k} \frac{2^{-m} c_{m}}{k}, \sup _{m>k} 2^{-m} c_{m}\left\|\mathrm{D}^{\alpha} g_{m}\right\|_{\mathbb{R}^{n}}\right\} \leq \sup \left\{1 / k, 2^{-k}\right\},
\end{aligned}
$$

hence g belongs to $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ and is flat on $\mathbb{R}^{n} \backslash \Omega$. We still have to prove that $g \in \Gamma_{\gamma}$. This is immediate: for every $\alpha \in \mathbb{N}_{0}^{n}$, we have

$$
\left\|\mathrm{D}^{\alpha} g\right\|_{\mathbb{R}^{n}}=\sup _{m \in \mathbb{N}} 2^{-m} c_{m}\left\|\mathrm{D}^{\alpha} g_{m}\right\|_{\mathbb{R}^{n}} \leq \sup _{m \in \mathbb{N}} \sup \left\{2^{-m}, 2^{-m}(|\alpha|!)^{\gamma}\right\} \leq(|\alpha|!)^{\gamma}
$$

by consideration of the cases $|\alpha| \leq k_{m}$ and $|\alpha|>k_{m}$.
Corollary 5.4. For every $\gamma \in] 1, \infty[$ and nondegenerate compact intervals I, J of \mathbb{R} such that $J \subset I^{\circ}$, there are $f \in \mathrm{C}_{\infty}(\mathbb{R})$ and $c>0$ such that
(a) f has no divergence point,
(b) $f(\mathbb{R}) \subset[0,1]$,
(c) $\left.\left.f(\mathbb{R} \backslash I)=\{0\}, f\left(I^{\circ}\right) \subset\right] 0,1\right]$ and $f(J)=\{1\}$,
(d) $\left\|f^{(k)}\right\|_{\mathbb{R}} \leq c k^{\gamma k}, \forall k \in \mathbb{N}$.

Proof. Let $I=\left[a_{1}, b_{1}\right]$ and $J=\left[a_{2}, b_{2}\right]$. We choose $\left.\zeta \in\right] 1, \gamma[$ and apply Corollary 5.3 with $\Omega=] a_{1}, a_{2}$: there is a nonzero $g \in \Gamma_{\zeta}$ which is analytic on $] a_{1}, a_{2}\left[\right.$ and such that $\operatorname{supp}(g)=\left[a_{1}, a_{2}\right]$. Now we choose $k>0$ such that $g_{1}=k g^{2}$ satisfies $\int_{\mathbb{R}} g_{1}(x) d x=1$ and define the function f_{1} on \mathbb{R} by

$$
f_{1}(x)=\int_{-\infty}^{x} g_{1}(t) d t, \quad \forall x \in \mathbb{R}
$$

It is clear that f_{1} belongs to Γ_{ζ}, is analytic on $] a_{1}, a_{2}[$ and satisfies

$$
\left.\left.\left.\left.f_{1}(]-\infty, a_{1}\right]\right)=\{0\}, \quad f_{1}(] a_{1}, a_{2}[) \subset\right] 0,1\right] \quad \text { and } \quad f_{1}\left(\left[a_{2}, \infty[)=\{1\} .\right.\right.
$$

So it is clear that f_{1} has no divergence point.
Similarly there is $f_{2} \in \Gamma_{\zeta}$ which is analytic on $] b_{2}, b_{1}[$, has no divergence point and satisfies

$$
\left.\left.\left.\left.f_{2}(]-\infty, b_{2}\right]\right)=\{0\}, \quad f_{2}(] b_{2}, b_{1}[) \subset\right] 0,1\right] \quad \text { and } \quad f_{2}\left(\left[b_{1}, \infty[)=\{1\} .\right.\right.
$$

Finally, we set

$$
f(x)=f_{1}(x) f_{2}\left(b_{1}+b_{2}-x\right), \quad \forall x \in \mathbb{R}
$$

Of course f belongs to Γ_{ζ} and satisfies (a)-(c). Let us establish that f also satisfies (d). As $f \in \Gamma_{\zeta}$, there are $a, b>0$ such that

$$
\left\|f^{(k)}\right\|_{\mathbb{R}} \leq a b^{k} k^{\zeta k}, \quad \forall k \in \mathbb{N}_{0}
$$

Since

$$
\lim _{k \rightarrow \infty} \frac{a b^{k} k^{\zeta k}}{k^{\gamma^{k}}}=0
$$

there is $k_{0} \in \mathbb{N}$ such that $a b^{k} k^{\zeta k} \leq k^{\gamma k}$ for every $k \geq k_{0}$; therefore there is $c>0$ such that

$$
\left\|f^{(k)}\right\|_{\mathbb{R}} \leq c k^{\gamma k}, \quad \forall k \in \mathbb{N}
$$

Proposition 5.5. Let $\gamma \in] 1, \infty[$, let $p \in \mathbb{N}$ and let I, J be nondegenerate compact intervals of \mathbb{R} such that $J \subset I^{\circ}$. Then there is $m_{0} \in \mathbb{N}$ such that, for every integer $m \geq m_{0}$, there is a function $u \in \mathrm{C}_{\infty}(\mathbb{R})$ satisfying the following conditions:
(a) u has no divergence point,
(b) $\operatorname{supp}(u) \subset I$,
(c) $\left\|u^{(k)}\right\|_{\mathbb{R}} \leq 2^{-m}, \forall k \in\{0,1, \ldots, m\}$,
(d) $\left\|u^{(k)}\right\|_{\mathbb{R}} \leq 2^{k} k^{\gamma k}, \forall k \in \mathbb{N}$,
(e) for every $x \in J$, one has either

$$
\left|u^{(p m)}(x)\right| \geq 5^{-m} m^{\gamma(p-1) m}
$$

or

$$
\left|u^{(p m+1)}(x)\right| \geq 5^{-(m+1 / p)}\left(\frac{p m+1}{p+1}\right)^{\gamma(p-1)(m+1 / p)}
$$

Proof. Corollary 5.4 provides a function $f \in \mathrm{C}_{\infty}(\mathbb{R})$ and a constant $c>0$ such that f has no divergence point and satisfies

$$
f(\mathbb{R}) \subset[0, c], \quad f(\mathbb{R} \backslash I)=\{0\}, \quad f(J)=\{1\}
$$

as well as

$$
\left\|f^{(k)}\right\|_{\mathbb{R}} \leq c k^{\gamma k}, \quad \forall k \in \mathbb{N} .
$$

For any $m \in \mathbb{N}$, we can introduce

$$
\begin{aligned}
a & =m^{\gamma}, \quad b=\left(2^{2 m} c m^{\gamma m}\right)^{-1}, \\
u(x) & =b f(x) \sin (a x), \quad \forall x \in \mathbb{R} .
\end{aligned}
$$

It is then clear that u is a C_{∞}-function on \mathbb{R} satisfying the conditions (a) and (b) as well as

$$
\|u\|_{\mathbb{R}} \leq b c=\left(2^{2 m} m^{\gamma m}\right)^{-1} \leq 2^{-m} .
$$

Moreover, for every $x \in \mathbb{R}$ and $k \in \mathbb{N}$, we have

$$
\begin{aligned}
\left|u^{(k)}(x)\right| & \leq b \sum_{h=0}^{k}\binom{k}{h}\left|f^{(h)}(x)\right| a^{k-h} \\
& \leq b c \sum_{h=0}^{k}\binom{k}{h} h^{\gamma h} a^{k-h} \leq\left(2^{2 m} m^{\gamma m}\right)^{-1}\left(k^{\gamma}+a\right)^{k}
\end{aligned}
$$

hence

$$
\left|u^{(k)}(x)\right| \leq\left(2^{2 m} m^{\gamma m}\right)^{-1}\left(m^{\gamma}+m^{\gamma}\right)^{m}=2^{-m} \quad \text { if } 1 \leq k \leq m
$$

as well as

$$
\left|u^{(k)}(x)\right| \leq\left(2^{2 m} m^{\gamma m}\right)^{-1}\left(k^{\gamma}+k^{\gamma}\right)^{k} \leq 2^{k} k^{\gamma k} \quad \text { if } k>m ;
$$

i.e. u also satisfies the conditions (c) and (d).

Now we investigate (e). Let $x \in J$. Of course we have

$$
u^{(k)}(x)=a^{k} b \sin (k \pi / 2+a x), \quad \forall k \in \mathbb{N} .
$$

Now, for every $m \in \mathbb{N}$, we certainly have

$$
\sup \{|\sin (p m \pi / 2+a x)|,|\sin ((p m+1) \pi / 2+a x)|\} \geq 2^{-1 / 2} .
$$

So on the one hand, if $|\sin (p m \pi / 2+a x)| \geq 2^{-1 / 2}$, we get

$$
\left|u^{(p m)}(x)\right| \geq 2^{-1 / 2} a^{p m} b=4^{-m}(\sqrt{2} c)^{-1} m^{\gamma(p-1) m},
$$

and on the other hand, if $|\sin ((p m+1) \pi / 2+a x)| \geq 2^{-1 / 2}$, then

$$
\begin{aligned}
\left|u^{(p m+1)}(x)\right| & \geq 2^{-1 / 2} a^{p m+1} b=4^{-m}(\sqrt{2} c)^{-1} m^{\gamma((p-1) m+1)} \\
& \geq 4^{-(m+1 / p)}(\sqrt{2} c)^{-1} m^{\gamma(p-1)(m+1 / p)} \\
& \geq 4^{-(m+1 / p)}(\sqrt{2} c)^{-1}\left(\frac{p m+1}{p+1}\right)^{\gamma(p-1)(m+1 / p)} .
\end{aligned}
$$

To conclude, it is enough to take as m_{0} any positive integer m_{0} such that

$$
\sup \left\{4(\sqrt{2} c)^{1 / m_{0}}, 4(\sqrt{2} c)^{1 /\left(m_{0}+1 / p\right)}\right\} \leq 5
$$

6. Characterizing the sets of divergence points. In this section, we establish the following result.

Theorem 6.1. For every $\gamma \in] 1, \infty\left[\right.$ and every G_{δ}-subset G of \mathbb{R}^{n}, there is an element of Γ_{γ} having G as its set of divergence points.

Proof. We proceed in several steps.
Step 1: the numbers γ_{j} and p_{j}. We fix a strictly increasing sequence $\left.\left(\gamma_{j}\right)_{j \in \mathbb{N}_{0}} \subset\right] 1, \gamma\left[\right.$ and, for every $j \in \mathbb{N}$, denote by p_{j} a positive integer such that $p_{j}\left(\gamma_{j}-\gamma_{j-1}\right)>\gamma_{j}$.

Step 2: some auxiliary inequalities and the numbers q_{r}. For every $r \in$ \mathbb{N}, we certainly have

$$
\frac{p_{r}-1}{p_{r}} \gamma_{r}>\gamma_{r-1}>\ldots>\gamma_{0}>1 .
$$

Therefore, for every $j \in\{0, \ldots, r-1\}$, it is a straightforward matter to check the following limits:
(1) $\lim _{m \rightarrow \infty} 5^{m} 2^{2 p_{r} m}\left(p_{r} m\right)^{\gamma_{j} p_{r} m} \frac{1}{m^{\gamma_{r}\left(p_{r}-1\right) m}}$

$$
\begin{equation*}
=\lim _{m \rightarrow \infty}\left(\frac{4.5^{1 / p_{r}} p_{r}^{\gamma_{j}}}{m^{\gamma_{r}\left(p_{r}-1\right) / p_{r}-\gamma_{j}}}\right)^{p_{r} m}=0 \tag{2}
\end{equation*}
$$

(3) $\lim _{m \rightarrow \infty} 5^{m}(n r)^{p_{r} m}\left(p_{r} m+1\right)^{p_{r} m} \frac{1}{m^{\gamma_{r}\left(p_{r}-1\right) m}}$

$$
=\lim _{m \rightarrow \infty}\left(\frac{5^{1 / p_{r}} n r p_{r}^{\gamma_{r}\left(p_{r}-1\right) / p_{r}}}{\left(p_{r} m\right)^{\gamma_{r}\left(p_{r}-1\right) / p_{r}-1}}\right)^{p_{r} m}\left(\frac{p_{r} m+1}{p_{r} m}\right)^{p_{r} m}=0
$$

$$
\begin{align*}
& \lim _{m \rightarrow \infty} 5^{m+1 / p_{r}}(n r)^{p_{r} m+1}\left(p_{r} m+2\right)^{p_{r} m+1}\left(\frac{p_{r}+1}{p_{r} m+1}\right)^{\gamma_{r}\left(p_{r}-1\right)\left(m+1 / p_{r}\right)} \tag{4}\\
& \quad=\lim _{m \rightarrow \infty}\left(\frac{5^{1 / p_{r}} n r\left(p_{r}+1\right)^{\gamma_{r}\left(p_{r}-1\right) / p_{r}}}{\left(p_{r} m+1\right)^{\gamma_{r}\left(p_{r}-1\right) / p_{r}-1}}\right)^{p_{r} m+1}\left(\frac{p_{r} m+2}{p_{r} m+1}\right)^{p_{r} m+1}=0 .
\end{align*}
$$

With these limits at our disposal, we find that, for every $r \in \mathbb{N}$, there is $q_{r} \in \mathbb{N}$ such that, for every integer $m \geq q_{r}$ and $j \in\{1, \ldots, r-1\}$, we have the following auxiliary inequalities:
(I) $4 \cdot 2^{2 p_{r} m}\left(p_{r} m\right)^{\gamma_{j} p_{r} m}<5^{-m} m^{\gamma_{r}\left(p_{r}-1\right) m}$,

$$
\begin{align*}
& 4 \cdot 2^{2\left(p_{r} m+1\right)}\left(p_{r} m+1\right)^{\gamma_{j}\left(p_{r} m+1\right)} \tag{II}\\
& <5^{-\left(m+1 / p_{r}\right)}\left(\frac{p_{r} m+1}{p_{r}+1}\right)^{\gamma_{r}\left(p_{r}-1\right)\left(m+1 / p_{r}\right)}
\end{align*}
$$

$$
\begin{align*}
& (n r)^{p_{r} m}\left(p_{r} m+1\right)^{p_{r} m}<5^{-m} m^{\gamma_{r}\left(p_{r}-1\right) m} \tag{III}\\
& (n r)^{p_{r} m+1}\left(p_{r} m+2\right)^{p_{r} m+1}<5^{-\left(m+1 / p_{r}\right)}\left(\frac{p_{r} m+1}{p_{r}+1}\right)^{\gamma_{r}\left(p_{r}-1\right)\left(m+1 / p_{r}\right)} \tag{IV}
\end{align*}
$$

Step 3: the sets $G_{l}, Q_{r}, P_{r}, I_{r, j}$ and $J_{r, j}$. Being a G_{δ}-subset of \mathbb{R}^{n}, G is equal to the intersection of a sequence $\left(G_{l}\right)_{l \in \mathbb{N}}$ of open subsets of \mathbb{R}^{n} that we may suppose decreasing.

Proceeding as in the construction of the special compact cover of an open set, we find that each G_{l} is the union of countably many compact cubes $Q_{l, m, h}$ that we may renumber as a sequence, say $\left(Q_{l, k}\right)_{k \in \mathbb{N}}$. Then for every $l, k \in \mathbb{N}$, we denote by $P_{l, k}$ the compact cube in \mathbb{R}^{n} having the same center as $Q_{l, k}$ and $\frac{3}{2} \operatorname{diam}\left(Q_{l, k}\right)$ as diameter. Now we arrange \mathbb{N}^{2} into a sequence $\left(\left(l_{r}, k_{r}\right)\right)_{r \in \mathbb{N}}$, set

$$
Q_{r}=Q_{l_{r}, k_{r}} \quad \text { and } \quad P_{r}=P_{l_{r}, k_{r}},
$$

and let $I_{r, j}$ and $J_{r, j}$ for $j \in\{1, \ldots, n\}$ be the compact intervals in \mathbb{R} such that

$$
Q_{r}=\prod_{j=1}^{n} J_{r, j} \quad \text { and } \quad P_{r}=\prod_{j=1}^{n} I_{r, j}
$$

Of course this construction leads to $J_{r, j} \subset I_{r, j}^{\mathrm{o}}$ for every $r \in \mathbb{N}$ and $j \in\{1, \ldots, n\}$.

Step 4: the functions $u_{r, j}$ and the numbers m_{r}. At this point, everything is set up to introduce the functions $u_{r, j}$ for $r \in \mathbb{N}$ and $j \in\{1, \ldots, n\}$, as well as the sequence $\left(m_{r}\right)_{r \in \mathbb{N}}$ of \mathbb{N} by the following recursion.

An application of Proposition 5.5 to $\gamma=\gamma_{1}$ and $p=p_{1}$ leads to an integer $m_{1}>q_{1}$ and to functions $u_{1,1}, \ldots, u_{1, n} \in \mathrm{C}_{\infty}(\mathbb{R})$ such that, for every $j \in\{1, \ldots, n\}$,
(a) $u_{1, j}$ has no divergence point,
(b) $\operatorname{supp}\left(u_{1, j}\right) \subset I_{1, j}$,
(c) $\left\|u_{1, j}^{(k)}\right\|_{\mathbb{R}} \leq 2^{-m_{1}}, \forall k \in\left\{0,1, \ldots, m_{1}\right\}$,
(d) $\left\|u_{1, j}^{(k)}\right\|_{\mathbb{R}} \leq 2^{k} k^{\gamma_{1} k}, \forall k \in \mathbb{N}$,
(e) for every $t \in J_{1, j}$, one has either

$$
\left|u_{1, j}^{\left(p_{1} m_{1}\right)}(t)\right| \geq 5^{-m_{1}} m_{1}^{\gamma_{1}\left(p_{1}-1\right) m_{1}}
$$

or

$$
\left|u_{1, j}^{\left(p_{1} m_{1}+1\right)}(t)\right| \geq 5^{-\left(m_{1}+1 / p_{1}\right)}\left(\frac{p_{1} m_{1}+1}{p_{1}+1}\right)^{\gamma_{1}\left(p_{1}-1\right)\left(m_{1}+1 / p_{1}\right)}
$$

Now, for an integer $r \geq 2$, if the functions $u_{t, j}$ for $t \in\{1, \ldots, r-1\}$ and $j \in\{1, \ldots, n\}$ and the integers m_{1}, \ldots, m_{r-1} are obtained, we apply Proposition 5.5 to $\gamma=\gamma_{r}$ and $p=p_{r}$ and obtain an integer $m_{r}>$ $\sup \left\{p_{r-1} m_{r-1}, q_{r}\right\}$ and functions $u_{r, 1}, \ldots, u_{r, n} \in \mathrm{C}_{\infty}(\mathbb{R})$ such that, for every $j \in\{1, \ldots, n\}$,
(a) $u_{r, j}$ has no divergence point,
(b) $\operatorname{supp}\left(u_{r, j}\right) \subset I_{r, j}$,
(c) $\left\|u_{r, j}^{(k)}\right\|_{\mathbb{R}} \leq 2^{-m_{r}}, \forall k \in\left\{0,1, \ldots, m_{r}\right\}$,
(d) $\left\|u_{r, j}^{(k)}\right\|_{\mathbb{R}} \leq 2^{k} k^{\gamma_{r} k}, \forall k \in \mathbb{N}$,
(e) for every $t \in J_{r, j}$, one has either

$$
\left|u_{r, j}^{\left(p_{r} m_{r}\right)}(t)\right| \geq 5^{-m_{r}} m_{r}^{\gamma_{r}\left(p_{r}-1\right) m_{r}}
$$

or

$$
\left|u_{r, j}^{\left(p_{r} m_{r}+1\right)}(t)\right| \geq 5^{-\left(m_{r}+1 / p_{r}\right)}\left(\frac{p_{r} m_{r}+1}{p_{r}+1}\right)^{\gamma_{r}\left(p_{r}-1\right)\left(m_{r}+1 / p_{r}\right)}
$$

Step 5: the functions u_{r} and u. Finally, for every $r \in \mathbb{N}$, we define,

$$
u_{r}(x)=u_{r, 1}\left(x_{1}\right) \ldots u_{r, n}\left(x_{n}\right), \quad \forall x \in \mathbb{R}^{n}
$$

and consider the series $u=\sum_{r=1}^{\infty} u_{r}$. For every $k \in \mathbb{N}$, we certainly have $k \leq m_{k}$. Therefore, for every $\alpha \in \mathbb{N}_{0}^{n}$,

$$
\sum_{r=\sup \{1,|\alpha|\}}^{\infty}\left\|\mathrm{D}^{\alpha} u_{r}\right\|_{\mathbb{R}^{n}} \leq \sum_{r=\sup \{1,|\alpha|\}}^{\infty} 2^{-n m_{r}} \leq 1
$$

this implies that u is a bounded C_{∞}-function on \mathbb{R}^{n}. Moreover, for every $\alpha \in \mathbb{N}_{0}^{n}$ such that $|\alpha| \geq 1$, we have

$$
\begin{aligned}
\left\|\mathrm{D}^{\alpha} u\right\|_{\mathbb{R}^{n}} & \leq \sum_{r=1}^{|\alpha|-1}\left\|\mathrm{D}^{\alpha} u_{r}\right\|_{\mathbb{R}^{n}}+\sum_{r=|\alpha|}^{\infty}\left\|\mathrm{D}^{\alpha} u_{r}\right\|_{\mathbb{R}^{n}} \\
& \leq \sum_{r=1}^{|\alpha|-1} 2^{|\alpha|}|\alpha|^{\gamma|\alpha|}+1 \leq 3^{|\alpha|}|\alpha|^{\gamma|\alpha|}
\end{aligned}
$$

hence $u \in \Gamma_{\gamma}$.
To conclude, we prove that G is the set of divergence points of u.
On the one hand, if $x \in \mathbb{R}^{n}$ does not belong to G, then $x \notin G_{l_{0}}$ for some l_{0}, hence $x \notin G_{l}$ for all $l \geq l_{0}$. This implies that x belongs to an at most
finite number of the P_{r} 's. Therefore for r large enough we have $\mathrm{D}^{\alpha} u_{r}(x)=0$ for every $\alpha \in \mathbb{N}_{0}^{n}$ and clearly x is not a divergence point of u.

On the other hand, let us prove by contradiction that every element of G is a divergence point of u. Suppose that $x \in G$ is not a divergence point of u. This implies the existence of $s \in \mathbb{N}$ such that

$$
\left|\mathrm{D}^{\beta} u(x)\right| \leq s^{|\beta|}|\beta|^{|\beta|} \quad \text { if }|\beta| \geq 1 .
$$

As x belongs to each G_{l}, there is an integer $r>3 s$ such that $x \in Q_{r}$; in particular, $x_{j} \in J_{r, j}$ for every $j \in\{1, \ldots, n\}$.

Fix $j \in\{1, \ldots, n\}$. The consideration of the property (e) leads to the following two possibilities.

Case 1: We have

$$
\begin{equation*}
\left|u_{r, j}^{\left(p_{r} m_{r}\right)}\left(x_{j}\right)\right| \geq 5^{-m_{r}} m_{r}^{\gamma_{r}\left(p_{r}-1\right) m_{r}} . \tag{*}
\end{equation*}
$$

Then we set $\alpha_{j}=p_{r} m_{r}$ and remark that
(1.i) the auxiliary inequality (III) leads to

$$
\left|u_{r, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| \geq(n r)^{\alpha_{j}}\left(\alpha_{j}+1\right)^{\alpha_{j}},
$$

(1.ii) the use of (I) in (*) leads to

$$
\begin{aligned}
\sum_{t=1}^{r-1}\left|u_{t, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| & +\sum_{t=r+1}^{\infty}\left|u_{t, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| \\
& \leq \sum_{t=1}^{r-1} 2^{\alpha_{j}} \alpha_{j}^{\gamma_{t} \alpha_{j}}+\sum_{t=r+1}^{\infty} 2^{-m_{t}} \leq 2 \sum_{t=1}^{r-1} 2^{p_{r} m_{r}}\left(p_{r} m_{r}\right)^{\gamma_{t} p_{r} m_{r}} \\
& \leq \frac{1}{(*)} \sum_{t=1}^{r-1} 2^{-p_{r} m_{r}} 5^{-m_{r}} m_{r}^{\gamma_{r}\left(p_{r}-1\right) m_{r}} \leq \frac{1}{2}\left|u_{r, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| .
\end{aligned}
$$

Case 2: (*) does not hold. Then we have

$$
\left|u_{r, j}^{\left(p_{r} m_{r}+1\right)}\left(x_{j}\right)\right| \geq 5^{-\left(m_{r}+1 / p_{r}\right)}\left(\frac{p_{r} m_{r}+1}{p_{r}+1}\right)^{\gamma_{r}\left(p_{r}-1\right)\left(m_{r}+1 / p_{r}\right)}
$$

we set $\alpha_{j}=p_{r} m_{r}+1$ and remark that
(2.i) the auxiliary inequality (IV) leads to

$$
\left|u_{r, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| \geq(n r)^{\alpha_{j}}\left(\alpha_{j}+1\right)^{\alpha_{j}}
$$

(2.ii) the use of (II) in (*) leads to

$$
\begin{aligned}
& \sum_{t=1}^{r-1}\left|u_{t, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right|+\sum_{t=r+1}^{\infty}\left|u_{t, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| \\
& \quad \leq \sum_{t=1}^{r-1} 2^{\alpha_{j}} \alpha_{j}^{\gamma_{t} \alpha_{j}}+\sum_{t=r+1}^{\infty} 2^{-m_{t}} \leq 2 \sum_{t=1}^{r-1} 2^{p_{r} m_{r}+1}\left(p_{r} m_{r}+1\right)^{\gamma_{t}\left(p_{r} m_{r}+1\right)} \\
& \quad \leq \frac{1}{(*)} \sum_{t=1}^{r-1} 2^{-\left(p_{r} m_{r}+1\right)} 5^{-\left(m_{r}+1 / p_{r}\right)}\left(\frac{p_{r} m_{r}+1}{p_{r}+1}\right)^{\gamma_{r}\left(p_{r}-1\right)\left(m_{r}+1 / p_{r}\right)} \\
& \quad \leq \frac{1}{2}\left|u_{r, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| .
\end{aligned}
$$

So setting $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ yields

$$
\begin{aligned}
\left|\mathrm{D}^{\alpha} u(x)\right| & \geq\left|\mathrm{D}^{\alpha} u_{r}(x)\right|-\sum_{t=1}^{r-1}\left|\mathrm{D}^{\alpha} u_{t}(x)\right|-\sum_{t=r+1}^{\infty}\left|\mathrm{D}^{\alpha} u_{t}(x)\right| \\
& \geq\left|\mathrm{D}^{\alpha} u_{r}(x)\right|-\prod_{j=1}^{n}\left(\sum_{t=1}^{r-1}\left|u_{t, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right|+\sum_{t=r+1}^{\infty}\left|u_{t, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right|\right) \\
& \geq\left|\mathrm{D}^{\alpha} u_{r}(x)\right|-\prod_{j=1}^{n} \frac{1}{2}\left|u_{r, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| \geq \frac{1}{2}\left|\mathrm{D}^{\alpha} u_{r}(x)\right| .
\end{aligned}
$$

For every $j \in\{1, \ldots, n\}$, as α_{j} belongs to $\left\{m_{r} p_{r}, m_{r} p_{r}+1\right\}$, we certainly have $\alpha_{j}+1 \geq|\alpha| / n$. Therefore

$$
\begin{aligned}
\left|\mathrm{D}^{\alpha} u(x)\right| & \geq \frac{1}{2}\left|\mathrm{D}^{\alpha} u_{r}(x)\right|=\frac{1}{2} \prod_{j=1}^{n}\left|u_{r, j}^{\left(\alpha_{j}\right)}\left(x_{j}\right)\right| \\
& \geq \frac{1}{2} \prod_{j=1}^{n}(n r)^{\alpha_{j}}\left(\alpha_{j}+1\right)^{\alpha_{j}} \geq \frac{1}{2}(n r)^{|\alpha|}\left(\frac{|\alpha|}{n}\right)^{|\alpha|}=\frac{1}{2} r^{|\alpha|}|\alpha|^{|\alpha|}
\end{aligned}
$$

and finally, as we have chosen $r>3 s$, we arrive at the following contradiction:

$$
\left|\mathrm{D}^{\alpha} u(x)\right| \geq \frac{1}{2}(3 s)^{|\alpha|}|\alpha|^{|\alpha|}>s^{|\alpha|}|\alpha|^{|\alpha|}
$$

7. Proof of Theorem 1.1. We first fix some $\zeta \in] 1, \gamma[$. We next apply Theorem 6.1 to get $u \in \Gamma_{\zeta}$ having G as its set of divergence points. We then apply Theorem 5.2 to get $h \in \Gamma_{\gamma}\left(\mathbb{R}^{n} \backslash G^{-}\right)$which is analytic on $\mathbb{R}^{n} \backslash G^{-}$ and such that

$$
\left\|\mathrm{D}^{\alpha} u-\mathrm{D}^{\alpha} h\right\|_{\left(\mathbb{R}^{n} \backslash G^{-}\right) \backslash K_{s+1}} \leq \frac{1}{s} \quad \text { if }|\alpha| \leq s \text { and } s \geq 2
$$

(where of course K_{s} is the s th compact set corresponding to the special
compact cover of the open set $\mathbb{R}^{n} \backslash G^{-}$). So the function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad x \mapsto \begin{cases}u(x) & \text { if } x \in G^{-}, \\ h(x) & \text { if } x \in \mathbb{R}^{n} \backslash G^{-},\end{cases}
$$

belongs to Γ_{γ}, is analytic on $\mathbb{R}^{n} \backslash G^{-}$and has G as its set of divergence points.

We now apply Corollary 5.3 to get $g \in \Gamma_{\gamma}$ which is analytic on Ω, identically 0 on no connected component of Ω and flat on $\mathbb{R}^{n} \backslash \Omega$; in particular, g has no divergence point.

To conclude one just has to check that the function $f+g$ suits our purpose: $f+g$ certainly belongs to Γ_{γ}, is analytic on Ω (since $\Omega \subset \mathbb{R}^{n} \backslash G^{-}$) and has G as its set of divergence points. Moreover, no point x of F can be a divergence point (since F and G are disjoint), nor an analytic point (this would imply that $f+g$ is analytic on some open ball b centered at x; this in turn implies that b and G are disjoint, so f must be analytic on b; finally, g is analytic hence flat on b, contrary to the fact that x must belong to the boundary of Ω).

References

[1] R. P. Boas, A theorem on analytic functions of a real variable, Bull. Amer. Math. Soc. 41 (1935), 233-236.
[2] S. Mandelbrojt, Séries entières et transformées de Fourier, Applications, Publ. Math. Soc. Japan 10, 1967.
[3] H. Salzmann and K. Zeller, Singularitäten unendlich oft differenzierbarer Funktionen, Math. Z. 62 (1955), 354-367.
[4] J. Siciak, Punkty regularne i osobliwe funkcji klasy C_{∞} [Regular and singular points of C_{∞} functions], Zeszyty Nauk. Polit. Śląsk. Ser. Mat.-Fiz. 48 (853) (1986), 127-146 (in Polish).
[5] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
[6] Z. Zahorski, Sur l'ensemble des points singuliers d'une fonction d'une variable réelle admettant les dérivées de tous les ordres, Fund. Math. 34 (1947), 183-245.

Institut de Mathématique
Université de Liège
15, avenue des Tilleuls
B-4000 Liège, Belgium

Facultad de Matemáticas
Universidad de Valencia
Dr. Moliner 50
E-46100 Burjasot (Valencia), Spain

[^0]: 1991 Mathematics Subject Classification: Primary 26E10; Secondary 26E05.
 Key words and phrases: Gevrey classes, defect point, divergence point.
 Research of the first author partially supported by the Belgian C.G.R.I.
 Research of the second author partially supported by DGICYT PB91-0326 and the Convenio Hispano-Belga.

