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Abstract. The notion of a parabolic Cantor set is introduced allowing in the defini-
tion of hyperbolic Cantor sets some fixed points to have derivatives of modulus one. Such
difference in the assumptions is reflected in geometric properties of these Cantor sets. It
turns out that if the Hausdorff dimension of this set is denoted by h, then its h-dimensional
Hausdorff measure vanishes but the h-dimensional packing measure is positive and finite.
This latter measure can also be dynamically characterized as the only h-conformal mea-
sure. It is relatively easy to see that any two parabolic Cantor sets formed with the help of
the same alphabet are canonically topologically conjugate and we then discuss the rigidity
problem of what are the possibly weakest sufficient conditions for this topological conju-
gacy to be “smoother”. It turns out that if the conjugating homeomorphism preserves the
moduli of the derivatives at periodic points, then the dimensions of both sets are equal
and the homeomorphism is shown to be absolutely continuous with respect to the corre-
sponding h-dimensional packing measures. This property in turn implies the conjugating
homeomorphism to be Lipschitz continuous. Additionally the existence of the scaling func-
tion is shown and a version of the rigidity theorem, expressed in terms of scaling functions,
is proven. We also study the real-analytic Cantor sets for which the stronger rigidity can
be shown, namely that the absolute continuity of the conjugating homeomorphism alone
implies its real analyticity.

1. Introduction; preliminaries. The goal of this paper is to classify
parabolic Cantor sets up to bi-Lipschitz and real-analytic conjugacy. This is
done in the last three sections of the paper. The first 5 sections have mostly
survey character and collect basic dynamical and geometric properties of a
single parabolic Cantor set. The theory of parabolic Cantor sets has its roots
in the theory of parabolic rational maps and expanding cookie-cutter Cantor
sets. The former one is a model and prototype for exploring properties of a
single map. The proofs in both settings are very similar and most of them
are skipped as they can be found in one of the papers [ADU], [DU1]–[DU4],
[U1], and [U2].
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From the theory of expanding Cantor sets we mostly adopted to our
setting the concept of scaling function and the rigidity problem. In contrast
to what is going on in the case of expanding Cantor sets, the geometry of
parabolic Cantor sets fails to be bounded. Nevertheless it continues to be
determined, up to the level of bi-Lipschitz conjugacy, by the scaling function.
The geometry is also determined (again up to bi-Lipschitz conjugacy) by
the packing measure class and the Hausdorff dimension of the Cantor set.
This is much less evident than in the case of expanding sets. The point
is that for expanding sets there is an extremely simple relation between
the conformal (equivalently packing) measure of a ball and the power of
its radius, with exponent being the Hausdorff dimension of the Cantor set
under consideration. Namely, these two quantities are almost proportional—
their ratio stays bounded away from zero and infinity. For parabolic Cantor
sets the relation between radii of balls and their conformal measures is more
complex. Proving Lipschitz conjugacy becomes technically more involved. Of
special importance is Section 9, where dealing with real-analytic systems,
employing the methods of complex-analytic functions and indirectly the
concept of nonlinearity (see [Su1] and [Pr3]), we prove a stronger version of
rigidity that the absolute continuity (with respect to packing measures) of
the conjugating homeomorphism alone implies its real analyticity.

Concluding this introduction we would like to mention that Mathematica
Gottingensis preprint “Parabolic Cantor sets” 21 (1995) contains a more
complete version of this paper, especially in the part dealing with a single
parabolic Cantor set.

To introduce notation, let S1 denote the unit circle {z ∈ C : |z| = 1}
and let l be the normalized Lebesgue measure on S1, l(S1) = 1. Let I be
a finite set consisting of at least two elements and let {∆j : j ∈ I} be a
finite collection of closed nondegenerate and not overlapping subarcs (their
intersections contain at most one point) of S1. Finally, let f :

⋃
j∈I ∆j → S1

be a C1 map, open onto its image, with the following properties:

(1.1) If i, j ∈ I and ∆i ∩∆j 6= ∅, then f |∆i∪∆j is injective.
(1.2) For every j ∈ I the restriction f |∆j is C1+θ differentiable, that is,

the derivative function f ′|∆j is Hölder continuous with an exponent
θ > 0, which means that

|f ′(y)− f ′(x)| ≤ Q|y − x|θ

for some constant Q > 0 and all x, y ∈ ∆j .
(1.3) |f ′(x)| ≥ 1 for all x ∈ ⋃j∈I ∆j but |f ′(x)| = 1 may hold only if

f(x) = x.
(1.4) If f(ω) = ω and |f ′(ω)| = 1, then the derivative f ′ is monotone on

each sufficiently small one-sided neighborhood of ω.
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(1.5) There exists L ≥ 2 such that if f(ω) = ω and |f ′(ω)| = 1, then
there exists 0 < β = β(ω) < θ/(1− θ)(=∞ if θ = 1) such that

2
L
≤ lim inf

x→ω
|f ′(x)| − 1
|x− ω|β ≤ lim sup

x→ω
|f ′(x)| − 1
|x− ω|β ≤ L

2
.

(1.6) For every i ∈ I there exists I(i) ⊂ I such that f(∆i) ∩
⋃
j∈I ∆j =⋃

k∈I(i)∆k.

The reader should notice that in the case when the intervals Ij are
mutually disjoint, then without loosing generality the circle S1 can be re-
placed by a compact subinterval of R. In this case also the openness of
f :

⋃
j∈I ∆j → S1 and (1.1) follow automatically from other assumptions.

In the general case, property (1.3) describes a kind of hyperbolicity and re-
quirement (1.6) establishes the Markov property which always gives rise to
a nice symbolic representation of f .

In the sequel we will need f to satisfy one more condition. In order to
express it let A : I × I → {0, 1} be the matrix (called incidence matrix)
defined by the requirement that Aij = 1 if and only if f(∆i) ⊃ ∆j . The last
condition we need is that the matrix A is primitive, which means that

(1.7) there exists q ≥ 1 such that all entries of Aq are positive.

Let next Σ∞A ⊂ I∞ be the space of all one-sided infinite sequences τ =
τ0τ1τ2 . . . acceptable by A, that is, such that Aτjτj+1 = 1 for all j = 0, 1, 2, . . .
and let Σ∗A be the set of all finite sequences acceptable by A. We put ΣA =
Σ∗A ∪ Σ∞A and for every integer n ≥ 0 we let Σn

A be the subset of Σ∗A
consisting of all words of length n + 1. Given τ ∈ ΣA and n ≥ 0 we define
τ |n = τ0τ1 . . . τn to consist of the first n + 1 initial letters of τ ; if n + 1
exceeds the length of τ , then τ |n is just τ . Notice that Σ∞A is compact
and by primitiveness of A it is nonempty. Notice also that Σ∞A is forward
invariant under the left-sided shift map (cutting out the first coordinate)
which will be denoted by σ. For all words τ ∈ Σn

A, n ≥ 0, define

∆(τ) = ∆τ0 ∩ f−1(∆τ1) ∩ . . . ∩ f−n(∆τn).

Observe that ∆(τ) is a nonempty closed subinterval of S1. Fix τ ∈ Σ∞A and
consider the descending sequence {∆(τ |n) : n ≥ 0} of compact nonempty
subintervals of S1. Then the intersection

⋂
n≥0∆(τ |n) is a closed nonempty

subinterval of S1. We shall prove the following.

Lemma 1.1. For every τ ∈ Σ∞A the set ∆(τ) =
⋂
n≥0∆(τ |n) is a single-

ton. Even more, the diameters of ∆(τ |n) tend to zero uniformly with respect
to τ .

P r o o f. Let Σ+
A = {τ ∈ Σ∞A : l(∆(τ)) > 0} and suppose that Σ+

A 6= ∅.
Since for any two distinct elements τ, τ ′ ∈ Σ∞A the intersection ∆(τ)∩∆(τ ′)
is either an empty set or a point, the family Σ+

A contains an element of
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largest length. So, the remark that if τ ∈ Σ∞A , then also σ(τ) ∈ Σ∞A and
l(∆(σ(τ))) = l(f(∆(τ))) > l(∆(τ)), gives a contradiction and finishes the
proof of the first part of the lemma.

In order to prove the second part suppose to the contrary that ∃ ε > 0
∀n ≥ 0 ∃ τ (n) ∈ Σ∞A ∃kn ≥ n such that l(∆τ (n)|kn) ≥ ε. By compactness
of Σ∞A we can find an accumulation point τ ∈ Σ∞A of the sequence {τ (n) :
n ≥ 1}. But since the sequence of lengths {l(∆(τ |n)) : n ≥ 1} is decreasing
this yields l(∆(τ |n)) ≥ ε for all n ≥ 1 and consequently l(∆(τ)) ≥ ε. This,
however, contradicts the first part of the lemma and completes the proof.

In view of Lemma 1.1 we can define a continuous map π : Σ∞A → S1

putting π(τ) = ∆(τ). The range of this map, J = J(f) = π(Σ∞A ), is called
the dynamical Cantor set (DCS) associated with the dynamical system
(f, I;∆j , j ∈ I). Although J may happen to be an interval, nevertheless
we still choose the name Cantor set since we consider an interval as a de-
generate Cantor set, and since, what is perhaps a more important reason,
in some sense J is an interval in exceptional cases only (Lemma 2.4). Let us
now formulate the following obvious lemma.

Lemma 1.2. (a) J =
⋂
n≥0

⋃
τ∈Σn

A
∆(τ).

(b) J can be characterized as the set of those points of S1 whose positive
iterates under f are all defined (and therefore contained in

⋃
j∈I ∆j).

(c) f−1(J) = J = f(J).
(d) f ◦ π = π ◦ σ.
(e) π is at most 2-to-1.

P r o o f. Properties (a) and (b) are obvious. The relations f(J) ⊂ J =
f−1(J) follow immediately from (b), and the inclusion f(J) ⊃ J follows
from (b) and primitiveness of the matrix A. The properties (d) and (e)
follow from the definition of J .

Let
Ω = Ω(f) = {ω ∈ J : f(ω) = ω and |f ′(ω)| = 1}

Each ω ∈ Ω is called a fixed parabolic point or briefly a parabolic point . For
every q ≥ 1 consider now the system (fq, Iq;∆(τ), τ ∈ Iq). One can prove
the following.

Lemma 1.3. The set Iq consists of at least two elements, {∆(τ) : τ ∈ Iq}
is a finite collection of nonoverlapping closed intervals, and fq :

⋃
τ∈Iq ∆(τ)

→ S1 is continuous. Moreover ,

(a) The system (fq, Iq;∆(τ), τ ∈ Iq) satisfies the conditions (1.1)–(1.7).
(b) J(fq) = J(f).
(c) Ω(fq) = Ω(f).
(d) If τ ∈ I2 and ω ∈ Ω(f)∩∆(τ), then f2|∆(τ) is orientation preserving.
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Besides the formal value of Lemma 1.3 its practical advantage is that
passing to the second iterate of f one keeps the same Cantor set, the same set
of parabolic points, and f2 “preserves” one-sided neighborhoods of parabolic
points. Therefore from now on we will assume that already f itself satisfies
condition (d) of Lemma 1.3. The next lemma is an immediate consequence
of Lemma 1.2(d), (e).

Lemma 1.4. For every n ≥ 1 the set Pern(f) = {x ∈ J : fn(x) = x} is
finite.

Using our assumptions (1.1)–(1.7) and Lemma 1.4 we conclude that the
number

δ1 = 1
2 min





min{l(∆i) : i ∈ I}
min{dist(∆i,∆j) : i, j ∈ I, ∆i ∩∆j = ∅}
min{|x− y| : x, y ∈ Per2(f), x 6= y}

is positive. One can easily check that

Lemma 1.5. If 0 < δ ≤ δ1 and x ∈ B(Per1(f), δ) \ Per1(f), then there
exists n ≥ 1 such that fn(x) 6∈ B(Per1(f), δ).

Recall that a continuous map S : X → X of a compact metric space X is
expansive if there exists a positive η (an expansive constant for f) such that
for all distinct x, y ∈ X there exists n ≥ 0 such that dist(Sn(x), Sn(y)) ≥ η.
Using Lemma 1.5 one proves the following.

Theorem 1.6. The map f : J → J is open and expansive, and any
positive number η ≤ δ1 is an expansive constant for f.

As an immediate consequence of this theorem, Lemma 2.2 of [DU2] and
[Ru, p. 128] (see also [PU]), we get the following.

Corollary 1.7 (Closing Lemma). For every ε > 0 there exists ε̃ > 0
such that if n ≥ 0 is an integer , x ∈ J , and |fn(x)−x| < ε̃, then there exists
a point y ∈ J such that

fn(y) = y and |f j(y)− f j(x)| < ε for all j = 0, 1, . . . , n− 1.

2. Bounded distortion. This section is of somewhat technical character
and for further reading it is not necessary to become familiar with all the
proofs included here. It is devoted to the distortion properties of iterates of
f . First observe that for every ω ∈ Ω there is a continuous inverse branch
f−1
ω : B(ω, δ1)→ S1 of f such that f−1

ω (ω) = ω. By (1.3), f−1
ω (B(ω, δ1)) ⊂

B(ω, δ1) and therefore all iterates f−nω (B(ω, δ1)) ⊂ B(ω, δ1), n ≥ 1, are
well defined. Moreover, by Lemma 1.3(d) the map f−1

ω preserves one-sided
neighborhoods of ω. Therefore, since δ1 is an expansive constant, ω is the
only fixed point in B(ω, δ1) and limn→∞ f−nω (x) = ω for all ω ∈ Ω and all
x ∈ B(ω, δ1).
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Lemma 2.1. For all ω ∈ Ω and all x ∈ B(ω, δ1‖f‖−1) \ {ω} we have

|x− ω|
|f(x)− x| ≤

∞∑
n=1

|(f−nω )′(x)| ≤ |f
−1
ω (x)− ω|
|x− f−1

ω (x)| .

The proof is obtained by integrating partial sums of the series∑∞
n=1 |(f−nω )′(x)|.
Sending neighborhoods of neutral points to infinity via the mapping

1/(x− ω) one can fairly easily prove the following local results.

Corollary 2.2. ∀ω ∈ Ω ∀0 < R ≤ δ ∃L1(R) ≥ 1 ∀z ∈ B(ω, δ)\B(ω,R)
∀n ≥ 1,

L1(R)−1 ≤ |f−nω (z)− ω|n1/β ≤ L1(R).

Lemma 2.3. ∀ω ∈ Ω ∀0 < R ≤ δ ∃L2(R) ≥ 2 ∀z ∈ B(ω, δ) \B(ω,R)
∀n ≥ 1,

L2(R)−1 ≤ |(f−nω )′(z)|n(β+1)/β ≤ L2(R).

Despite their very technical character we now provide detailed proofs of
the distortion results as they form essential tools in Sections 8–10. Since
β < θ/(1 − θ), it follows from Lemma 2.3 that for every ω ∈ Ω and every
x ∈ B(ω, δ),

(2.1)
∞∑
n=1

|(f−nω )′(x)|θ <∞

and the convergence is uniform on compact subsets of B(Ω, δ) \Ω.
Now observe that for every x ∈ S1 and every n ≥ 1, if fn(x) is well

defined, then there exists a continuous inverse branch f−nx : B(fn(x), δ2)→
S1 of fn sending fn(x) to x, where δ2 = min{l(f(∆i)) : i ∈ I}. We shall
prove the following.

Lemma 2.4. ∀t > 0 ∀0 < s < 1 ∃K1(t, s) > 0 ∃M(t, s) > 0 such that if
x ∈ S1, n ≥ 0, fn(x) is well defined , and dist(fn(x), Ω) ≥ t, then∑n−1
j=1 |(f j)′(x)|−θ ≤ M(t, s) and |(f−nx )′(y)| ≤ K1(t, s)|(f−nx )′(z)| for all

y, z ∈ B(fn(x),min{δ, st}). Moreover , for every t > 0, lims→0K1(t, s) = 1.

P r o o f. Set r = min{δ, (1 − s)t}, λ = λ(t, s) = inf{|f ′(z)| : z 6∈
B(Ω, r‖f ′‖−1)} and let K = K(t, s) > 0 be the supremum of the series
appearing in (2.1) taken over the set B(Ω, r) \ B(Ω, r‖f ′‖−1). Fix y ∈
B(fn(x),min{δ, st}), for every 0 ≤ j ≤ n put yj = f j(f−nx (y)) and let p(j)
be the number of integers 0 ≤ i ≤ n−1−j such that f i(y) 6∈ B(Ω, r‖f ′‖−1).
Define also increasing sequences 0 ≤ kj ≤ lj ≤ n determined by the require-
ments that

(a) {ykj , ykj+1, . . . , ylj} ⊂ B(Ω, r) and
(b) if i 6∈ G =

⋃
j{kj , kj + 1, . . . , lj}, then yi 6∈ B(Ω, r).
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Since y = yn 6∈ B(Ω, r), we conclude that ylj ∈ B(Ω, r) \B(Ω, r‖f ′‖−1)
for all j. Thus

lj∑

i=kj

|(fn−i)′(yi)|−θ ≤ (K + 1)|(fn−lj )′(ylj )|−θ ≤ (K + 1)λ−θp(lj)

and then
n−1∑

i=0

|(fn−i)′(yi)|−θ ≤
∑

j

(K + 1)λ−θp(lj) +
∑

i 6∈G
λ−θp(i)(2.2)

≤ (K + 1)
n−1∑

i=0

λ−θi

= (K + 1)
λθ

λθ − 1
,

where the second inequality is due to the fact that all the numbers p(lj)
and p(i), i 6∈ G, are mutually distinct. So, the first claim of the lemma is
proven. As a matter of fact, in the proof of the two other claims we will
use a slightly stronger version of this estimate where we let the point y
vary in B(fn(x),min{δ, st}) with i. Let now z be another point in B(fn(x),
min{δ, st}). Then using (1.2) and the mean value theorem we see that for
every j there exists w(j) ∈ [zj , yj ] such that

|log |f ′(zj)| − log |f ′(yj)|| ≤ ||f ′(zj)| − |f ′(yj)|| ≤ Q|zj − yj |θ

= Q|(fn−j)′(w(j)
j )|−θ|z − y|θ

≤ Q(2st)θ|(fn−j)′(w(j)
j )|−θ.

Hence applying (2.2), in fact its stronger version discussed above, we get

|log |(f−nx )′(y)| − log |(f−nx )′(z)|| ≤
n−1∑

j=0

|log |f ′(zj)| − log |f ′(yj)||

≤ (2st)θQ
n−1∑

j=0

|(fn−j)′(w(j)
j )|−θ

≤ (2st)θQ(K + 1)
λθ

λθ − 1
.

So, the first part of the proof is finished by setting

K1(t, s) = exp
(

(2st)θQ(K + 1)
λθ

λθ − 1

)
.
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In order to see that lims→0K1(t, s) = 1 it suffices to notice that

lim
s→0

λ(t, s) = inf{|f ′(z)| : z 6∈ B(Ω,min{δ, t})} > 1

and lims→0K(t, s) is finite as the supremum of the series appearing in (2.1)
over the set B(Ω,min{δ, t}) \B(Ω,min{δ, t}/‖f ′‖). The proof is finished.

Observe that given ω ∈ Ω and 0 < t < δ, partitioning separately
both connected components of B(ω, δ) \ B(ω, t) into finitely many seg-
ments of length ≤ t/2, and increasing K1(t, t/2) if necessary, we derive
from Lemma 2.4 the following.

Corollary 2.5. For every 0 < t < δ there exists K1(t) > 0 such that
if x ∈ S1, n ≥ 0, fn(x) is well defined and belongs to B(ω, δ) \ B(ω, t),
then |(f−nx )′(y)| ≤ K1(t)|(f−nx )′(z)| for all y, z lying in the same connected
component of B(ω, δ) \B(ω, t) as fn(x).

Lemma 2.6. For every 0 < s < 1 there exists K2(s) > 1 such that if x ∈
S1, n ≥ 0, and fn(x) is well defined , then |(f−nx )′(y)| ≤ K2(s)|(f−nx )′(z)|
for all y, z ∈ B(fn(x),min{s dist(fn(x), Ω), δ/4}).

Before starting the proof let us give a few words of comment on this
lemma. First of all this is a substantial improvement of Lemma 2.4 since
now the distortion constant K2(s) is independent of the distance from fn(x)
to Ω; it depends only on the ratio of the radius of the ball around fn(x)
and dist(fn(x), Ω). Note also that the lemma is vacuous if fn(x) ∈ Ω.

P r o o f o f L e m m a 2.6. If dist(fn(x), Ω) ≥ δ/2, then

s dist(fn(x), Ω) =
s

δ/2
dist(fn(x), Ω)

δ

2
≤ s

δ/2
diam(S1)

δ

2
=

2s
δ

δ

2

and therefore it follows from Lemma 2.4 that any constant K2(s) ≤
K1(δ/2, 2s/δ) works in this case. So, we can suppose that dist(fn(x), Ω) <
δ/2 and let ω ∈ Ω be the only point such that |fn(x)−ω| < δ/2. Denote the
ball B(fn(x),min{s dist(fn(x), Ω), δ/4}) by B(fn(x)). Since B(fn(x)) ⊂
B(fn(x), s|fn(x) − ω|) ⊂ B(ω, δ), for every y ∈ B(fn(x)) there exists a
unique integer k = k(y) such that fk(y) ∈ B(ω, δ) \B(ω, δ/‖f ′‖).

Suppose now additionally that f−nx = f−nω . Then for every y ∈ B(fn(x))
we have f−nx (y) = f

−(n+k)
ω (fk(y)), thus by Lemma 2.3,

L−1
2 (n+ k)−(β+1)/β ≤ |(f−nx )′(y)| ≤ L2(n+ k)−(β+1)/β ,

where L2 = L2(δ/‖f ′‖) is the constant of Lemma 2.3. Since

(1− s)|fn(x)− ω| ≤ |y − ω| ≤ (1 + s)|fn(x)− ω|,
it follows from Corollary 2.2 that we have (1− s)|fn(x)−ω| ≤ L1k

−1/β and
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(1 + s)|fn(x)− ω| ≥ L−1
1 k−1/β , where L1 = L1(δ/‖f ′‖). Thus

max{k(y) : y ∈ B(fn(x))}
min{k(y) : y ∈ B(fn(x))} ≤

(
L2

1
1 + s

1− s
)β
.

Denote the number on the right-hand side of this inequality by a(s)β ≥ 1.
We then have for all y, z ∈ B(fn(x)),

|(f−nx )′(y)|
|(f−nx )′(z)| ≤

L2(n+ k(y))−(β+1)/β

L−1
2 (n+ k(z))−(β+1)/β

= L2
2

(
n+ k(y)
n+ k(z)

)−(β+1)/β

≤ L2
2a(s)β+1

and therefore we are done in this case.
In the general case let 0 ≤ j ≤ n be the least integer such that f i(x) ∈

B(Ω, δ/2) for all j ≤ i ≤ n. Then f i(x) = f
−(n−i)
ω (fn(x)) and f−nx =

f
−(i−1)
x ◦ g ◦ f−(n−i)

ω , where g is the inverse branch of f sending f i(x) to
f i−1(x) and f

−(i−1)
x is the inverse branch of f i−1 sending f i−1(x) to x.

Now, we have just proved that f−(n−i)
ω has distortion bounded by a number

depending only on s, uniform boundedness of distortion of g is obvious, and
since the point f (i−1)(x) is far away from Ω (at least at distance ≥ δ/2), a
uniform bound on the distortion of f−(i−1)

x follows from the first part of the
proof. We are done.

As an immediate consequence of Lemma 2.6 we get the following.

Corollary 2.7. For all 0 < γ < 1 sufficiently small , for all x ∈ S1,
and n ≥ 0 such that fn(x) is well defined ,

|(f−nx )′(y)| ≤ K2(γ)|(f−nx )′(z)|
for all y, z ∈ B(fn(x), γ dist(fn(x), Ω)).

Our last result in this section is in some sense a partial improvement of
Lemma 2.6 in an attempt to have lims→0K2(s) = 1.

Lemma 2.8. For every integer q ≥ 1 there exists an increasing func-
tion Qq : (0, δ) → [1,∞] such that limt→0Qq(t) = 1 and |(f−nx )′(y)| ≤
Qq(t)|(f−nx )′(z)| for all y, z ∈ ∆, where ∆ ⊂ B(Ω, t) is an arbitrary subarc
of S1 such that #(∆ ∩ {f−jω (∂B(ω, δ)) : j ≥ 0}) ≤ q and x is any point in
S1 such that fn(x) is well defined and fn(x) ∈ B(∆, t).

P r o o f. Observe that without loosing generality one can assume q = 1.
Take w ∈ ∂B(ω, δ) such that ∆ ⊂ [ω,w]. Suppose first that x = ω is a
parabolic point. Take any v ∈ B(ω, t). In view of (1.4) we have |(f−nω )′(v)| ≤
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|(f−nω )′(f−1
ω (v))| for all n ≥ 1. On the other hand,

|(f−nω )′(f−1
ω (v))| = |(f−nω )′(v)| · |f

′(f−1
ω (v))|

|f ′(f (−n+1)
ω (v))|

≤ |(f−nω )′(v)| · |f ′(f−1
ω (v))|.

Hence

1 ≤ |(f
−n
ω )′(f−1

ω (v))|
|(f−nω )′(v)| ≤ |f ′(f−1

ω (v))|
for all n ≥ 1. Since, by continuity of f ′, we have limv→ω |f ′(f−1

ω (v))| =
|f ′(ω)| = 1, from (1.4) (monotonicity of f ′) we get the existence of a function
Q1(t) claimed in the lemma as long as only the inverse branches of the form
f−nω , ω ∈ Ω, are involved.

In the general case, using what has been proved above, one repeats the
argument described in the last part of the proof of Lemma 2.6.

Frequently in the sequel, if there are no specific requirements on how
small γ > 0 is to be we will drop the dependence of K2(γ) on γ writing
K2 for K2(γ). We end up this section fixing the notation R(ω) = B(ω, δ) \
B(ω, δ/‖f ′‖).

3. Pressure and dimensions. This section is somewhat sketchy, of
rather general character and overlaps [DU1] as regards the content as well
as the methods used. Given f : J → J , we recall first that the Lyapunov
exponent χµ(f) of f with respect to an ergodic f -invariant measure µ is
defined as χµ(f) =

T
log |f ′| dµ and the pressure function P(t), t ∈ [0,∞), is

the topological pressure (see [Bo], [Wa]) of the map f : J → J and potential
−t log |f ′|. We have the following.

Proposition 3.1. If µ is an ergodic f -invariant measure, then χµ(f)
≥ 0. Additionally , χµ(f) = 0 ⇔ µ(Ω) = 1 ⇔ µ(Ω) > 0 ⇔ µ({ω}) = 1
for some ω ∈ Ω.

Proposition 3.2. The function t 7→ P(t), t ∈ R, is convex , continuous,
nonincreasing , and nonnegative if Ω 6= ∅.

Recall that HD(µ), the Hausdorff dimension of the measure µ, is defined
to be inf{HD(Y ) : µ(Y ) = 1}. By definition, HD(µ) ≤ HD(J) ≤ 1 and hence
sup{HD(µ)} ≤ 1, where the supremum, denoted by DD(J), is taken over all
ergodic f -invariant measures µ of positive entropy. We have the following.

Lemma 3.3. (a) P(t) > 0 for every t ∈ [0,DD(J)).
(b) If Ω = ∅, then P(t) < 0 for every t ∈ (DD(J),∞). If Ω 6= ∅, then

P(t) = 0 for every t ∈ [DD(J),∞).
(c) P|[0,DD(J)] is decreasing.

It follows from this lemma that if Ω 6= ∅, then the pressure function has
a phase transition at the point s = DD(J). An intriguing problem arises of



Parabolic Cantor sets 251

what kind this phase transition is. Is for example P(t) differentiable at s or
not? A partial answer to such problems is contained in the following.

Theorem 3.4. The function P(t) is differentiable at t = DD(J) if and
only if there is no equilibrium state of positive entropy for the potential
−DD(J) log |f ′|.

4. Conformal measures and dimensions. This section constitutes a
natural extension of the previous one enriching its results by employing the
method of conformal measures along the lines worked out in [DU1], [DU5],
and [U1] (see also [PU]). Let t ≥ 0 be a real number. A Borel probability
measure m on the Cantor set J is called t-conformal for f if and only if

m(f(A)) =
\
A

|f ′|t dm

for every special set A ⊂ J , that is, a Borel subset of J such that f |A is
injective. Notice that if m is t-conformal, then m(f(A)) ≤ T

A
|f ′|t dm for

every Borel set A ⊂ J . From (1.3) and primitiveness of the incidence matrix
A we conclude that any conformal measure for f is positive on nonempty
open subsets of J .

Lemma 4.1. Let x ∈ J \ ⋃∞n=0 f
−n(Ω). Then there exist an increasing

sequence {nj = nj(x) : j ≥ 1} of positive integers, a sequence {rj(x)}∞j=1 of
positive reals decreasing to 0, and an element y ∈ ω(x) \ B(Ω, δ) with the
following properties:

(a) y = limj→∞ fnj (x).
(b) fnj (x) 6∈ B(Ω, δ).
(c) If m is a t-conformal measure for f , then there exists a constant

B(m) ≥ 1 such that for all j ≥ 1,

B(m)−1 ≤ m(B(x, rj(x)))/rj(x)t ≤ B(m).

The idea of the proof of this lemma is to iterate the point x forward
to be infinitely often far away from neutral points and to define the balls
B(x, rj(x)) as the preimages of balls of some fixed radius. As a consequence
of this lemma and Besicovitch type covering results we get the following.

Lemma 4.2. If Ht is the t-dimensional Hausdorff measure on J , Πt is
the t-dimensional packing measure on J , and m is a t-conformal measure
for f : J → J , then Ht is absolutely continuous with respect to m and the
Radon–Nikodym derivative is bounded from above. Consequently , t ≥ HD(J)
and there is no t-conformal measure for t < HD(J). If additionally m is
atom free, then m� Πt and , in particular , Πt(J) > 0.

Let e(J) be the infimum of all exponents t ≥ 0 such that a t-conformal
measure exists, and let δ(J) be the first zero of the pressure function P(t).
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The concluding result of this section is the following.

Theorem 4.3. We have DD(J) = δ(J) = e(J) = HD(J) and an h-
conformal measure exists, where h denotes the common value of these four
numbers.

P r o o f. That δ(J) = DD(J) ≤ HD(J) ≤ e(J) can be seen from Lem-
mas 3.3 and 4.2. So, in order to complete the proof it suffices to find a δ(J)-
conformal measure on J . But since by Theorem 1.6 the mapping f : J → J is
open and expansive, and since P(δ(J)) = 0, the existence of such a measure
follows from Theorem 3.12 of [DU6].

5. Local behavior around parabolic points. In this section we col-
lect some results about the local behavior of conformal measures around
parabolic points. For every ω ∈ Ω let

α(ω) = h+ β(ω)(h− 1).

We begin with the following.

Lemma 5.1. If m is an h-conformal measure for f : J → J , then
∃C1 ≥ 1 ∀ω ∈ Ω ∀0 < r ≤ 1,

C−1
1 ≤ m(B(ω, r) \ {ω})/rα(ω) ≤ C1.

Lemma 5.2. ∀ζ > 0 ∃C2 = C2(ζ) ≥ 1 ∀ω ∈ Ω ∀z ∈ J ,

C−1
2 |z − ω|α(ω) ≤ m(B(z, ζ|z − ω|) \ {ω}) ≤ C2|z − ω|α(ω).

Theorem 5.3. We have h = HD(J) > max{β(ω)/(β(ω) + 1) : ω ∈ Ω}.
P r o o f. Fix ω ∈ Ω. Since δ is an expansive constant for f , the interior

of at least one of the two connected components of R(δ) has a nonempty
intersection with the set J . Call it R(ω). Since by Theorem 4.3 there exists
an h-conformal measure m for f : J → J , it follows from Lemma 2.3 that

1 ≥
∞∑
n=1

m(f−nω (R(ω))) ≥ L2(δ/‖f ′‖)−hm(R(ω))
∞∑
n=1

n−h(β+1)/β .

Since m(R(ω)) > 0, this formula implies that the last series converges.
Therefore, h > β(ω)/(β(ω) + 1). The proof is finished.

Although the next theorem is of global character we place it in this
section since the most important ingredient of its proof is Lemma 2.3 which
is obviously of local flavor.

Theorem 5.4. There exists a unique (up to equivalence of measures)
h-conformal measure. Moreover , this measure is continuous.

In Section 8 we shall show more: there is only one such measure.
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6. Geometric measures. In this section following the ideas of [DU3],
[DU4], and [U2] we deal with geometric properties of the set J . We define
X to be J \⋃∞n=0 f

−n(Ω).

Lemma 6.1. For every C3 > 0 there exists C4 > 0 such that if n ≥ 0,
fn(z) ∈ B(ω, δ), ω ∈ Ω, and fn−1(z) 6∈ B(ω, δ) (in case n ≥ 1), then for
every r > 0 satisfying r|(fn)′(z)| ≤ γδK−1

2 and r|(fn)′(z)| ≥ C3|fn(z)− ω|
we have

C−1
4 (r|(fn)′(z)|)β(ω)(h−1) ≤ m(B(z, r))/rh ≤ C4(r|(fn)′(z)|)β(ω)(h−1).

In the proof of Theorem 6.2 below we shall construct (positive) integer-
valued functions n = n(z, r), k = k(z, r) and u = u(z, r) (z ∈ J , 0 < r < 1).
Although n = n(z, r) and k = k(z, r) do not appear in the formulation
of Theorem 6.2 we will use them and their properties several times in the
sequel.

Theorem 6.2. There exists Q ≥ 1 such that for every pair (z, r), z ∈ J ,
0 < r < 1, there exists a number β(z, r) ∈ {β(ω) : ω ∈ Ω} ∪ {0} such that

Q−1(r|(fu)′(z)|)β(z,r)(h−1) ≤ m(B(z, r))/rh ≤ Q(r|(fu)′(z)|)β(z,r)(h−1).

Moreover , γδ(K2‖f ′‖)−1|fu(z) − ω| ≤ r|(fu)′(z)| ≤ γδK−1
2 and there is a

continuous inverse branch f−uz : B(fu(z), r|(fu)′(z)|) → S1 sending fu(z)
to z.

P r o o f. Suppose first that supn≥0{r|(fn)′(z)|} > γδ(K2‖f ′‖)−1 and let
n = n(z, r) ≥ 0 be a minimal integer such that r|(fn)′(z)| > γδ(K2‖f ′‖)−1.
Then also r|(fn)′(z)| ≤ γδK−1

2 . We say that the pair (z, r) belongs to the
family < if fn(z) 6∈ B(Ω, δ). Since the conformal measure m is positive on
nonempty open sets, inf{m(B(x, γδK−2

2 ‖f ′‖−1)) : x ∈ J} > 0. Therefore,
using Corollary 2.7 we deduce the existence of a constant C5 > 0 indepen-
dent of (z, r) ∈ < and such that

C−1
5 ≤ m(B(z, r))/rh ≤ C5.

So, in this case our theorem is proved by setting u(z, r) = n(z, r).
Let ω ∈ Ω. Given (z, r) ∈ < suppose first that fn(z) ∈ B(ω, δ). Let

0 ≤ k = k(z, r) ≤ n be the least integer such that f j(z) ∈ B(ω, δ) for every
j = k, k + 1, . . . , n. Consider all the numbers ri = |f i(z) − ω| · |(f i)′(z)|−1,
where i = k, k + 1, . . . , n. From the definition of n(z, r) it follows that rn =
|fn(z)−ω| · |(fn)′(z)|−1 ≤ K2‖f ′‖(γδ)−1r and therefore there exists a min-
imal k ≤ u = u(z, r) ≤ n such that ru ≤ K2‖f ′‖(γδ)−1r. Then

(6.1) γδ(K2‖f ′‖)−1|fu(z)− ω| ≤ r|(fu)′(z)| ≤ γδK−1
2 .

Thus, if u = k, then it follows from Lemma 6.1 with C3 = γδ(K2‖f ′‖)−1

that there exists a constant C6 > 0 such that
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(6.2) C−1
6 (r|(fu)′(z)|)β(ω)(h−1)

≤ m(B(z, r))/rh ≤ C6(r|(fu)′(z)|)β(ω)(h−1).

So, we are done in this case. If u > k then ru−1 > K2‖f ′‖(γδ)−1r and
therefore, using (1.3) and (1.4), we get

ru =
|fu(z)− ω|
|fu−1(z)− ω| |f

′(fu−1(z))|−1ru−1 ≥ ‖f‖−1ru−1 ≥ K2(γδ)−1r.

Thus

(6.3) r|(fu)′(z)| ≤ γδK−1
2 |fu(z)− ω|.

Let f−uz : B(fu(z), γ|fu(z)− ω|)→ S1 be the continuous inverse branch of
fu which sends fu(z) to z. By Lemma 5.2, it follows from formulas (6.3),
(6.1), and Corollary 2.7 that formula (6.2) continues to hold in case u > k,
with a possibly bigger constant C6.

It remains to deal with the case of supn≥0{r|(fn)′(z)|} ≤ γδ(K2‖f ′‖)−1.
Then by (1.3), z ∈ J \ ⋃∞j=1 f

−j(Ω). Let u = u(z, r) ≥ 0 be the minimal
integer such that fu(z) ∈ Ω and let f−uz : B(fu(z),K2r|(fu)′(z)|)→ S1 be
a continuous inverse branch sending fu(z) to z. Applying Corollary 2.7 we
therefore obtain

K−h2 |(fu)′(z)|−hm(B(fu(z),K−1
2 r|(fu)′(z)|))

≤ m(B(z, r)) ≤ Kh
2 |(fu)′(z)|−hm(B(fn(z),K2r|(fu)′(z)|)).

and employing Lemma 5.1 finishes the proof.

It is not difficult to prove the following result used in the proof of The-
orem 6.4.

Lemma 6.3. There exists ξ > 0 sufficiently small such that if x ∈ X, q
is a positive integer , fq(x) ∈ B(ω, ξ), ω ∈ Ω, and fq−1(x) 6∈ B(Ω, δ), then

u(x, γδ(K‖f ′‖)−1|fq(x)− ω| · |(fq)′(x)|−1) = q.

Theorem 6.4. We have 0 < Πh(J) <∞ and Hh(J) <∞. Additionally ,
Hh(J) = 0 if and only if h < 1. Moreover , Πh is equivalent to m with
Radon–Nikodym derivative bounded away from zero and infinity.

P r o o f. The inequalities Hh(J) < ∞, 0 < Πh(J), and uniform bound-
edness of dm/dΠh follow from Lemma 4.2. Let α = max{α(ω) : ω ∈ Ω}.
Since h ≤ 1, it follows from Theorem 6.2 that lim infr→0(m(B(z, r)/rh) ≥
Q−1(γδK−1

2 )α(h−1) for all z ∈ J . Therefore the well-known results from
geometric measure theory (see [TT], comp. [Ma] and [DU3]) imply that
dΠh/dm ≤ const ·Q(γδK−1

2 )α(1−h) and Πh(J) <∞.
Now it remains to show that Hh(J) = 0 if h < 1. Let J0 = {z ∈ J :

ω(z) ∩Ω = ∅}. Since it can be proved that the set of transitive points of f
has m-measure zero, it follows from Lemma 4.2 that Hh(J0) = 0, whence we
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only need to show that Hh(X \ J0) = 0, but this follows immediately from
Lemma 6.3, Theorem 6.2, and well-known results from geometric measure
theory (see [TT], comp. [Ma] and [DU3]). The proof is finished.

The next result is a combined consequence of Theorem 6.4 and the ob-
servation (based on geometrical consequences of bounded distortion) that if
J is disconnected, then its Lebesgue measure is zero.

Theorem 6.5. If J is disconnected , then h = HD(J) < 1. In particular ,
the Lebesgue measure of J is equal to 0.

R e m a r k 6.6. We end up this section with the remark that making use
of the concept of the jump transformation (see the next section) one could
prove, essentially as in [DU4], that the box counting dimension of J exists
and coincides with HD(J).

7. Jump transformation and invariant measures. Using the exis-
tence of Markov partitions of arbitrarily small diameters (for example cylin-
ders of length n, where n increases to infinity) and the distortion results
of Section 2, and then proceeding similarly to [DU2], one can equip the
dynamical system (f, I;∆j , j ∈ I) with the structure of a Markov fibered
system (for the background about Markov fibered systems and Schweiger
formalism see [ADU], [DU2], and [Sc] for example). All the results obtained
in this theory apply to the h-conformal measure m and our map f : J → J .
In particular, fixing the Markov partition given by cylinders of length k ≥ 3,
one defines the jump transformation f∗ : J \Ω → J by setting

f∗(x) = fn(x)+1(x),

where n(x) ≥ 0 is the least integer n ≥ 0 such that fn(x) 6∈ ⋃ω∈Ω f−kω (∆ω)
and ∆ω is the union of all ∆i, i ∈ I, that contain ω.

The two basic results concerning Schweiger fromalism formulated in our
setting of parabolic Cantor sets are the following.

Theorem 7.1. There exists a unique, ergodic, f∗-invariant probability
measure µ∗ equivalent to m. Moreover , the Radon–Nikodym derivative ψ∗ =
dµ∗/dm satisfies D−1 ≤ ψ∗ ≤ D for some constant D > 0.

Theorem 7.2. The map f admits a unique (up to a multiplicative con-
stant), σ-finite, invariant measure µ equivalent to m with Radon–Nikodym
derivative dµ/dm given by the formula

dµ

dm
(x) = ψ∗(x) +

∞∑
n=1

ψ∗(f−nω (x))|(f−nω )′(x)|h

if x ∈ f−kω (∆ω) for some ω ∈ Ω. If x 6∈ ⋃ω∈Ω f−kω (∆ω), then (dµ/dm)(x) =
ψ∗(x). The measure µ is ergodic and conservative.
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Notice that in particular the measure µ is (up to a multiplicative con-
stant) independent of the jump transformation used in its construction.

Since the Radon–Nikodym derivatives of h-conformal measures are con-
stant along orbits of f , combining Theorems 5.4 and 7.2 we get the following.

Theorem 7.3. There exists a unique h-conformal measure m for the map
f : J → J . Moreover , this measure is continuous.

In the sequel we will need the following technical result.

Lemma 7.4. If F is a Borel subset of J and F ∩Ω = ∅, then µ(F ) <∞.

P r o o f. This lemma follows immediately from Theorems 7.2 and 7.1
taking in the definition of the jump transformation k so large that⋃
ω∈Ω f

−k
ω (∆ω) ∩ F = ∅.

In the context of dynamical Cantor sets the following criterion for the
finiteness of the invariant measure µ can be proved.

Theorem 7.5. The f-invariant σ-finite measure µ, equivalent to the con-
formal measure m, is finite if and only if h>2 max{β(ω)/(β(ω)+1) : ω∈Ω}.

Sections 8–10, the last three sections of this paper, are devoted to the
study of the rigidity problem for parabolic Cantor sets. To be more precise,
we explore the problem of what are necessary and sufficient conditions for
two parabolic Cantor sets which are topologically conjugate to be conjugate
in a smoother manner like bi-Lipschitz continuous or real-analytic. In Sec-
tion 8 we resolve this problem (see Theorem 8.1) in terms of the spectra of
moduli of multipliers of periodic points as well as in terms of the measure
classes of packing measures and Hausdorff dimensions.

In Section 9 dealing with real-analytic systems we prove (see Theo-
rem 9.9) a much stronger rigidity result that absolute continuity with respect
to packing measures (the equality of Hausdorff dimensions is not required!)
implies that the conjugating homeomorphism is real-analytic.

In the last section, Section 10, we undertake the most geometrical ap-
proach defining and proving the existence of the scaling function. We then
express a partial solution of the rigidity problem in terms of these functions.

Our approach to the rigidity problem of parabolic Cantor sets is moti-
vated by the results and ideas used in the setting of hyperbolic systems. See
for example [Su1], [Su2], [Pr2], [Pr3], [PT], [LS], and [Be], where also a more
complete collection of literature can be found.

8. Rigidity of dynamical Cantor sets. In this section we deal with
two dynamical systems (f, I;∆f,j , j ∈ I) and (g, I;∆g,j , j ∈ I) assuming
that these are set-theoretically equivalent, that is, that ∆f,i ∩ ∆f,j 6= ∅ if
and only if ∆g,i ∩∆g,j 6= ∅. Then the map φ : Jf → Jg given by the formula
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φ(πf (τ)) = πg(τ)

is well defined (that is, for all x ∈ Jf it does not depend on the choice of τ ∈
π−1
f (x)) and moreover it can be easily checked that φ is a homeomorphism.

Our main aim in this section is to prove the following rigidity theorem.

Theorem 8.1. The following three conditions are equivalent.

(a) If z ∈ Pern(f), then |(gn)′(φ(z))| = |(fn)′(z)|.
(b) The dimensions hf = HD(Jf ) and hg = HD(Jg) are equal and the

homeomorphism φ transports the measure class of the packing measure Πhf

on Jf onto the measure class of the packing measure Πhg on Jg.
(c) Both homeomorphisms φ and φ−1 are Lipschitz continuous.

We shall also provide the proof of the following theorem which sheds
some light on what is going on in the general case.

Theorem 8.2. The conjugacy φ : Jf → Jg is Hölder continuous if and
only if φ(Ωf ) = Ωg.

Since the proofs of Theorem 8.2 and the implication (b)⇒(c) have a
considerable overlap, we partially proceed with them simultaneously. In fact,
we begin with two general technical lemmas, then we prove the implication
(c)⇒(a) of Theorem 8.1 and we begin the proof that (b)⇒(c) including there
the proof of Theorem 8.2. We end the section with the implication (a)⇒(b).

The definition we intend to give now and the lemma following it involve
only one single dynamical system (f, I;∆j , j ∈ I) and therefore formulating
these and proving Lemma 8.4 we skip the subscript “f” when dealing with
objects associated with this dynamical system.

Definition 8.3. Suppose that a positive number ζ ≤ δ is given. If
ω ∈ Ω, we set Rζ(ω) = B(ω, ζ)\B(ω, ζ/‖f ′‖). If x and y (not necessarily dif-
ferent) are in the closure of the same connected component of B(ω, δ)\{ω},
then we let z ∈ {x, y} be the point lying farther from ω. We denote by 0 ≤
q = q(x, y) ≤ ∞ the largest integer such that f−qω (z) ∈ [x, y], and if x, y ∈
B(ω, ζ), we denote by p = p(ζ, x, y) ≥ 0 the least integer such that fp(z) ∈
Rζ(ω). If x = y we write q(x) and p(ζ, x) instead of q(x, x) and p(ζ, x, x).

Lemma 8.4. ∀0 < ζ ≤ δ ∀0 < ξ ≤ ζ ∀ω ∈ Ω ∀x 6= y ∈ S1 ∃C(ζ, ξ) such
that if x and y belong to the closure of the same connected component of
B(ω, δ) \ {ω} and |fp(y)− fp(x)| ≥ ξ, then

C(ζ, ξ)−1
q∑

j=0

(p+ j)−(β(ω)+1)/β(ω)

≤ |y − x| ≤ C(ζ, ξ)
q∑

j=0

(p+ j)−(β(ω)+1)/β(ω),

where we assume 0−1 = 1.
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P r o o f. Without loosing generality we may assume that z = y, where z is
described in Definition 8.3. Suppose first that q ≥ 1. Then by the definitions
of q and p we have

q−1⋃

j=0

f−(p+j)
ω ([f−1

ω (fp(y)), fp(y)]) ⊂ [x, y]

and
q⋃

j=0

f−(p+j)
ω ([f−1

ω (fp(y)), fp(y)]) ⊃ [x, y].

Since fp(y) ∈ Rζ(ω), we have |f−1
ω (fp(y))−ω| ≥ r(ζ), where r(ζ) = ζ/‖f ′‖−

L(β(ω) + 1)−1ζβ(ω)+1. Hence [f1
ω(fp(y)), fp(y)] ⊂ B(ω, δ) \ B(ω, r(ζ)) and

applying Lemma 2.3 we get

r(ζ)L2(r(ζ))−1
q−1∑

j=0

(p+ j)−(β(ω)+1)/β

≤ |f−1
ω (fp(y))− fp(y)|L2(r(ζ))−1

q−1∑

j=0

(p+ j)−(β(ω)+1)/β

≤ |x− y|
and

|x− y| ≤ |f−1
ω (fp(y))− fp(y)|L2(r(ζ))

q∑

j=0

(p+ j)−(β(ω)+1)/β

≤ δL2(r(ζ))
q∑

j=0

(p+ j)−(β(ω)+1)/β .

Since (p + q)−(β(ω)+1)/β ≤ (p + q − 1)−(β(ω)+1)/β , combining the last two
displays we get

1
2
L2(r(ζ))−1

q∑

j=0

(p+j)−(β(ω)+1)/β ≤ |x−y| ≤ δL2(r(ζ))
q∑

j=0

(p+j)−(β(ω)+1)/β

and we are done in the case q ≥ 1.
If q = 0, then we have [x, y] ⊂ f−pω ([f−1

ω (y), y]) and similarly to the
above we get |x − y| ≤ δL2(r(ζ))p−(β(ω)+1)/β . On the other hand, in this
case [x, y] = f−pω ([f−1

ω (y), y]). Since [fp(x), fp(y)] ⊂ [f−1
ω (fp(y)), fp(y)], as

before we get [fp(x), fp(y)] ⊂ B(ω, δ) \ B(ω, r(ζ)). Therefore, in view of
Lemma 2.3,

|x−y| ≥ |fp(x)−fp(y)|L2(r(ζ))−1p−(β(ω)+1))/β ≥ ξL2(r(ζ))−1p−(β(ω)+1)/β .

The proof is finished.
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Lemma 8.5. If Jf and Jg are two dynamical Cantor sets and φ : Jf → Jg
is the canonical topological conjugacy between them, then φ(Ωf ) = Ωg if and
only if ∃κ ≥ 1 ∀x ∈ Jf ∀n ≥ 1,

κ−1 log |(fn)′(x)| ≤ log |(gn)′(φ(x))| ≤ κ log |(fn)′(x)|.
P r o o f. The “if” part is proved by a straightforward computation. In

order to prove the converse, it is of course sufficient to show only one of
these two inequalities, say the second. Toward this end fix first ω ∈ Ωf and
notice that by (2.2) there exists a constant B ≥ 1 (even independent of
ω ∈ Ωf ) such that

B−1|x− ω|β(ω) ≤ log |f ′(x)| ≤ B|x− ω|β(ω)

and

B−1|φ(x)− φ(ω)|β(φ(ω)) ≤ log |g′(φ(x))| ≤ B|φ(x)− φ(ω)|β(φ(ω))

for all x sufficiently close to ω, say if |x−ω| ≤ ζ1(ω) for some 0 < ζ1(ω) < δf .
It also follows from Corollary 2.2 and the definition of the number p(x, ζ1(ω))
that

W−1p(x, ζ1(ω))−1/β(ω) ≤ |x− ω| ≤Wp(x, ζ1(ω))−1/β(ω)

and

W−1p(x, ζ1(ω))−1/β(φ(ω)) ≤ |φ(x)− φ(ω)| ≤Wp(x, ζ1(ω))−1/β(φ(ω))

for some constant W ≥ 1 (independent of ω ∈ Ωf ) and all x with |x− ω| ≤
ζ1(ω). Then

log |g′(φ(x))| ≤ B|φ(x)− φ(ω)|β(φ(ω)) ≤ BW β(φ(ω))p(x, ζ1(ω))−1

≤ BW β(φ(ω))W β(ω)|x− ω|β(ω)

≤ B2W β(φ(ω))+β(ω) log |f ′(x)|.
Thus log |g′(φ(x))| ≤ κ1 log |f ′(x)| for all x ∈ B(Ωf , ζ1), where ζ1 =
min{ζ1(ω) : ω ∈ Ωf} > 0 and κ1 = B2W β(φ(ω))+β(ω). Hence setting
a = inf{log |f ′(x)| : x ∈ Jf \ B(Ωf , ζ1)} we get log |g′(φ(x))| ≤
max{κ1, log ‖g′‖/a} log |f ′(x)| for all x ∈ Jf . Now the straightforward ap-
plication of the chain rule completes the proof.

P r o o f t h a t (c)⇒(a). Indeed, suppose that there is a periodic point
z of period n such that |(gn)′(φ(z))| 6= |(fn)′(z)|. Then without loosing
generality we can suppose that |(gn)′(φ(z))| < |(fn)′(z)|. Fix λ1, λ2 > 1
such that |(gn)′(φ(z))| < λ2 < λ1 < |(fn)′(z)| and take 0 < εf < δf and
0 < εg < δg so small that |(fn)′(x)| ≥ λ1 for all x ∈ B(z, εf ), |(gn)′(y)| ≤ λ2

for all y ∈ B(φ(z), εg), and φ(Jf ∩ B(z, εf )) ⊂ Jg ∩ B(φ(z), εg). Fix x ∈
Jf ∩ B(z, εf ) \ {z}. Then for all k ≥ 1 we have |f−nkz (x)− z| ≤ λ−k1 |x− z|
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and |g−nkφ(z) (φ(x))− φ(z)| ≥ λ−k2 |φ(x)− φ(z)|. Therefore

lim
k→∞

|g−nkφ(z) (φ(x))− φ(z)|
|f−nkz (x)− z| ≥ lim

k→∞

(
λ1

λ2

)k |φ(x)− φ(z)|
|x− z| =∞

and since g−nkφ(z) (φ(x)) = φ(f−nkz (x)), this shows that φ is not Lipschitz con-
tinuous.

P r o o f t h a t (b)⇒(c). Since the two measures mg and mf ◦ φ−1 are
equivalent, the measures µ∗g and µ∗f ◦ φ−1 are also equivalent, whence, in
view of Proposition 7.1 these are equal as equivalent ergodic probability
g∗-invariant measures. Therefore, it follows from the last part of that propo-
sition that there exists M ≥ 1 such that

(8.1) M−1 ≤ mg(φ(A))/mf (A) ≤M
for all Borel subsets A of Jf . In order to continue the proof we need the
following.

Lemma 8.6. If (b) is satisfied and ω ∈ Ωf , then φ(ω) ∈ Ωg and β(φ(ω)) =
β(ω).

P r o o f. Take εf , εg > 0 so small that φ(Jf ∩ B(ω, εf )) ⊂ B(φ(ω), εg).
Suppose now that |g′(φ(ω))| > 1 and fix 1 < λ < |g′(φ(ω))|. Take 0 < ε ≤ εg
so small that |g′(z)| ≥ λ for all z ∈ B(φ(ω), ε). Fix y ∈ Jg ∩B(φ(ω), ε). By
conformality of mg we have, for all n ≥ 0,

mg([g
−(n+1)
φ(ω) (y), g−nφ(ω)(y)]) ≤ λ−nmg([g−1

φ(ω)(y), y]) ≤ λ−n.
On the other hand, in view of Lemma 2.3, for all n ≥ 0 we get

mf ([f−(n+1)
ω (φ−1(y)), f−nω (φ−1(y))])

≥ L2,f (R)n−hf (β(ω)+1)/β(ω)mf ([f−1
ω (φ−1(y)), φ−1(y)]),

where R = |ω − φ−1(y)|. Therefore

mg([g
−(n+1)
φ(ω) (y), g−nφ(ω)(y)])

mf ([f−(n+1)
ω (φ−1(y)), f−nω (φ−1(y))])

≤ (L2,f (R)mf ([f−1
ω (φ−1(y)), φ−1(y)]))−1λ−nnhf (β(ω)+1)/β(ω).

Since limn→∞ λ−nnhf (β(ω)+1)/β(ω) = 0 and mf ([f−1
ω (φ−1(y)), φ−1(y)]) > 0

we arrive at a contradiction with (8.1) and the proof of the first part of
Lemma 8.6 is finished.

In order to prove the second part of the lemma we apply Lemma 2.3
again, this time to both the maps f and g, obtaining as a result the existence
of a constant M > 0 such that for all n ≥ 1,

M−1 ≤ n−hg(β(φ(ω))+1)/β(φ(ω))+hf (β(ω)+1)/β(ω) ≤M.
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Thus hg(β(φ(ω)) + 1)/β(φ(ω)) = hf (β(ω) + 1)/β(ω). Since the dimensions
hg and hf are equal, we get β(φ(ω)) = β(ω), which finishes the proof of
Lemma 8.6.

Now, let us continue the proof of the implication (b)⇒(c) including the
proof of Theorem 8.2. Fix 0 < η < δf/4 so small that if x, y ∈ Jf with
|x−y| ≤ η, then |φ(x)−φ(y)| < δg/4. Let τ > 0 be so small that |x−y| ≤ τ
implies |φ−1(x)−φ−1(y)| < η/‖f ′‖ and let η1 > 0 be so small that |x−y| ≤
η1 implies that |φ(x) − φ(y)| < τ/2. Finally, let τ1 > 0 be so small that if
|x− y| ≤ τ1, then |φ−1(x)− φ−1(y)| < η1/‖f ′‖.

Consider now an arbitrary pair of points x 6= y ∈ Jf with |x − y| <
η1/‖f ′‖. Since by Lemma 2.4, Jf has no isolated points, in order to prove
the Lipschitz continuity of φ we may assume that mf ([x, y]) > 0. Then
also mg([x, y]) > 0. Let n = n(x, y) ≥ 1 be the least integer such that
|fn(y) − fn(x)| ≥ η1/‖f ′‖. Then |fn(y) − fn(x)| ≤ η1. We will consider
several cases.

C a s e 1: {fn(y), fn(x)} ∩ (Jf \ B(Ωf , η/‖f ′‖)) 6= ∅. Without loosing
generality we may assume that fn(x) ∈ Jf \B(Ωf , η/‖f ′‖), whence in view
of Lemma 8.6 and the choice of τ we have gn(x) ∈ Jg \ B(Ωg, τ). Thus,
applying Lemma 2.6 we get

Kf,2(1/2)−1|(fn)′(x)| ≤ |f
n(y)− fn(x)|
|y − x| ≤ Kf,2(1/2)|(fn)′(x)|,

Kg,2(1/2)−1|(gn)′(φ(x))| ≤ |g
n(φ(y))− gn(φ(x))|
|φ(y)− φ(x)| ≤ Kg,2(1/2)|(gn)′(φ(x))|.

Using these two formulas and applying also Lemma 8.5 we now get

|φ(y)− φ(x)| ≤ 1
2Kg,2(1/2)Kf,2(1/2)(‖f ′‖η−1

1 )1/κ|y − x|1/κ,
which ends the proof of Hölder continuity in this case.

To continue the proof of the implication (b)⇒(c) notice that we get two
similar inequalities for conformal measures

Kf,2(1/2)−hf |(fn)′(x)|hf ≤ mf ([fn(x), fn(y)])
mf ([x, y])

≤ Kf,2(1/2)hf |(fn)′(x)|hf ,

and

Kg,2(1/2)−hg |(gn)′(φ(x))|hg

≤ mg([gn(φ(x)), gn(φ(y))])
mg([φ(x), φ(y)])

≤ Kg,2(1/2)hg |(gn)′(φ(x))|hg .

It now follows from the above inequalities for measures, from (8.1) and since
hf = hg that

(Kh
g,2M

2Kh
f,2(1/2))−1 ≤ |(fn)′(x)|h

|(gn)′(φ(x))|h ≤ K
h
g,2M

2Kh
f,2(1/2).
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Hence applying the inequalities involving distances we get

|φ(y)− φ(x)|
|y − x| ≥ K−1

g,2K
−1
f,2(1/2)

|gn(φ(y))− gn(φ(x))|
|fn(y)− fn(x)|

≥ (Kg,2Kf,2(1/2))−2M−2/h τ1
η1

and
|φ(y)− φ(x)|
|y − x| ≤ Kg,2(1/2)Kf,2(1/2)

|gn(φ(y))− gn(φ(x))|
|fn(y)− fn(x)| · |(f

n)′(x)|
|(gn)′(φ(x))|

≤ (Kg,2Kf,2(1/2))2M2/h τ‖f ′‖
2η1

.

So, we are done in this case.

C a s e 2: {fn(y), fn(x)} ⊂ B(Ωf , η/‖f ′‖). Since |φ(y) − φ(x)| ≤ η1 ≤
η/2 ≤ δf/2 there is ω ∈ Ωf such that fn(x), fn(y) ∈ B(ω, η/‖f ′‖). Let us
consider

C a s e 2.1: fn(y) and fn(x) are in the same connected component of
B(ω, η/‖f ′‖) \ {ω}. Let 0 ≤ k = k(x, y) ≤ n be the least integer such
that [f j(x), f j(y)] ⊂ B(ω, η/‖f ′‖) for all k ≤ j ≤ n. Finally, let q =
q(fk(x), fk(y)) and p = p(η, fk(x), fk(y)). Since p ≥ n−k, we get |fp+k(y)−
fp+k(x)| ≥ |fn(y) − fn(x)| ≥ η1/‖f ′‖. Since η1/‖f ′‖ ≤ η, it follows from
Lemma 2.2 that with the constant Cf = C(η, η1/‖f ′‖) > 0 and β = β(ω)
we have

(8.2) C−1
f

q∑

j=0

(p+ j)−(β+1)/β ≤ |fk(y)− fk(x)| ≤ Cf
q∑

j=0

(p+ j)−(β+1)/β .

Now, since φ is a topological conjugacy between f and g, we have
q(gk(φ(x)), gk(φ(y))) = q(fk(x), fk(y)). Let S be the closure of the con-
nected component of B(ω, η/‖f ′‖) \ {ω} that has nonempty intersection
with {fk(x), fk(y)} and let κ = κ(ω) > 0 be the diameter of φ(S ∩ Jf ).
Note that then p(κ‖g′‖, gk(φ(x)), gk(φ(y))) = p(η, fk(x), fk(y)), and as
|gk(φ(x)) − gk(φ(y))| ≥ τ1, using Lemma 8.6 and applying Lemma 8.4 for
the map g, we have

C−1
g,ω

q∑

j=0

(p+ j)−(β+1)/β ≤ |gk(φ(y))− gk(φ(x))| ≤ Cg,ω
q∑

j=0

(p+ j)−(β+1)/β ,

where Cg,ω = C(κ(ω)‖g′‖,min{τ1, κ(ω)‖g′‖}) is the constant produced in
Lemma 8.4 associated with the map g. Combining this formula and (8.2) we
get

(8.3) (CfCg)−1 ≤ |g
k(φ(y))− gk(φ(x))|
|fk(y)− fk(x)| ≤ CfCg,
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where Cg = max{Cg,ω : ω ∈ Ωf}. Observe now that by the definition
of n and k we have |fk−1(y) − fk−1(x)| ≤ η1/‖f ′‖ and dist(Ωf , {fk−1(y),
fk−1(x)}) ≥ δf/‖f ′‖. Hence |gk−1(φ(y)) − gk−1(φ(x))| ≤ τ/2 and
dist(Ωg, {gk−1(φ(y)), gk−1(φ(x))}) ≥ τ . So, by representing the inverse
branches f−kx and g−kφ(x) respectively as the compositions f−(k−1)

x ◦ f−1
fk−1(x)

and g
−(k−1)
φ(x) ◦ g−1

gk−1(φ(x)), it follows from Lemma 2.4 that

(Kf,1(1/2)‖f ′‖)−1|(fk)′(x)| ≤ |f
k(y)− fk(x)|
|y − x| ≤ Kf,1(1/2)‖f ′‖|(fk)′(x)|

and

(Kg,1(1/2)‖g′‖)−1|(gk)′(φ(x))|

≤ |g
k(φ(y))− gk(φ(x))|
|φ(y)− φ(x)| ≤ Kg,1(1/2)‖g′‖|(gk)′(φ(x))|,

So similarly to Case 1, applying Lemma 8.5 and (8.3), we get |φ(y)− φ(x)|
≤ C|y − x|1/κ, where C is a universal constant, which finishes the proof of
Hölder continuity in this case.

Similarly for conformal measures

(Kf,1(1/2)‖f ′‖)−h|(fk)′(x)|h ≤ mf ([fk(y), fk(x)])
mf ([y, x])

≤ (Kf,1(1/2)‖f ′‖)h|(fk)′(x)|h

and

(Kg,1(1/2)‖g′‖)−h|(gk)′(φ(x))|h ≤ mg([gk(φ(y)), gk(φ(x))])
mg([φ(y), φ(x)])

≤ (Kg,1(1/2)‖g′‖)h|(gk)′(φ(x))|h.
From the last two inequalities (involving measures) and from (8.1) we derive

((Kf,1(1/2)‖f ′‖)hM2(Kg,1(1/2)‖g′‖)h)−1

≤ |(fk)′(x)|h
|(gk)′(φ(x))|h ≤ (Kf,1(1/2)‖f ′‖)hM2(Kg,1(1/2)‖g′‖)h.

Hence, applying the estimates for distances and (8.3), we get

|φ(y)− φ(x)|
|y − x|

≤ Kg,1(1/2)‖g′‖Kf,1(1/2)‖f ′‖ |g
k(φ(y))− gk(φ(x))|
|fk(y)− fk(x)| · |(f

k)′(x)|h
|(gk)′(φ(x))|h

≤ (Kg,1(1/2)‖g′‖Kf,1(1/2)‖f ′‖)2M2/hCfCg
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and
|φ(y)− φ(x)|
|y − x|

≥ (Kg,1(1/2)‖g′‖Kf,1(1/2)‖f ′‖)−1 |gk(φ(y))− gk(φ(x))|
|fk(y)− fk(x)| · |(f

k)′(x)|h
|(gk)′(φ(x))|h

≥ (Kg,1(1/2)‖g′‖Kf,1(1/2)‖f ′‖)−2M−2/h(CfCg)−1.

Therefore the proof is also finished in this case.

C a s e 2.2: fn(y) and fn(x) are in different connected components of
B(ω, η/‖f ′‖) \ {ω}. Then also fk(y) and fk(x) are in different connected
components of B(ω, η/‖f ′‖) \ {ω}. Since the map fk|[x,y] (even more, the
map fn|[x,y]) is well defined there exists a (unique) point v ∈ (x, y) such
that fk(v) = w, in particular v ∈ Jf . Now, note that since n(x, v), n(y, v) ≥
n(x, y), both pairs (x, v) and (y, v) fall in Case 2.1 (although it would not
hurt us, Case 1 is forbidden for the pairs (x, v) and (y, v) since, by the choice
of η1 and η2 the nth iterates of both points must then be outside Ωf and
therefore the numbers |φ(x)− φ(y)| and |x− v| are comparable, as are the
distances |φ(y) − φ(v)| and |y − v|. Combining these together finishes the
proof of Theorem 8.3 and the implication (b)⇒(c).

In order to prove the implication (a)⇒(b) let us introduce the following
notation. For every x ∈ Jf let

η(x) = log |g′(φ(x))| − log |f ′(x)|.
Fix x ∈ Jf , a transitive point of f , where transitivity means that
{fn(x) : n ≥ 0}, the closure of the forward trajectory of x, is equal to Jf .
Then for every n ≥ 0 set

(8.4) u(fn(x)) =
n−1∑

j=0

η(f j(x)),

which is well defined since x, being transitive, is not eventually periodic. We
first prove the following technical result whose idea, common in hyperbolic
dynamics, is taken from [Bo].

Lemma 8.7. If x is a transitive point of f , then for every 0 < t < δ/2 the
function u restricted to the set (Jf \B(Ωf , t))∩{fn(x) : n ≥ 0} is uniformly
continuous.

P r o o f. Fix 0 < ε < 1/2 and let 0 < ζ < εt be a number less than
the number produced in Corollary 1.7 associated with εt. Consider two
points fm(x), fn(x) ∈ Jf \ B(Ωf , t) with |fn(x) − fm(x)| < ζ. Without
loosing generality we may assume that m ≤ n. Then in view of Corol-
lary 1.7 there exists a point y ∈ Jf such that fn−m(fm(y)) = fm(y) and
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|fm+j(x)−fm+j(y)| < εt for all j = 0, 1, . . . , n−m. Since by the assumption∑n−1
j=m η(f j(y)) = 0, we therefore get

u(fn(x))− u(fm(x)) =
n−1∑

j=m

η(f j(x)) =
n−1∑

j=m

(η(f j(x))− η(f j(y)))

=
n−1∑

j=m

((log |g′(φ(gj(x)))| − log |g′(φ(gj(y)))|)

− (log |f ′(f j(x))| − log |f ′(f j(y))|))
= log

∣∣∣∣
(gn−m)′(φ(gm(x)))
(gn−m)′(φ(gm(y)))

∣∣∣∣− log
∣∣∣∣
(fn−m)′(fm(x))
(fn−m)′(fm(y))

∣∣∣∣.

Thus, in order to show that |u(fn(x))− u(fm(x))| is small if ζ > 0 is small
it suffices to prove that both terms on the right hand side are small in abso-
lute value. Since φ is a homeomorphism it is enough to establish this for the
second term. And indeed, since εt < δ/4 < δ, it follows from the properties
of y that fm(y) = f

−(n−m)
fm(x) (fn(y)), where f−(n−m)

fm(x) , the continuous inverse
branch of fn−m sending fn(x) to fm(x), is defined on B(fn(x), δ). There-
fore, since |fn(x)− fm(x)| < ζ ≤ δ/4, since |fn(x)− fm(x)| < εt, and since
dist(fn(x), Ωf ) ≥ t, it follows from Lemma 2.4 that

∣∣∣∣log
∣∣∣∣
(fn−m)′(fm(x))
(fn−m)′(fm(y))

∣∣∣∣
∣∣∣∣ ≤ |logK1(t, ε)|

and limε→0 |logK1(t, ε)| = 0. The proof is finished.

Proceeding with the proof of the implication (a)⇒(b) we show the fol-
lowing.

Lemma 8.8. The functions log |f ′(x)| and log |g′(φ(x))| are cohomologous
in the class of continuous functions on Jf , that is, there exists a continuous
function u : Jf → R such that

log |g′(φ(z))| − log |f ′(z)| = u(f(z))− u(z)

for all z ∈ Jf .

P r o o f. Since the matrix A is primitive, it follows from Lemma 1.2(d)
that there exists a transitive point x ∈ Jf . We shall show that u defined by
(8.4) on the forward trajectory of x extends continuously to Jf and satisfies
the cohomological equation required in Lemma 8.8. First note that by (8.4),

(8.5) η(z) = u(f(z))− u(z)

for all z ∈ {fn(x) : n ≥ 1} and in view of Lemma 8.7, u extends continuously
to the set Jf \Ωf . Therefore (8.5) holds for all z ∈ Jf \(Ωf ∪f−1(Ω)). Using
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these two facts we now show that u extends continuously to Jf and that
then (8.5) holds for all z ∈ Ωf . Indeed, let ω ∈ Ωf . Take x ∈ f−1{ω} \ {ω}
and define u(ω) by the formula u(ω) = η(x) + u(x). We first show that u
is continuous at ω. So, let yn → ω, yn 6= ω. Since by Theorem 1.6 the map
f : Jf → Jf is open there exists a sequence xn → x such that f(xn) = yn
and therefore

lim
n→∞

u(yn) = lim
n→∞

(η(xn) + u(xn)) = η(x) + u(x) = u(ω).

The continuity of u at ω is therefore proven. Notice also that we have simul-
taneously shown that u(ω) is independent of the choice of x ∈ f−1{ω}\{ω}.
Therefore u extends continuously to Jf and (8.5) holds for all z ∈ Jf \Ωf .
But since the functions appearing in (8.5) are continuous and Jf \ Ωf is
dense in Jf , we conclude that (8.5) is true for all z ∈ Jf .

P r o o f t h a t (a)⇒(b). The proof we present here is similar to the proof
of Lemma 4.1. From Lemma 8.8 we deduce the existence of a constant Q ≥ 1
such that for all z ∈ Jf and all n ≥ 1 we have

(8.6) Q−1 ≤ |(gn)′(φ(z))|/|(fn)′(z)| ≤ Q.
We show that the measure mg ◦ φ is absolutely continuous with respect to
mf . So, take η > 0 so small that if |x− y| ≤ η, then |φ−1(x)− φ−1(y)| < δ.
Fix γg > 0 so small as required in Corollary 2.7 for the map g and then
take γf > 0 so small as required in Corollary 2.7 for f and moreover so
small that if |x − y| ≤ γfδ, then |φ(x) − φ(y)| < γgη. As in the proof of
Lemma 4.1 it follows from Theorem 1.6 that for every x ∈ Jf \

⋃∞
n=0 f

−n(Ω),
there exists a sequence {nj = nj(x) : j ≥ 1} such that fnj(x) 6∈ B(Ω, δ).
Let f−njx : B(fnj (x), γδ) → S1 be the continuous inverse branch of fnj

sending fnj (x) to x. Then it follows from Corollary 2.7 that fnj (B(x, rj)) ⊃
B(fnj (x), (K2(γf ))−2γfδ) and

(8.7) mf (B(x, rj)) ≥ K2(γf )−hP |(fnj )′(x)|−h,
where P = inf{m(B(z,K2(γf )−2γfδ)) : z ∈ J} > 0 and

rj = rj(x) = K2(γf )−1|(f−njx )′(fnj (x))|γδ = K2(γf )−1γfδ|(fnj )′(x)|−1.

Since also B(x, rj) ⊂ f−njx (B(fnj (x), γfδ)), by the choice of γf we get

φ(B(x, rj)) ⊂ φ(f−njx (B(fnj (x), γfδ))) ⊂ g−njφ(x)(B(gnj (φ(x)), γgη)).

Since by the property (a), φ(Ωf ) = Ωg, and since dist(fnj (x), Ωf ) ≥ δf , it
follows from the choice of η that dist(gnj (φ(x)), Ωg) > η. Hence, applying
Corollary 2.7 for g, using (8.6) and (8.7) we get
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mg(φ(B(x, rj(x)))

≤ mg(g
−nj
φ(x)(B(gnj (φ(x)), γgη)))

≤ Kg,2(γg)hmg(B(gnj (φ(x)), γgη))|(gnj )′(φ(x))|−h

≤ Kg,2(γg)h|(gnj )′(φ(x))|−h ≤ Kg,2(γg)hQh|(fnj )′(x)|−h

≤ Kf,2(γf )hKh
g,2(γg)QhP−1mf (φ(B(x, rj(x))).

So, applying Lemma 4.3 finishes the proof.

R e m a r k. The hyperbolic situation is technically simpler and one usu-
ally proves first that (a) implies (c) (see e.g. [Pr4]). Then (c)⇒(b) is imme-
diate and (b)⇒(a) is a consequence of the theory of Gibbs states for hyper-
bolic systems and characterizations of Hausdorff measures and dimensions
in terms of thermodynamic formalism. In the parabolic case the implication
(a)⇒(c) splits into two steps: First one shows that diam(φ(B(x, rj(x)))) �
diam(B(x, rj(x))) for some sequence of radii rj(x) tending to zero. This
gives (a)⇒(b). Showing this for all radii, which is much harder, gives us the
implication (b)⇒(c).

9. Real-analytic systems. In this section we consider parabolic Can-
tor sets generated by dynamical systems (f, I;∆j , j ∈ I) with f being
real-analytic on each set ∆j . It turns out that then the rigidity theorem,
Theorem 8.1, takes on a much stronger form, namely in the condition (b)
the assumption of equality of Hausdorff dimensions can be dropped. In or-
der to show this we work first with complex-analytic extensions of f to get
analyticity of the Radon–Nikodym derivative dµ/dm. This in turn, with the
help of complex-analytic methods, implies real analyticity of the Jacobian
of the map f : J → J with respect to the measure µ. The last step indirectly
employing the concept of nonlinearity of expanding dynamical Cantor sets
due to Sullivan shows that the Jacobian is not everywhere locally constant,
which constitutes the last major ingredient of the proof of real analyticity
of the conjugacy φ. We begin with the following.

Definition 9.1. A dynamical system (f, I;∆j , j ∈ I) is said to be
real-analytic if the map f :

⋃
j∈I ∆j → S1 has a real-analytic extension

onto an open neighborhood of
⋃
j∈I ∆j in S1.

The remark that enables us to take advantage of the theory of complex-
analytic functions is that for any real analytic dynamical system there exists
an open neighborhood H of

⋃
j∈I ∆j in C and a C-analytic function on H

whose restriction to
⋃
j∈I ∆j coincides with f . We call this function the

(complex ) analytic extension of f and we keep for it the same symbol f .
Our exposition begins with citing the following improved version of the
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Koebe Distortion Theorem proven in [Pr1] (for the classical version and
some discussion of the subject see [Po] for example).

Lemma 9.2 (The Koebe Distortion Theorem). Given an open bounded
subset G of the complex plane C there exists a constant K > 1 such that
if B(z, δ) ⊂ G and H : B(z, δ) → G is a holomorphic univalent map, then
for every 0 < λ < 1 and every x ∈ B(z, δ) we have max{|H ′(x)|/|H ′(z)|,
|H ′(z)|/|H ′(x)|} < K(1− λ)−1.

Switching to the setting of parabolic Cantor sets and using the idea from
[PUZ, p. 198] we shall prove the following.

Lemma 9.3. Let V ⊂ J be an open neighborhood of Ω. Then there exists
an r > 0 such that for every x ∈ J \V , every n ≥ 0 and every z ∈ J∩f−n(x)
there is an inverse C-analytic branch f−nz : BC(x, 2r)→ C of fn sending x to
z. Additionally , limn→∞ supx∈J\V maxz∈f−n(x){diam(f−nz (BC(z, r)))} = 0.

P r o o f. Since f : H → C, being analytic, is open and since J is compact,
we have η = dist(J, ∂(H ∩ f(H))) > 0. Hence, using compactness of J again
we see that there exists s > 0 such that all the inverse branches of f are
well defined on the balls B(x, s), x ∈ J . Suppose now additionally that
x 6∈ V and consider an arbitrary infinite sequence xn ∈ J , n ≥ 0, such that
f(xn+1) = xn and x0 = x. Set

bn = 1
2M(t, 1/2)−1|(f−(n+1)

xn+1
)′(x)|,

where t = dist(Ω, J \V ) and M(t, 1/2) is taken from Lemma 2.4. In view of
Lemma 2.4,

∑∞
n=0 bn ≤ 1/2 and therefore the product

∏
n≥0(1− bn)−1 con-

verges. In fact, it lies between 1 and e. Hence there exists r > 0 independent
of x so small that

(9.1) 2r
∏

n≥0

(1− bn)−1 ≤ min{s, δ, t/2, s(2KM(t, 1/2))−1}.

We show by induction that for every n ≥ 1 there is an analytic inverse
branch f−nxn : B(x, 2r

∏
k≥n(1− bk)−1)→ C sending x to xn and

f−nxn
(
B
(
x, 2r

∏

k≥n
(1− bk)−1

))
⊂ B(xn, s).

Indeed, for n = 0, f−0
x0

is the identity map and our assertion follows from
(9.1). So, fix some n ≥ 0 and suppose the assertion is true for this n. Then
by the definition of s the inverse branch f

−(n+1)
xn+1 : B(x, 2r

∏
k≥n(1− bk)−1)

→ C is also well defined and by Lemma 9.2 (the Koebe Distortion Theorem),
the definition of bn’s and (9.1),
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f−(n+1)
xn+1

(
B
(
x, 2r

∏

k≥n+1

(1− bk)−1
))

⊂ B
(
xn+1, 2r

∏

k≥n+1

(1− bk)−1Kb−1
n |(f−(n+1)

xn+1
)′(x)|

)

⊂ B
(
xn+1, 2r

∏

k≥0

(1− bk)−1K2M(t, 1/2)
)
⊂ B(xn+1, s).

Thus, the inductive reasoning is complete and as
∏
k≥n(1 − bk)−1 ≥ 1 for

every n, the first part of the lemma is proven. The second part now follows
immediately from Lemmas 1.1 and 9.2.

As an immediate consequence of Lemmas 9.3 and 9.2 we get the follow-
ing.

Corollary 9.4. ∀λ > 1 ∃q ∀n ≥ q ∀z ∈ J \ V , if f−nν : B(z, 2r)→ C is
an inverse branch of fn then |(f−nν )′(x)| < λ−1 for every x ∈ B(z, r).

Our next goal is to show that the Radon–Nikodym derivative dµ/dm
produced in Theorem 7.2 allows a real-analytic extension, that is in fact
even a complex analytic extension. First, using Lemma 9.3 and proceeding
essentially in the same way as in the proof of Lemma 4.3 of [U1] (comp. also
[Su1] for a hyperbolic case) one can prove the following.

Lemma 9.5. If (f, Jf ) is real-analytic, then there exists a C-analytic
extension of ψ∗ = dµ∗/dm onto an open neighborhood of

⋃
j∈J ∆j.

Now, as an immediate consequence of Lemma 9.5 and Theorem 7.2, along
with real analyticity of 1/|f ′|h, and Lemma 2.3, we get the following.

Lemma 9.6. The Radon–Nikodym derivative ψ = dµ/dm has a real-
analytic extension to the set

⋃
j∈J ∆j \Ω.

Let now %µ denote the Jacobian of the map f with respect to the mea-
sure µ. Since %µ(x) = |f ′(x)|hψ(f(x))/ψ(x), we derive from Lemma 9.6 the
following main technical result about real analyticity.

Lemma 9.7. The Jacobian %µ has a real-analytic extension to the set⋃
j∈J ∆j \Ω.

Notice that although µ is determined only up to a multiplicative con-
stant, the Jacobian %µ is unique. Our first consequence of Lemma 9.7 is the
following.

Lemma 9.8. If (f, I;∆j , j ∈ I) is a real-analytic parabolic system, then
there is i ∈ I such that the Jacobian %µ of f with respect to the invariant
measure µ is not locally constant at any point of ∆i.
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P r o o f. Suppose to the contrary that every interval ∆j contains a point
(not necessarily lying in J) around which the Jacobian %µ is constant. Then
Lemma 9.7 yields that %µ is constant on each whole interval ∆j , j ∈ I.
Denote this common value by %j . Since µ is invariant,

∑
y∈f−1(x) %

−1
i (y) = 1

for µ-almost every x ∈ J . Therefore, since all the points in sufficiently small
neighborhoods of all fixed points of f have at least two distinct preimages
under f (one of which lying again in a small neighborhood of fixed points)
and since µ is positive on nonempty open sets, it follows that %µ(y) > 1
for all y in a sufficiently small neighborhood of fixed points. Let λ > 1 be
the minimum of such Jacobians %j . Take now an arbitrary point ω ∈ Ω and
choose one point z ∈ J ∩B(ω, δ)\{ω}. In view of Lemma 7.4, µ([f−1

ω (z), z))
<∞. Thus

µ([ω, z)) =
∑

n≥0

µ(f−nω ([f−1
ω (z), z))) ≤

∑

n≥0

λ−nµ([f−1
ω (z), z))

=
1

1− λµ([f−1
ω (z), z)) <∞.

Choosing if necessary one point in J∩B(ω, δ)\{ω} located on the other side
of ω, we therefore conclude that ω has a neighborhood of finite µ-measure.
SinceΩ is finite the same continues to be true for the whole setΩ. Combining
this fact and Lemma 7.4 we deduce that µ(J) < ∞. But this contradicts
Theorem 7.5 as in our situation β(ω) = 1 for all ω ∈ Ω, and finishes the
proof of the lemma.

Let us now prove the main result of this section. To the best of our
knowledge the already classical idea of its proof goes back to [Pr4] and [SS]
and since then its modifications have been used a number of times.

Theorem 9.9. Let (Jf , f) and (Jg, g) be two real-analytic parabolic sys-
tems and let φ : Jf → Jg be the corresponding canonical topological conju-
gacy. If the homeomorphism φ transports the measure class of the packing
measure Πhf on Jf onto the measure class of the packing measure Πhg on
Jg, then φ and φ−1 extend to real-analytic maps on open neighborhoods in
S1 respectively of Jf and Jg. In particular , HD(Jf ) = HD(Jg).

P r o o f. Fix an f -invariant measure µf equivalent to the conformal mea-
sure mf . Since φ transports the measure class of mf to the measure class
of the conformal measure mg, the measure µg = µf ◦ φ−1 is g-invariant and
equivalent to mg. Thus Lemmas 9.6–9.8 also apply to the system (g, µg).
Since φ is invertible the equality µg = µf ◦ φ−1 equivalently means that
%φ, the Jacobian of φ with respect to the measures µf and µg, is equal to
1. The formula g ◦ φ = φ ◦ f combined with the chain rule therefore gives
%g ◦φ = %f µf -a.e., where %g and %f denote respectively the Jacobians of the
maps g and f with respect to the measures µg and µf . Since µf is positive
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on nonempty open subsets of Jf and since by Lemma 9.7, both sides of the
last equality are continuous on Jf \ (Ωf ∪ φ−1(Ωg)), we get

(9.5) %g ◦ φ(x) = %f (x)

for all x ∈ Jf \ (Ωf ∪φ−1(Ωg)). Now Lemma 9.8 applied to the real-analytic
system (g, Jg) produces an open arc V ⊂ S1 such that V ∩ Jg 6= ∅ and %g|V
is injective. Let W = φ−1(V ∩ Jg). Since W is a nonempty subset of Jf
and since %g(V ) is an open subset of R, using (9.5), we deduce the existence
of an open subset U of S1 \ (Ωf ∪ φ−1(Ωg)) such that ∅ 6= U ∩ Jf ⊂ W ,
%f (U) ⊂ %g(V ) and

(9.6) φ(x) = (%g|V )−1 ◦ %f (x)

for all x ∈ Jf ∩ U . In particular, φ|Jf∩U has a real-analytic extension on
U . Take now an arbitrary point z ∈ Jf . In view of Lemma 1.2(d) there
exist y ∈ Jf ∩ U and n ≥ 0 such that fn(y) = z. Take r > 0, depending
on y and n, so small that there exists f−ny : B(z, r) → S1, a continuous
inverse branch of fn sending z to y. We may additionally require r > 0 to
be so small that f−ny (B(z, r)) ⊂ U and gn(%g|V )−1 ◦ %f ◦ f−ny (B(z, r)) is
well defined. From φ ◦ fn = gn ◦ φ (on Jf ) we deduce that φ = gn ◦ φ ◦ f−ny
on Jf ∩ B(z, r). So, since f−ny on B(z, r) is real-analytic and since gn is
real-analytic on any arc where it is well defined, using (9.6) we deduce that
gn ◦ (%g|V )−1 ◦ %f ◦ f−ny : B(z, r) → S1 gives a real-analytic extension of
φ|Jf∩B(z,r) to the ball B(z, r). Thus we have proved that every point of Jf
has an open connected neighborhood in S1 to which φ can be extended in
a real-analytic fashion. Now, to conclude the proof, it suffices to remark
that any two such real-analytic extensions, defined on overlapping intervals,
coincide on their intersection.

10. The scaling function. In this section we collect some basic prop-
erties of the scaling function associated with a cookie-cutter Cantor set con-
struction, stressing differences between the parabolic and hyperbolic cases.
Next we formulate a rigidity theorem in terms of scaling functions. Through-
out the section we assume that the basic sets ∆j , j ∈ I, are mutually dis-
joint, which implies that Σ∞A = Σ∞ is the full shift space over d = #I
elements, π : Σ∞ → J is a homeomorphism, and J is a topological Cantor
set. Moreover, we require that for all j ∈ I,

(10.1) f(∆j) ⊃
⋃

i∈I
∆i

and the endpoints of the interval f(∆j) are contained in
⋃
i∈I ∆i, hence are

the same for all j ∈ I.
Recall that in Section 1 we have denoted by ∆(τ), τ ∈ Σn, the interval

∆τ0 ∩ f−1(∆τ1) ∩ . . . ∩ f−n(∆τn). Now we want to extend this definition
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letting τ be of the form %γ, where % ∈ Σ∗ and γ ranges over the set G
(consisting of d − 1 elements) of gaps between the elements ∆j , j ∈ I. We
set

∆(%γ) = ∆(%) ∩ f−(|%|+1)(γ)
and now we are in a position to define the function S : Σ∗ → [0, 1]2d−1

putting for all τ ∈ Σ∗ and j ∈ I ∪ G,

S(τ)(j) = Sj(τ) = |∆(τj)|/|∆(τ)|.
Note that

∑
j S(τ)(j) = 1. We will also consider functions S defined on

the dual shift space Σ̃∗ consisting of all left-infinite words . . . τnτn−1 . . . τ0,
τi ∈ I. Given n ≥ 0 and τ ∈ Σ̃∗ we define Sn(τ) = S(τnτn−1 . . . τ0). So,
Sn : Σ̃∗ → [0, 1]2d−1. Our first aim is to prove the following.

Theorem 10.1. The sequence {Sn : Σ̃∗ → [0, 1]2d−1 : n ≥ 1} converges
uniformly. The limit function S : Σ̃∗ → [0, 1]2d−1, called the scaling func-
tion, is continuous.

P r o o f. Take j ∈ I ∩G. Fix also integers k, n ≥ 0. Take an auxiliary x ∈
∆(τ |n+k). In view of the Mean Value Theorem there exist y ∈ ∆(τkj) and
z ∈ ∆(τ |k) such that |∆(τ |n+kj)| = |(f−nx )′(y)| · |∆(τkj)| and |∆(τ |n+k)| =
|(f−nx )′(z)| · |∆(τk)|. Therefore

(10.2) |Sn+k(τ)(j)− Sk(τ)(j)|
=
∣∣∣∣
|∆(τ |n+kj)|
|∆(τ |n+k)| −

|∆(τkj)|
|∆(τk)|

∣∣∣∣

=
∣∣∣∣
|(f−nx )′(y)| · |∆(τkj)|
|(f−nx )′(z)| · |∆(τk)| −

|∆(τkj)|
|∆(τk)|

∣∣∣∣

=
|∆(τkj)|
|∆(τk)|

∣∣∣∣
|(f−nx )′(y)|
|(f−nx )′(z)| − 1

∣∣∣∣ ≤
∣∣∣∣
|(f−nx )′(y)|
|(f−nx )′(z)| − 1

∣∣∣∣.

With the help of (10.2) we shall prove that all the sequences Sn(·)(j), j ∈
I ∪G, satisfy the uniform Cauchy condition. Indeed, fix again j ∈ I ∪G and
ε > 0. Take ψ > 0 so small that max{Q1(2ψ)−1, 1−Q1(2ψ)−1} < ε, where
Q1 is the function produced in Lemma 2.8. Now fix A(ε) > 0 so small that
setting

K1 = K1(δ/‖f ′‖, L1(δ/‖f ′‖)β+1)L2(δ/‖f ′‖)δ−1‖f ′‖ψ−(β+1)A(ε),

where the function K1 is produced in Lemma 2.4, we have max{K1 − 1,
1−K−1

1 } < ε/2. Finally, by Lemma 1.1 we can fix k ≥ 1 so large that

(10.3) diam(∆(τ |k)) < A(ε)

for all τ ∈ Σ̃. Take now an arbitrary τ ∈ Σ̃ and suppose that dist(Ω,∆(τ |k))
≥ ψ. Let t ≥ 0 be the least integer such that ∆(τ |k) = f

−(k−t)
ω (∆(τ |t))
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for some ω ∈ Ω. Since ψ is positive, dist(Ω,∆(τ |t)) ≥ δ/‖f ′‖. If t = k,
then diam(∆(τ |t)) < A(ε). Otherwise, using Corollary 2.2 we conclude that
dist(Ω,∆(τ |k)) ≤ L1(δ/‖f ′‖)(k − t)−1/β . Hence L1(δ/‖f ′‖)(k − t)−1/β ≥ ψ
and therefore k − t ≤ (L1(δ/‖f ′‖)ψ−1)β . Thus by Lemma 2.3 we get

diam(∆(τ |k)) ≥ L2(δ/‖f ′‖)−1(k − t)−(β+1)/β diam(∆(τ |t))
≥ L2(δ/‖f ′‖)−1L1(δ/‖f ′‖)−(β+1)ψβ+1 diam(∆(τ |t)),

which implies that

diam(∆(τ |t)) ≤ L2(δ/‖f ′‖)L1(δ/‖f ′‖)β+1ψ−(β+1) diam(∆(τ |k))

≤ L2(δ/‖f ′‖)L1(δ/‖f ′‖)β+1ψ−(β+1)A(ε).

Hence applying (10.2) and Lemma 2.4, it follows from the choice of k and
ψ that for every n ≥ 0 we have

(10.4) |Sn+k(τ)(j)− Sk(τ)(j)|
≤ |Sn+k(τ)(j)− St(τ)(j)|+ |St(τ)(j)− Sk(τ)(j)|
≤ 2 max{|K1 − 1|, |1−K−1

1 |} < ε.

So, we can assume that

dist(Ω,∆(τ |k)) < ψ.

Then ∆(τ |k) ⊂ B(Ω, 2ψ). Therefore if τ |k does not consist only of indices
corresponding to one parabolic point (so the assumptions of Lemma 2.8 are
satisfied with q = 1), then it follows from (10.2), Lemma 2.8, and the choice
of ψ that for every n ≥ 0,

|Sn+k(τ)(j)− Sk(τ)(j)| ≤ max{Q1(2ψ)− 1, 1−Q−1
1 (2ψ)} < ε.

Now, the only case left is when τ |k consists of indices jω only for some
ω ∈ Ω, where jω ∈ I is determined by the requirement that ω ∈ ∆jω . Since
by the Mean Value Theorem limx→ω |f−1

ω (x) − ω|/|x − ω| = 1 and in view
of Corollary 2.2 and Lemma 2.3 we deduce that limn→∞ Sn(jnω)(j) is equal
to 1 if j = jω and 0 otherwise. Hence taking k sufficiently large, larger
than required in (10.3) perhaps, we see that |Sn+k(τ)(j) − Sk(τ)(j)| < ε if
τ |n+k = jn+k

ω . Otherwise look at the largest number q such that τ |q = jqω.
Then k ≤ q < n+ k and

|Sn+k(τ)(j)− Sk(τ)(j)|
≤ |Sn+k(τ)(j)− Sq+1(τ)(j)|

+ |Sq+1(τ)(j)− Sq(τ)(j)|+ |Sq(τ)(j)− Sk(τ)(j)|.
As above, |Sq(τ)(j)−Sk(τ)(j)|<ε. Moreover, the first summand |Sn+k(τ)(j)
− Sq+1(τ)(j)| is estimated from above by ε similarly to the two summands
in (10.4) (q + 1 corresponds to t) and in view of (10.2) applied with n = 1
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the second summand |Sq+1(τ)(j) − Sq(τ)(j)| is less than ε if and only
if diam(∆(τ |k)), and consequently also diam(∆(τ |k)) is sufficiently small.
Then |Sn+k(τ)(j) − Sk(τ)(j)| < 3ε, which completes the proof of the uni-
form convergence of the sequence Sn. Since all the functions Sn are obviously
continuous the limit function is also continuous and the proof is finished.

Now we shall prove the fact, actually already proven in the course of the
proof of Theorem 10.1, which describes some differences between parabolic
and hyperbolic dynamical Cantor sets in the language of scaling functions.

Lemma 10.2. S(τ)(j) = 0 if and only if for all n ≥ 0, ∆(τn) is the (only)
element containing some ω ∈ Ω and ∆j does not contain ω.

P r o o f. Suppose first that for all ω ∈ Ω not all the elements ∆(τn), n ≥
0, contain ω. If ∆(τ0)∩Ω 6= ∅, set q = 0. Otherwise there exists a least q ≥ 1
such that τq 6= τ0. In any case dist(Ω,∆(τ |q)) ≥ δ/2. In view of the Mean
Value Theorem there exist y ∈ ∆(τ |qj) ⊂ ∆(τ |q) and z ∈ ∆(τ |q) such that
|∆(τ |q+nj)| = |(f−nt )′(y)| · |∆(τ |qj)| and |∆(τ |q+n)| = |(f−nt )′(z)| · |∆(τ |q)|,
where f−nt denotes the inverse branch of fn sending ∆(τ |q) to ∆(τ |q+n).
Therefore

Sq+n(τ)(j) =
|∆(τ |q+nj)|
|∆(τ |q+n)| =

|(f−nt )′(y)|
|(f−nt )′(z)|Sq(τ)(j)

and applying Corollary 2.5 we get Sq+n(τ)(j) ≥ K1(δ/2)−1Sq(τ)(j). So,
letting n → ∞ (and employing Theorem 10.1 of course), we get S(τ)(j) ≥
K1(δ/2)−1Sq(τ)(j) > 0.

Now suppose that ∆(τ |n) = f−nω (∆τ0) for all n ≥ 0 and some ω ∈ Ω. If
j is taken such that ω 6∈ ∆j , then in view of Lemma 2.3 and Corollary 2.2,

Sn(τ)(j) =
|∆(τ |nj)|
|∆(τ |n)| ≤

L2(δ/2)n−(β+1)/β

L1(δ/2)−1n−1/β
= L1(δ/2)L2(δ/2)n−1.

Hence S(τ)(j) = 0. Since
∑
j S(τ)(j) = 1, the proof is complete.

Corollary 10.3. If two dynamical Cantor sets Jf and Jg generated
respectively by dynamical systems (f, I;∆f,j , j ∈ I) and (g, I;∆g,j , j ∈ I)
have the same scaling functions, then the topological conjugacy φ : Jf → Jg
sends the set of parabolic points of f onto the set of parabolic points of g.

Theorem 10.4. If two dynamical Cantor sets Jf and Jg generated re-
spectively by dynamical systems (f, I;∆f,j , j ∈ I) and (g, I;∆g,j , j ∈ I) have
the same scaling functions, then the topological conjugacy φ : Jf → Jg is
Lipschitz continuous. Conversely , if the conjugacy φ : Jf → Jg is a C1

diffeomorphism, then the Cantor sets Jf and Jg have the same scaling func-
tions.
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P r o o f. Let us prove first the second part of this theorem. Indeed, keep
the same notation φ for a C1 extension of φ to an open neighborhood of
Jf . Decreasing this neighborhood if necessary we can assume that φ′, the
derivative of φ, nowhere vanishes. Therefore, for every n ≥ 0 sufficiently large
and every τ ∈ Σn, the map φ|∆f (τ) is well defined and φ(∆f (τ)) = ∆g(τ).

Now, in view of the Mean Value Theorem, for every τ ∈ Σ̃, every j ∈ I
and every sufficiently large n ≥ 0, there are y ∈ ∆f (τ |nj) ⊂ ∆f (τ |n) and
z ∈ ∆f (τ |n) such that |∆g(τ |nj)| = |φ′(y)| · |∆f (τ |nj)| and |∆g(τ |n)| =
|φ′(z)| · |∆f (τ |n)|. Thus

Sg,n(τ)(j) =
|φ′(y)|
|φ′(z)|Sf,n(τ)(j).

Since limn→∞ |∆(τ |n)| = 0, it follows from positiveness and continuity of φ′

that

Sg(τ)(j) = lim
n→∞

Sg,n(τ)(j) = lim
n→∞

Sf,n(τ)(j) = Sf (τ)(j),

finishing the proof of the second part of the theorem.
In order to prove the first part of this theorem we will show that condition

(a) of Theorem 8.1 is satisfied, that is, that the spectra of moduli of periodic
points of f and g are the same. So, let z be an arbitrary periodic point of
f , say of period q ≥ 1. For 0 ≤ j ≤ q − 1 let f j(z) ∈ ∆f (τj) and let
τ = τ0τ1 . . . τq−1. Our aim is to show that |(gq)′(z)| = |(fq)′(z)|. In view
of Corollary 10.3 we may assume that neither z nor φ(z) are parabolic.
Denoting by τn the concatenation of n words τ , we get

|∆g(τn+1τ0)|
|∆g(τnτ0)|

/ |∆f (τn+1τ0)|
|∆f (τnτ0)|

=
|∆g(τnτ1 . . . τq−1τ0)|
|∆g(τnτ1 . . . τq−1)| ·

|∆g(τnτ1 . . . τq−1)|
|∆g(τnτ1 . . . τq−2)| · . . . ·

|∆g(τn+1τ0τ1)|
|∆g(τn+1τ0)|

×
( |∆f (τnτ1 . . . τq−1τ0)|
|∆f (τnτ1 . . . τq−1)| ·

|∆f (τnτ1 . . . τq−1)|
|∆f (τnτ1 . . . τq−2)| · . . . ·

|∆f (τn+1τ0τ1)|
|∆f (τn+1τ0)|

)−1

= Sg(τnτ1 . . . τq−1)(τ0)Sg(τnτ1 . . . τq−2)(τq−1) . . . Sg(τnτ1 . . . τq−2)(τq−1)

× S−1
f (τnτ1 . . . τq−1)(τ0)S−1

f (τnτ1 . . . τq−2)(τq−1) . . . S−1
f (τnτ0)(τ1)

Thus, denoting by τ∞ ∈ Σ̃ the infinite concatenation of τ ’s we obtain

(10.5) lim
n→∞

( |∆g(τn+1τ0)|
|∆g(τnτ0)|

/ |∆f (τn+1τ0)|
|∆f (τnτ0)|

)

=
Sg(τ∞τ1 . . . τq−1)(τ0)
Sf (τ∞τ1 . . . τq−1)(τ0)

· Sg(τ
∞τ1 . . . τq−2)(τq−1)

Sf (τ∞τ1 . . . τq−2)(τq−1)
· . . . · Sg(τ

∞τ0)(τ1)
Sf (τ∞τ0)(τ1)

= 1.

On the other hand, since ∆f (τnτ0) = fq(∆f (τn+1τ0)) and ∆g(τnτ0) =
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gq(∆g(τn+1τ0)), by the Mean Value Theorem there are two points xn ∈
∆f (τn+1τ0) and yn ∈ ∆g(τn+1τ0) such that |∆f (τnτ0)| = |(fq)′(xn)| ·
|∆f (τn+1τ0)| and |∆g(τnτ0)| = |(gq)′(yn)| · |∆g(τn+1τ0)|. Combining these
equalities and (10.5) we get

|(gq)′(φ(z))|
|(fq)′(z)| = lim

n→∞
|(gq)′(yn)|
|(fq)′(xn)| = 1.

Applying now Theorem 8.1 completes the proof.
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