Normal subspaces in products of two ordinals

by
Nobuyuki Kemoto (Oita), Tsugunori Nogura (Matsuyama), Kerry D. Smith (Franklin, Ind.) and Yukinobu Yajima (Yokohama)

Abstract

Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of $(\lambda+1)^{2}$.

1. Introduction. It is well known that any ordinal with the order topology is shrinking and collectionwise normal hereditarily. But, in general, products of two ordinals are not. In fact, $\left(\omega_{1}+1\right) \times \omega_{1}$ is not normal. In [KOT], it was proved that the normality, collectionwise normality and shrinking property of $A \times B$, where A and B are subspaces of ordinals, are equivalent. It was asked whether these properties are also equivalent for all subspaces of products of two ordinals [KOT, Problem (i)]. The aim of this paper is to give an affirmative answer.

We recall some basic definitions and introduce some specific notation.
In our discussion, we always assume $X \subset(\lambda+1)^{2}$ for some suitably large ordinal λ. Moreover, in general, the letters μ and ν stand for limit ordinals with $\mu \leq \lambda$ and $\nu \leq \lambda$. For each $A \subset \lambda+1$ and $B \subset \lambda+1$ put

$$
X_{A}=A \times(\lambda+1) \cap X, \quad X^{B}=(\lambda+1) \times B \cap X
$$

and

$$
X_{A}^{B}=X_{A} \cap X^{B}
$$

For each $\alpha \leq \lambda$ and $\beta \leq \lambda$, put

$$
V_{\alpha}(X)=\{\beta \leq \lambda:\langle\alpha, \beta\rangle \in X\}, \quad H_{\beta}(X)=\{\alpha \leq \lambda:\langle\alpha, \beta\rangle \in X\}
$$

cf μ denotes the cofinality of the ordinal μ. When $\omega_{1} \leq \operatorname{cf} \mu$, a subset S of μ called stationary in μ if it intersects all cub (closed and unbounded) sets

[^0]in μ. For each $\mu \leq \lambda$ and $\nu \leq \lambda$ with $\omega_{1} \leq \operatorname{cf} \mu$ and $\omega_{1} \leq \operatorname{cf} \nu$, put
\[

$$
\begin{aligned}
& A_{\mu}^{\nu}=\left\{\alpha<\mu: V_{\alpha}(X) \cap \nu \text { is stationary in } \nu\right\}, \\
& B_{\mu}^{\nu}=\left\{\beta<\nu: H_{\beta}(X) \cap \mu \text { is stationary in } \mu\right\} .
\end{aligned}
$$
\]

Moreover, for each $A \subset \mu, \operatorname{Lim}_{\mu}(A)$ is the set $\{\alpha<\mu: \alpha=\sup (A \cap \alpha)\}$, in other words, the set of all cluster points of A in μ. Therefore $\operatorname{Lim}_{\mu}(A)$ is cub in μ whenever A is unbounded in μ. We will simply denote $\operatorname{Lim}_{\mu}(A)$ by $\operatorname{Lim}(A)$ if the situation is clear in its context.

A strictly increasing function M : cf $\mu \rightarrow \mu$ is said to be normal if $M(\gamma)=\sup \left\{M\left(\gamma^{\prime}\right): \gamma^{\prime}<\gamma\right\}$ for each limit ordinal $\gamma<\operatorname{cf} \mu$, and $\mu=$ $\sup \{M(\gamma): \gamma<\operatorname{cf} \mu\}$. Note that a normal function on cf μ always exists if cf $\mu \geq \omega$. So we always fix a normal function $M: \operatorname{cf} \mu \rightarrow \mu$ for each ordinal μ with cf $\mu \geq \omega$.

For convenience, we define $M(-1)=-1$. Then M carries cf μ homeomorphically to the range $\operatorname{ran} M$ of M and $\operatorname{ran} M$ is closed in μ. Note that for all $S \subset \mu$ with $\omega_{1} \leq \operatorname{cf} \mu, S$ is stationary in μ if and only if $M^{-1}(S)$ is stationary in cf μ.

Let μ and ν be two limit ordinals with $\mu \leq \lambda$ and $\nu \leq \lambda$; moreover, let $M: \operatorname{cf} \mu \rightarrow \mu$ and $N: \operatorname{cf} \nu \rightarrow \nu$ be the fixed normal functions on $\operatorname{cf} \mu$ and cf ν respectively. For each $\alpha \in \mu$ and $\beta \in \nu$, define

$$
\begin{aligned}
m(\alpha) & =\min \{\gamma<\operatorname{cf} \mu: \alpha \leq M(\gamma)\} \\
n(\beta) & =\min \{\delta<\operatorname{cf} \nu: \beta \leq N(\delta)\}
\end{aligned}
$$

where $\min A$ denotes the minimal ordinal number in A. Note that, if $\alpha \in$ $\operatorname{ran} M$, then $m(\alpha)=M^{-1}(\alpha)$.

Furthermore, assume $\langle\mu, \nu\rangle \notin X$ and $\omega_{1} \leq \operatorname{cf} \mu=\operatorname{cf} \nu=\kappa$. We will use the following notation:

$$
\begin{aligned}
X(L, M, N) & =\{\langle\alpha, \beta\rangle \in X \cap \mu \times \nu: m(\alpha) \leq n(\beta)\} \cup X_{\mu}^{\{\nu\}}, \\
X(R, M, N) & =\{\langle\alpha, \beta\rangle \in X \cap \mu \times \nu: m(\alpha) \geq n(\beta)\} \cup X_{\{\mu\}}^{\nu}, \\
X(\triangle, M, N) & =\{\langle M(\gamma), N(\gamma)\rangle \in X: \gamma<\kappa\}, \\
\triangle_{M N}(X) & =\{\gamma<\kappa:\langle M(\gamma), N(\gamma)\rangle \in X\} .
\end{aligned}
$$

Intuitively, $X(L, M, N)$ is considered as the upper-left half of $X_{\mu+1}^{\nu+1}$, $X(R, M, N)$ as the lower-right half of $X_{\mu+1}^{\nu+1}$ and $X(\triangle, M, N)$ as the diagonal part of $X_{\mu+1}^{\nu+1}$. Since M and N are homeomorphic closed embeddings, observe that $X(\triangle, M, N)$ and $\triangle_{M N}(X)$ are homeomorphic and that $X(L, M, N)$, $X(R, M, N)$ and $X(\triangle, M, N)$ are closed in X.

Let Y be a topological space. Subsets F and G of Y are said to be separated if there are disjoint open sets U and V containing F and G respectively; of course, separated sets are disjoint, and \emptyset and G are separated for each $G \subset Y$. More generally, a collection \mathcal{H} of subsets of Y is said to
be separated if there is a pairwise disjoint collection $\mathcal{U}=\{U(H): H \in \mathcal{H}\}$ of open sets in Y such that each $U(H)$ contains H. A space Y is said to be $C W N$ (CollectionWise Normal) if any discrete collection of closed sets is separated. Let \mathcal{U} be an open cover of Y. A collection $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ of subsets of Y indexed by \mathcal{U} is a shrinking of \mathcal{U} if $F(U) \subset U$ for each $U \in \mathcal{U}$. A closed shrinking is a shrinking by closed sets. Throughout the paper, for convenience, we do not require \mathcal{F} to cover Y. We call a space Y shrinking if each open cover of Y has a closed shrinking which covers Y.
2. Theorem and lemmas. Using the notation described in Section 1, we shall show:

Theorem. Assume $X \subset(\lambda+1)^{2}$. The following (1)-(4) are equivalent:
(1) X is shrinking.
(2) X is $C W N$.
(3) X is normal.
(4) For every $\langle\mu, \nu\rangle \in(\lambda+1)^{2} \backslash X$ with $\omega \leq \operatorname{cf} \mu$ and $\omega \leq \operatorname{cf} \nu$, the following (4-1)-(4-5) hold:
(4-1) $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated.
(4-2) If $\omega_{1} \leq \operatorname{cf} \nu$ and $V_{\mu}(X) \cap \nu$ is not stationary in ν, then there is a cub set D in cf ν such that $X_{\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ are separated.
(4-3) If $\omega_{1} \leq \operatorname{cf} \mu$ and $H_{\nu}(X) \cap \mu$ is not stationary in μ, then there is a cub set C in cf μ such that $X^{\{\nu\}}$ and $X_{M(C) \cup\{\mu\}}$ are separated.
(4-4) If ($\omega_{1} \leq \operatorname{cf} \mu<\operatorname{cf} \nu, V_{\mu}(X) \cap \nu$ is not stationary in ν, and both $H_{\nu}(X) \cap \mu$ and A_{μ}^{ν} are non-stationary in μ) or ($\omega_{1} \leq \operatorname{cf} \nu<\operatorname{cf} \mu$, $H_{\nu}(X) \cap \mu$ is not stationary in μ, and both $V_{\mu}(X) \cap \nu$ and B_{μ}^{ν} are non-stationary in ν), then there are cub sets C in $\operatorname{cf} \mu$ and D in cf ν such that $X_{M(C) \cup\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ are separated.
(4-5) If $\omega_{1} \leq \operatorname{cf} \mu=\operatorname{cf} \nu=\kappa$, then (4-5-a) and (4-5-b) hold.
(4-5-a) $X(\triangle, M, N)$ and $X_{\{\mu\}} \cup X^{\{\nu\}}$ are separated.
(4-5-b) If $\triangle_{M N}(X)$ is not stationary in κ, then (b1)-(b4) hold:
(b1) If $V_{\mu}(X) \cap \nu$ is stationary in ν, then $X_{\{\mu\}}$ and any closed set disjoint from $X_{\{\mu\}}$ are separated.
(b2) If $V_{\mu}(X) \cap \nu$ is not stationary in ν, then there is a cub set D in κ such that the sets $X(R, M, N)_{M(D) \cup\{\mu\}}$ and $X(R, M, N)^{N(D) \cup\{\nu\}}$ are separated.
(b3) If $H_{\nu}(X) \cap \mu$ is stationary in μ, then $X^{\{\nu\}}$ and any closed set disjoint from $X^{\{\nu\}}$ are separated.
(b4) If $H_{\nu}(X) \cap \mu$ is not stationary in μ, then there is a cub set C in κ such that the sets $X(L, M, N)^{N(C) \cup\{\nu\}}$ and $X(L, M, N)_{M(C) \cup\{\mu\}}$ are separated.

To prove the theorem, we need several lemmas. First it is straightforward to show:

Lemma 1. Let X be the finite union of closed subspaces $X_{i}(i \in n)$.
(1) Let \mathcal{U} be an open cover of X. If $\mathcal{U} \mid X_{i}=\left\{U \cap X_{i}: U \in \mathcal{U}\right\}$ has a closed shrinking covering X_{i} for each $i \in n$, then \mathcal{U} has a closed shrinking which covers X.
(2) Let \mathcal{H} be a discrete collection of closed sets in X. If $\mathcal{H} \mid X_{i}$ is separated in X_{i} for each $i \in n$, then \mathcal{H} is separated in X.

This lemma implies:
Lemma 2. If X is the union of two normal (shrinking, $C W N$) open subspaces Y and Z such that $X \backslash Y$ and $X \backslash Z$ are separated, then X is normal (shrinking, CWN).

Lemma 3. Assume $\omega_{1} \leq \operatorname{cf} \mu<\operatorname{cf} \nu$ and $X \subset(\mu+1) \times(\nu+1) \backslash\{\langle\mu, \nu\rangle\}$. If A_{μ}^{ν} is not stationary in μ, then there are cub sets C in $\operatorname{cf} \mu$ and D in $\operatorname{cf} \nu$ such that

$$
X \cap M(C) \times N(D)=\emptyset
$$

Proof. Assume A_{μ}^{ν} is not stationary in μ. Take a cub set C in cf μ such that $M(C) \cap A_{\mu}^{\nu}=\emptyset$. For each $\gamma \in C$, by the non-stationarity of $V_{M(\gamma)}(X) \cap \nu$, fix a cub set D_{γ} in cf μ such that $V_{M(\gamma)}(X) \cap N\left(D_{\gamma}\right)=\emptyset$. Put $D=\bigcap_{\gamma \in C} D_{\gamma}$. Since $|C| \leq \operatorname{cf} \mu<\operatorname{cf} \nu, D$ is cub in cf ν. Then these cub sets C and D work.

In an analogous way, we can show:
Lemma 3^{\prime}. Assume $\omega_{1} \leq \operatorname{cf} \nu<\operatorname{cf} \mu$ and $X \subset(\mu+1) \times(\nu+1) \backslash\{\langle\mu, \nu\rangle\}$. If B_{μ}^{ν} is not stationary in ν, then there are cub sets C in $\operatorname{cf} \mu$ and D in $\operatorname{cf} \nu$ such that

$$
X \cap M(C) \times N(D)=\emptyset
$$

Hereafter, we will not write down such analogous lemmas, but refer to them as "the analogues" of Lemmas 5-9.

Lemma 4. Assume $\omega_{1} \leq \operatorname{cf} \nu=\operatorname{cf} \mu=\kappa$ and $X \subset(\mu+1) \times(\nu+1) \backslash$ $\{\langle\mu, \nu\rangle\}$. If X is normal and $\triangle_{M N}(X)$ is not stationary in κ, then there is a cub set C in κ such that

$$
X \cap M(C) \times N(C)=\emptyset
$$

Proof. First we show A_{μ}^{ν} is not stationary in μ. Assume, on the contrary, that A_{μ}^{ν} is stationary in μ. Then $A=M^{-1}\left(A_{\mu}^{\nu}\right) \cap \operatorname{Lim}(\kappa)$ is stationary in κ. For each $\gamma \in A$, pick

$$
h(\gamma) \in N^{-1}\left(V_{M(\gamma)}(X)\right) \cap \bigcap_{\gamma^{\prime} \in A \cap \gamma} \operatorname{Lim}\left(N^{-1}\left(V_{M\left(\gamma^{\prime}\right)}(X)\right)\right) \cap \operatorname{Lim}(\kappa)
$$

with $\gamma<h(\gamma)<\kappa$. This can be done, because $N^{-1}\left(V_{M(\gamma)}(X)\right)$ is stationary in $\kappa, \operatorname{Lim}\left(N^{-1}\left(V_{M\left(\gamma^{\prime}\right)}(X)\right)\right)$ is cub in κ for each $\gamma^{\prime} \in A \cap \gamma,|A \cap \gamma|<\kappa$ and $\operatorname{Lim}(\kappa)=\operatorname{Lim}_{\kappa}(\kappa)$ is cub in κ, so the intersection is stationary in κ. For each $\gamma \in \kappa \backslash A$, put $h(\gamma)=0$. Take a cub set C^{\prime} in κ disjoint from $\triangle_{M N}(X)$, and put

$$
C=\left\{\gamma<\kappa: \forall \gamma^{\prime}<\gamma\left(h\left(\gamma^{\prime}\right)<\gamma\right)\right\} \cap C^{\prime}
$$

Since C is cub in κ and A is stationary in $\kappa, A^{\prime}=A \cap C$ is stationary in κ. For each $\gamma \in A^{\prime}$, put $x_{\gamma}=\langle M(\gamma), N(h(\gamma))\rangle$. Since, by the definition of $h(\gamma)$, $N(h(\gamma)) \in V_{M(\gamma)}(X)$, we have $x_{\gamma} \in X$ for each $\gamma \in A^{\prime}$.

Claim 1. $F=\left\{x_{\gamma}: \gamma \in A^{\prime}\right\}$ is closed discrete in X.
Proof. Note that $F \subset M(C) \times \operatorname{ran} N$. Let $\langle\alpha, \beta\rangle \in X$. We will find an open neighborhood U of $\langle\alpha, \beta\rangle$ which intersects F in at most one point.

Case 1. $\alpha \in \mu \backslash M(C)$ or $\beta \in \nu \backslash \operatorname{ran} N$. If $\alpha \in \mu \backslash M(C)$, then, by the closedness of $M(C)$ in μ, there is $\alpha^{\prime}<\alpha$ such that $\left(\alpha^{\prime}, \alpha\right] \cap M(C)=\emptyset$. Then $U=\left(\alpha^{\prime}, \alpha\right] \times(\nu+1) \cap X$ is a neighborhood of $\langle\alpha, \beta\rangle$ missing F.

If $\beta \in \nu \backslash \operatorname{ran} N$, then there is $\beta^{\prime}<\beta$ such that $\left(\beta^{\prime}, \beta\right] \cap \operatorname{ran} N=\emptyset$. Then $U=(\mu+1) \times\left(\beta^{\prime}, \beta\right] \cap X$ is as desired.

Case 2. Otherwise, i.e., $\alpha \in M(C) \cup\{\mu\}$ and $\beta \in \operatorname{ran} N \cup\{\nu\}$. There are two subcases.
(2-1): $\alpha \in M(C) \cup\{\mu\}$ and $\beta \in \operatorname{ran} N$. If $\alpha>M(n(\beta))$, then put $U=(M(n(\beta)), \alpha] \times[0, \beta] \cap X$. Assume $U \ni\langle M(\gamma), N(h(\gamma))\rangle$ for some $\gamma \in A^{\prime}$. Then we have $n(\beta)<\gamma$ and $N(h(\gamma)) \leq \beta$ (thus $h(\gamma) \leq n(\beta)$). Therefore $h(\gamma)<\gamma$. But this contradicts the definition of $h(\gamma)$. So $U \cap F=\emptyset$.

If $\alpha \leq M(n(\beta))$, then, since $M(n(\beta))<\mu$, we have $\alpha \in M(C)$ in this case. Therefore, as $\alpha=M(m(\alpha)) \leq M(n(\beta))$, we have $m(\alpha) \leq n(\beta)$. Assume $m(\alpha)=n(\beta)$. Since $\langle M(m(\alpha)), N(n(\beta))\rangle=\langle\alpha, \beta\rangle \in X$, it follows that $m(\alpha)=n(\beta) \in \triangle_{M N}(X)$. On the other hand, since $m(\alpha) \in C \subset$ $C^{\prime} \subset \kappa \backslash \triangle_{M N}(X)$, we get a contradiction. Hence we have $m(\alpha)<n(\beta)$. Put $U=[0, \alpha] \times(N(m(\alpha)), \beta] \cap X$. Assume $U \ni x_{\gamma}=\langle M(\gamma), N(h(\gamma))\rangle$ for some $\gamma \in A^{\prime}$ with $m(\alpha) \neq \gamma$. As $M(\gamma) \leq \alpha=M(m(\alpha))$ and $m(\alpha) \neq \gamma$, we have $\gamma<m(\alpha)$. Since $\gamma<m(\alpha) \in C$, we get $h(\gamma)<m(\alpha)$. On the other hand, from $N(m(\alpha))<N(h(\gamma))$ it follows that $m(\alpha)<h(\gamma)$. This is a contradiction. This argument implies $U \cap F \subset\left\{x_{m(\alpha)}\right\}$.
(2-2): $\alpha \in M(C) \cup\{\mu\}$ and $\beta=\nu$. Since $\langle\alpha, \beta\rangle \in X$ but $\langle\mu, \nu\rangle \notin X$, we have $\alpha \in M(C)$. Put $U=[0, \alpha] \times(N(m(\alpha)), \beta] \cap X$. Then $|U \cap F| \leq 1$ as above.

This completes the proof of Claim 1.
Decompose A^{\prime} into disjoint stationary sets T_{0} and T_{1} in κ, and put $F_{i}=\left\{x_{\gamma}: \gamma \in T_{i}\right\}$ for $i \in 2=\{0,1\}$. Let U_{i} be an open set containing F_{i} for each $i \in 2$.

Claim 2. $\mathrm{Cl} U_{0} \cap \mathrm{Cl} U_{1} \neq \emptyset$.
Proof. For each $\gamma \in T_{i}$ with $i \in 2$, since $x_{\gamma}=\langle M(\gamma), N(h(\gamma))\rangle \in U_{i}$ and γ and $h(\gamma)$ are in $\operatorname{Lim}(\kappa)$, there are $f(\gamma)<\gamma$ and $g(\gamma)<h(\gamma)$ such that $\gamma \leq g(\gamma)$ and

$$
(M(f(\gamma)), M(\gamma)] \times(N(g(\gamma)), N(h(\gamma))] \cap X \subset U_{i} .
$$

By the PDL, for each $i \in 2$, there are $\zeta_{i}<\kappa$ and a stationary set $T_{i}^{\prime} \subset T_{i}$ such that $f(\gamma)=\zeta_{i}$ for each $\gamma \in T_{i}^{\prime}$. Put $\gamma_{0}=\max \left\{\zeta_{0}, \zeta_{1}\right\}$. Then

$$
\left(M\left(\gamma_{0}\right), M(\gamma)\right] \times(N(g(\gamma)), N(h(\gamma))] \cap X \subset U_{i}
$$

for each $i \in 2$ and $\gamma \in T_{i}^{\prime}$.
Take γ_{1} and γ_{2} such that $\gamma_{0}<\gamma_{1} \in A$ and $\gamma_{1}<\gamma_{2} \in \bigcap_{i \in 2} \operatorname{Lim}\left(T_{i}^{\prime}\right)$. We shall show $\left\langle M\left(\gamma_{1}\right), N\left(\gamma_{2}\right)\right\rangle \in \mathrm{Cl} U_{0} \cap \mathrm{Cl} U_{1}$. To see this, let V be a neighborhood of $\left\langle M\left(\gamma_{1}\right), N\left(\gamma_{2}\right)\right\rangle$. As $\gamma_{2} \in \operatorname{Lim}(\kappa)$, there is $\gamma_{3}<\gamma_{2}$ with $\gamma_{1} \leq$ γ_{3} such that $\left\{M\left(\gamma_{1}\right)\right\} \times\left(N\left(\gamma_{3}\right), N\left(\gamma_{2}\right)\right] \cap X \subset V$. Then, since $\gamma_{2} \in \operatorname{Lim}\left(T_{0}^{\prime}\right)$, there are γ_{4} and γ_{5} in T_{0}^{\prime} with $\gamma_{3}<\gamma_{4}<\gamma_{5}<\gamma_{2}$. Since $\gamma_{5} \in T_{0}^{\prime} \subset A^{\prime} \subset C$, the definition of C yields $\gamma_{4}<h\left(\gamma_{4}\right)<\gamma_{5}$. As $\gamma_{1} \in A \cap \gamma_{4}$, the definition of $h\left(\gamma_{4}\right)$ shows that $h\left(\gamma_{4}\right) \in \operatorname{Lim}\left(N^{-1}\left(V_{M\left(\gamma_{1}\right)}(X)\right)\right)$. Then, since $\gamma_{4} \leq g\left(\gamma_{4}\right)<$ $h\left(\gamma_{4}\right)$, there is $\gamma_{6} \in N^{-1}\left(V_{M\left(\gamma_{1}\right)}(X)\right)$ such that $g\left(\gamma_{4}\right)<\gamma_{6}<h\left(\gamma_{4}\right)$. Finally,

$$
\begin{aligned}
& \left\langle M\left(\gamma_{1}\right), N\left(\gamma_{6}\right)\right\rangle \in\left\{M\left(\gamma_{1}\right)\right\} \\
& \quad \times\left(N\left(\gamma_{3}\right), N\left(\gamma_{2}\right)\right] \cap\left(M\left(\gamma_{0}\right), M\left(\gamma_{4}\right)\right] \times\left(N\left(g\left(\gamma_{4}\right)\right), N\left(h\left(\gamma_{4}\right)\right)\right] \cap X \subset V \cap U_{0} .
\end{aligned}
$$

This means $\left\langle M\left(\gamma_{1}\right), N\left(\gamma_{2}\right)\right\rangle \in \mathrm{Cl} U_{0}$. Similarly we have $\left\langle M\left(\gamma_{1}\right), N\left(\gamma_{2}\right)\right\rangle \in$ $\mathrm{Cl} U_{1}$. This completes the proof of Claim 2.

Claim 2 contradicts the normality of X. Therefore A_{μ}^{ν} is not stationary in μ. By a similar argument, B_{μ}^{ν} is not stationary in ν.

Finally, since $\triangle_{M N}(X)$ is not stationary in κ, take a cub set D in κ such that $D \cap\left[M^{-1}\left(A_{\mu}^{\nu}\right) \cup N^{-1}\left(B_{\mu}^{\nu}\right) \cup \triangle_{M N}(X)\right]=\emptyset$. For each $\gamma \in D$, since $V_{M(\gamma)}(X) \cap \nu$ is not stationary in ν and $H_{N(\gamma)}(X) \cap \mu$ is not stationary in μ, we can take a cub set C_{γ} in κ disjoint from $N^{-1}\left(V_{M(\gamma)}(X)\right) \cup$ $M^{-1}\left(H_{N(\gamma)}(X)\right)$. Then by an argument similar to [Ku, II, Lemma 6.14], the diagonal intersection

$$
E=\left\{\delta \in D: \forall \gamma \in D \cap \delta\left(\delta \in C_{\gamma}\right)\right\}
$$

is cub in κ. Assume $\langle M(\gamma), N(\delta)\rangle \in X$ for some γ and δ in E. Since D is disjoint from $\triangle_{M N}(X)$ and $E \subset D$, we have $\gamma \neq \delta$. So we may assume $\gamma<\delta$. Then since $\gamma \in D \cap \delta$ and $\delta \in E$, we have $\delta \in C_{\gamma}$, and thus $N(\delta) \notin V_{M(\gamma)}(X)$. This contradicts $\langle M(\gamma), N(\delta)\rangle \in X$. This means $X \cap$ $M(E) \times N(E)=\emptyset$. This completes the proof of Lemma 4.

Lemma 5. Assume $\omega_{1} \leq \operatorname{cf} \nu \neq \operatorname{cf} \mu$ and $X \subset(\mu+1) \times \nu$. If $V_{\mu}(X) \cap \nu$ is stationary in ν, then the following hold:
(1) For each open cover \mathcal{U} of X, there are $\mu^{\prime}<\mu, \nu^{\prime}<\nu$ and a shrinking \mathcal{F} of \mathcal{U} by clopen sets in X such that $\bigcup \mathcal{F}=\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right) \cap X$.
(2) For each discrete collection \mathcal{H} of closed sets in X, there are $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right) \cap X$ meets at most one member of \mathcal{H}.

Proof. (1) For each $\delta \in N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, fix $f(\delta)<\operatorname{cf} \mu$, $g(\delta)<\delta$ and $U(\delta) \in \mathcal{U}$ such that $(M(f(\delta)), \mu] \times(N(g(\delta)), N(\delta)] \cap X \subset$ $U(\delta)$. Applying the PDL, we can find $\delta_{0}<\operatorname{cf} \nu$ and a stationary set $S^{\prime} \subset$ $N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}(\operatorname{cf} \nu)$ such that $g(\delta)=\delta_{0}$ for each $\delta \in S^{\prime}$. If cf $\mu>\operatorname{cf} \nu$, then put $\gamma_{0}=\sup \left\{f(\delta): \delta \in S^{\prime}\right\}$ and $S=S^{\prime}$. If cf $\mu<\operatorname{cf} \nu$, then, again applying the PDL, we find a stationary set $S \subset S^{\prime}$ and $\gamma_{0}<\operatorname{cf} \mu$ such that $f(\delta)=\gamma_{0}$ for each $\delta \in S$. In either case, putting $\mu^{\prime}=M\left(\gamma_{0}\right)$ and $\nu^{\prime}=N\left(\delta_{0}\right)$, we have found a stationary set $S \subset N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}($ cf $\nu)$ such that $\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, N(\delta)\right] \cap X \subset U(\delta)$ for each $\delta \in S$.

For each δ and δ^{\prime} in S, define $\delta \sim \delta^{\prime}$ by $U(\delta)=U\left(\delta^{\prime}\right)$. Then \sim is an equivalence relation on S, so let S / \sim be its quotient space. For each $E \in S / \sim$, put $U_{E}=U(\delta)$ for some (any) $\delta \in E$. Note that members of $\left\{U_{E}: E \in S / \sim\right\}$ are all distinct. There are two cases to consider.

First assume that there is $E \in S / \sim$ such that E is unbounded in cf ν. In this case, since $\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, N(\delta)\right] \cap X \subset U(\delta)=U_{E}$ for each $\delta \in E$, we have $\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right) \cap X \subset U_{E}$. For each $U \in \mathcal{U}$, put

$$
F(U)= \begin{cases}\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right) \cap X & \text { if } U=U_{E}, \\ \emptyset & \text { otherwise }\end{cases}
$$

Then $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U}.
Next assume all E 's, $E \in S / \sim$, are bounded in cf ν. By induction, define $\delta(\eta) \in E(\eta) \in S / \sim$ for each $\eta \in \operatorname{cf} \nu$ so that $\eta+\sup \left(\bigcup_{\zeta<\eta} E(\zeta)\right)<\delta(\eta)$. Clearly $E(\eta)$'s are all distinct and $\{\delta(\eta): \eta<\operatorname{cf} \nu\}$ is strictly increasing and unbounded in cf ν. For each $U \in \mathcal{U}$, put

$$
F(U)= \begin{cases}\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, N(\delta(\eta))\right] \cap X & \text { if } U=U_{E(\eta)} \text { for some } \eta<\operatorname{cf} \nu, \\ \emptyset & \text { otherwise. }\end{cases}
$$

Then $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U}.
(2) For each $\delta \in N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, fix $f(\delta)<\operatorname{cf} \mu$ and $g(\delta)<\delta$ such that $(M(f(\delta)), \mu] \times(N(g(\delta)), N(\delta)] \cap X$ meets at most one member of \mathcal{H}. Then as in (1), we can find desired $\nu^{\prime}<\nu$ and $\mu^{\prime}<\mu$.

Lemma 6. Assume $\omega_{1} \leq \operatorname{cf} \nu \neq \operatorname{cf} \mu, X \subset(\mu+1) \times(\nu+1) \backslash\{\langle\mu, \nu\rangle\}$ and $V_{\mu}(X) \cap \nu$ is stationary in ν. If $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated, then there are $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right) \cap X$ is closed (and trivially open) in X.

Proof. Since $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated, take an open set V such that $X_{\{\mu\}} \subset V \subset \mathrm{Cl} V \subset X \backslash X^{\{\nu\}}$. For each $\delta \in N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, fix
$f(\delta)<\operatorname{cf} \mu$ and $g(\delta)<\delta$ such that $(M(f(\delta)), \mu] \times(N(g(\delta)), N(\delta)] \cap X \subset V$. Then as in Lemma 5, we can find $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right] \times$ $\left(\nu^{\prime}, \nu\right) \cap X \subset V$. Since $\mathrm{Cl} V \cap X^{\{\nu\}}=\emptyset$, we conclude that $\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right) \cap X$ is closed in X.

Lemma 7. Let \mathcal{P} be a topological property which is closed under taking closed subspaces and free unions. Assume $X \subset(\mu+1) \times(\nu+1)$ and $X_{\mu^{\prime}+1}$ has the property \mathcal{P} for each $\mu^{\prime}<\mu$.
(1) If cf $\mu=\omega$, then X_{μ} has the property \mathcal{P}.
(2) If cf $\mu \geq \omega_{1}$ and C is a cub set in cf μ and V is an open set in X containing $X_{M(C) \cup\{\mu\}}$, then $X \backslash V$ has the property \mathcal{P}.

Proof. (1) Since $X_{\mu}=\bigoplus_{n \in \omega} X_{(M(n-1), M(n)]}$ and $X_{(M(n-1), M(n)]}$ is a closed subspace of $X_{M(n)+1}, X_{\mu}$ has the property \mathcal{P}.
(2) For each $\gamma \in C$, put $h(\gamma)=\sup (C \cap \gamma)$. Note that $h(\gamma)<\gamma$ if $\gamma \in C \backslash \operatorname{Lim}(C)$. For each $\gamma \in C \backslash \operatorname{Lim}(C)$, put $Y(\gamma)=X_{(M(h(\gamma)), M(\gamma)]} \backslash V$. Since $Y(\gamma)$ is a closed subspace of $X_{M(\gamma)+1}$, it has the property \mathcal{P}. Therefore $X \backslash V=\bigoplus_{\gamma \in C \backslash \operatorname{Lim}(C)} Y(\gamma)$ has the property \mathcal{P}.

Lemma 8. Assume $\omega_{1} \leq \operatorname{cf} \mu<\operatorname{cf} \nu, X \subset(\mu+1) \times(\nu+1) \backslash\{\langle\mu, \nu\rangle\}$ and A_{μ}^{ν} is stationary in μ. If there are cub sets C in $\operatorname{cf} \mu$ and D in $\operatorname{cf} \nu$ such that $X_{M(C) \cup\{\mu\}}$ and $X^{\{\nu\}}$ are separated, and $X^{N(D) \cup\{\nu\}}$ and $X_{\{\mu\}}$ are separated, then there are $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$ is closed (and trivially open) in X.

Proof. Take open sets V and W in X such that

$$
\begin{aligned}
& X_{M(C) \cup\{\mu\}} \subset V \subset \mathrm{Cl} V \subset X \backslash X^{\{\nu\}}, \\
& X^{N(D) \cup\{\nu\}} \subset W \subset \mathrm{Cl} W \subset X \backslash X_{\{\mu\}} .
\end{aligned}
$$

First fix $\gamma \in C \cap M^{-1}\left(A_{\mu}^{\nu}\right) \cap \operatorname{Lim}(\operatorname{cf} \mu)$. For each $\delta \in D \cap N^{-1}\left(V_{M(\gamma)}(X)\right) \cap$ $\operatorname{Lim}(\operatorname{cf} \nu)$, since $\langle M(\gamma), N(\delta)\rangle \in V \cap W$, fix $f(\gamma, \delta)<\gamma$ and $g(\gamma, \delta)<\delta$ such that

$$
(M(f(\gamma, \delta)), M(\gamma)] \times(N(g(\gamma, \delta)), N(\delta)] \cap X \subset V \cap W .
$$

Since $f(\gamma, \delta)<\gamma$ and $g(\gamma, \delta)<\delta$ for each $\delta \in D \cap N^{-1}\left(V_{M(\gamma)}(X)\right) \cap$ $\operatorname{Lim}(\operatorname{cf} \nu)$, noting that $\operatorname{cf} \mu<\operatorname{cf} \nu$ and applying the PDL, we have $f(\gamma)<\gamma$, $g(\gamma)<\operatorname{cf} \nu$ and a stationary set $S_{\gamma} \subset D \cap N^{-1}\left(V_{M(\gamma)}(X)\right) \cap \operatorname{Lim}(\operatorname{cf} \nu)$ such that $f(\gamma, \delta)=f(\gamma)$ and $g(\gamma, \delta)=g(\gamma)$ for each $\delta \in S_{\gamma}$. Put $\delta_{0}=\sup \{g(\gamma)$: $\left.\gamma \in C \cap M^{-1}\left(A_{\mu}^{\nu}\right) \cap \operatorname{Lim}(\operatorname{cf} \mu)\right\}$.

Next, since $f(\gamma)<\gamma$ for each $\gamma \in C \cap M^{-1}\left(A_{\mu}^{\nu}\right) \cap \operatorname{Lim}(\operatorname{cf} \mu)$, again applying the PDL, we have $\gamma_{0}<\mathrm{cf} \mu$ and a stationary set $T \subset C \cap M^{-1}\left(A_{\mu}^{\nu}\right) \cap$ $\operatorname{Lim}(\operatorname{cf} \mu)$ such that $f(\gamma)=\gamma_{0}$ for each $\gamma \in T$. Then we have

$$
\left(M\left(\gamma_{0}\right), \mu\right) \times\left(N\left(\delta_{0}\right), \nu\right) \cap X \subset V \cap W
$$

Put $\mu^{\prime}=M\left(\gamma_{0}\right)$ and $\nu^{\prime}=N\left(\delta_{0}\right)$. Since $\mathrm{Cl} V \cap \mathrm{Cl} W$ is disjoint from $X_{\{\mu\}} \cup$ $X^{\{\nu\}}$, we conclude that $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$ is closed in X.

Lemma 9. Assume $\omega_{1} \leq \operatorname{cf} \mu<\operatorname{cf} \nu, X \subset \mu \times \nu$ and A_{μ}^{ν} is stationary in μ.
(1) If \mathcal{U} is an open cover of X, then there are $\mu^{\prime}<\mu, \nu^{\prime}<\nu$ and a shrinking \mathcal{F} of \mathcal{U} by clopen sets in X such that $\bigcup \mathcal{F}=\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$.
(2) If \mathcal{H} is a discrete collection of closed sets in X, there are $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$ meets at most one member of \mathcal{H}.

Proof. (1) First fix $\gamma \in M^{-1}\left(A_{\mu}^{\nu}\right) \cap \operatorname{Lim}(\operatorname{cf} \mu)$. For each $\delta \in$ $N^{-1}\left(V_{M(\gamma)}(X)\right) \cap \operatorname{Lim}(\operatorname{cf} \nu)$, using $\langle M(\gamma), N(\delta)\rangle \in X$, fix $f(\gamma, \delta)<\gamma$, $g(\gamma, \delta)<\delta$ and $U(\gamma, \delta) \in \mathcal{U}$ such that

$$
(M(f(\gamma, \delta)), M(\gamma)] \times(N(g(\gamma, \delta)), N(\delta)] \cap X \subset U(\gamma, \delta) .
$$

As in the proof of Lemma 8, applying the PDL twice, we find a stationary set $T \subset M^{-1}\left(A_{\mu}^{\nu}\right) \cap \operatorname{Lim}(\operatorname{cf} \mu)$, a stationary set $S_{\gamma} \subset N^{-1}\left(V_{M(\gamma)}(X)\right) \cap \operatorname{Lim}(\operatorname{cf} \nu)$ for each $\gamma \in T, \mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, M(\gamma)\right] \times\left(\nu^{\prime}, N(\delta)\right] \cap X \subset$ $U(\gamma, \delta)$ for each $\delta \in S_{\gamma}$ with $\gamma \in T$.

Put $H=\bigcup_{\gamma \in T}\{\gamma\} \times S_{\gamma}$. For each $\langle\gamma, \delta\rangle$ and $\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle$ in H, define $\langle\gamma, \delta\rangle \sim$ $\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle$ by $U(\gamma, \delta)=U\left(\gamma^{\prime}, \delta^{\prime}\right)$. For each $E \in H / \sim$, define $U_{E}=U(\gamma, \delta)$ for some (any) $\langle\gamma, \delta\rangle \in E$. Then note that

$$
\begin{equation*}
\bigcup_{\langle\gamma, \delta\rangle \in E}\left(\mu^{\prime}, M(\gamma)\right] \times\left(\nu^{\prime}, N(\delta)\right] \cap X \subset U_{E} . \tag{i}
\end{equation*}
$$

For each $\gamma \in T$ and $E \in H / \sim$, put

$$
j(E, \gamma)=\sup \left\{\delta \in S_{\gamma}:\langle\gamma, \delta\rangle \in E\right\}
$$

Then put $T(E)=\{\gamma \in T: j(E, \gamma)=\operatorname{cf} \nu\}$ and $k(E)=\sup T(E)$.
Claim 1. $\left(\mu^{\prime}, M(\gamma)\right] \times\left(\nu^{\prime}, \nu\right) \cap X \subset U_{E}$ for each $\gamma \in T(E)$.
Proof. Assume $\langle\alpha, \beta\rangle \in\left(\mu^{\prime}, M(\gamma)\right] \times\left(\nu^{\prime}, \nu\right) \cap X$ with $\gamma \in T(E)$. Since $\beta<\nu$ and $\gamma \in T(E)$, there is a $\delta \in S_{\gamma}$ with $\langle\gamma, \delta\rangle \in E$ such that $\beta<N(\delta)$. Then, by (i), $\langle\alpha, \beta\rangle \in U_{E}$. This completes the proof of Claim 1.

There are some cases to consider.
Case 1: There is an $E \in H / \sim$ such that $k(E)=\operatorname{cf} \mu$. In this case, by Claim 1, $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X \subset U_{E}$. So for each $U \in \mathcal{U}$, put

$$
F(U)= \begin{cases}\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X & \text { if } U=U_{E} \\ \emptyset & \text { otherwise }\end{cases}
$$

Then $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U}.
Case 2: $k(E)<\operatorname{cf} \mu$ for each $E \in H / \sim$. There are two subcases.
(2-1): $\sup \{k(E): E \in H / \sim\}=c f \mu$. By induction, define two sequences $\{E(\zeta): \zeta<\mathrm{cf} \mu\}$ in H / \sim and $\{\gamma(\zeta): \zeta<\operatorname{cf} \mu\}$ in T so that $\zeta+\sup _{\eta<\zeta} k(E(\eta))<\gamma(\zeta) \in T(E(\zeta))$. Observe that $E(\zeta)$'s are all distinct and $\{\gamma(\zeta): \zeta<\operatorname{cf} \mu\}$ is strictly increasing and unbounded in $\operatorname{cf} \mu$. By Claim 1, $Z(\zeta)=\left(\mu^{\prime}, M(\gamma(\zeta))\right] \times\left(\nu^{\prime}, \nu\right) \cap X \subset U_{E(\gamma(\zeta))}$. So for each $U \in \mathcal{U}$, put

$$
F(U)= \begin{cases}Z(\zeta) & \text { if } U=U_{E(\zeta)} \text { for some } \zeta<\operatorname{cf} \mu \\ \emptyset & \text { otherwise }\end{cases}
$$

Then $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U}.
$(2-2): \gamma_{0}=\sup \{k(E): E \in H / \sim\}<\operatorname{cf} \mu$. Put $T^{\prime}=T \backslash\left[0, \gamma_{0}\right], H^{\prime}=$ $\bigcup_{\gamma \in T^{\prime}}\{\gamma\} \times S_{\gamma}$ and $j(E)=\sup \left\{j(E, \gamma): \gamma \in T^{\prime}\right\}$ for each $E \in H / \sim$. Then, since $j(E, \gamma)<\operatorname{cf} \nu$ for each $\gamma \in T^{\prime}$ and $\left|T^{\prime}\right| \leq \operatorname{cf} \mu<\operatorname{cf} \nu$, we have

$$
\begin{equation*}
j(E)<\operatorname{cf} \nu \tag{ii}
\end{equation*}
$$

Let \prec be the co-lexicographic order on $\operatorname{cf} \mu \times \operatorname{cf} \nu$, that is, $\left\langle\zeta^{\prime}, \eta^{\prime}\right\rangle \prec\langle\zeta, \eta\rangle$ is defined by $\eta^{\prime}<\eta$ or $\left(\eta^{\prime}=\eta\right.$ and $\left.\zeta^{\prime}<\zeta\right)$. Since cf $\mu<\operatorname{cf} \nu$, the \prec-order type of cf $\mu \times \operatorname{cf} \nu$ is $\operatorname{cf} \nu$. By \prec-induction, we shall define two sequences $\{E(\zeta, \eta)$: $\langle\zeta, \eta\rangle \in \operatorname{cf} \mu \times \operatorname{cf} \nu\}$ in H / \sim and $\{\langle\gamma(\zeta, \eta), \delta(\zeta, \eta)\rangle:\langle\zeta, \eta\rangle \in \operatorname{cf} \mu \times \operatorname{cf} \nu\}$ in H^{\prime} with $\langle\gamma(\zeta, \eta), \delta(\zeta, \eta)\rangle \in E(\zeta, \eta)$ as follows.

Assume $E\left(\zeta^{\prime}, \eta^{\prime}\right), \gamma\left(\zeta^{\prime}, \eta^{\prime}\right)$ and $\delta\left(\zeta^{\prime}, \eta^{\prime}\right)$ are defined with $\left\langle\gamma\left(\zeta^{\prime}, \eta^{\prime}\right)\right.$, $\left.\delta\left(\zeta^{\prime}, \eta^{\prime}\right)\right\rangle \in E\left(\zeta^{\prime}, \eta^{\prime}\right)$ for all $\left\langle\zeta^{\prime}, \eta^{\prime}\right\rangle \prec\langle\zeta, \eta\rangle$. By (ii), take $\delta<\operatorname{cf} \nu$ with $\eta+$ $\sup \left\{j\left(E\left(\zeta^{\prime}, \eta^{\prime}\right)\right):\left\langle\zeta^{\prime}, \eta^{\prime}\right\rangle \prec\langle\zeta, \eta\rangle\right\}<\delta$. When $\zeta=0$, take $\langle\gamma(\zeta, \eta), \delta(\zeta, \eta)\rangle \in$ H^{\prime} with $\delta<\delta(\zeta, \eta)$, and let $E(\zeta, \eta)$ be the equivalence class with $\langle\gamma(\zeta, \eta), \delta(\zeta, \eta)\rangle \in E(\zeta, \eta)$. When $\zeta>0$, noting that $\gamma\left(\zeta^{\prime}, \eta\right)$ has been defined for all $\zeta^{\prime}<\zeta$, take $\gamma<\operatorname{cf} \mu$ such that $\zeta+\sup \left\{\gamma\left(\zeta^{\prime}, \eta\right): \zeta^{\prime}<\zeta\right\}<\gamma$, and take $\langle\gamma(\zeta, \eta), \delta(\zeta, \eta)\rangle \in H^{\prime}$ with $\delta<\delta(\zeta, \eta)$ and $\gamma<\gamma(\zeta, \eta)$. Finally, let $E(\zeta, \eta)$ be the equivalence class with $\langle\gamma(\zeta, \eta), \delta(\zeta, \eta)\rangle \in E(\zeta, \eta)$. This completes the construction.

By the construction, $E(\zeta, \eta)$'s are all distinct,
(iii) $\quad\{\delta(\zeta, \eta):\langle\zeta, \eta\rangle \in \operatorname{cf} \mu \times \operatorname{cf} \nu\}$ is strictly increasing and unbounded in cf ν,
and
(iv) $\quad\{\gamma(\zeta, \eta): \zeta \in \operatorname{cf} \mu\}$ is also strictly increasing and unbounded in cf μ for each $\eta<\operatorname{cf} \nu$.
As $\langle\gamma(\zeta, \eta), \delta(\zeta, \eta)\rangle \in E(\zeta, \eta)$, by (i) we have $Z(\zeta, \eta)=\left(\mu^{\prime}, M(\gamma(\zeta, \eta))\right] \times$ $\left(\nu^{\prime}, N(\delta(\zeta, \eta))\right] \subset U_{E(\zeta, \eta)}$. Moreover, by (iii) and (iv), $\{Z(\zeta, \eta):\langle\zeta, \eta\rangle \in$ cf $\mu \times \operatorname{cf} \nu\}$ covers $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$.

For each $U \in \mathcal{U}$, put

$$
F(U)= \begin{cases}Z(\zeta, \eta) & \text { if } U=U_{E(\zeta, \eta)} \text { for some }\langle\zeta, \eta\rangle \in \operatorname{cf} \mu \times \operatorname{cf} \nu \\ \emptyset & \text { otherwise }\end{cases}
$$

Then $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U}.
The proof of (2) is easier, so we leave it to the reader.
Lemma 10. Assume $\omega_{1} \leq \operatorname{cf} \mu=\operatorname{cf} \nu=\kappa, X \subset(\mu+1) \times(\nu+1) \backslash$ $\{\langle\mu, \nu\rangle\}$ and $\triangle_{M N}(X)$ is stationary in κ. If $X(\triangle, M, N)$ and $X_{\{\mu\}} \cup X^{\{\nu\}}$ are separated, then there are $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$ is closed (and trivially open) in X.

Proof. Take an open set V in X such that $X(\triangle, M, N) \subset V \subset \mathrm{Cl} V \subset$ $X \backslash\left(X_{\{\mu\}} \cup X^{\{\nu\}}\right)$. For each $\gamma \in \triangle_{M N}(X) \cap \operatorname{Lim}(\kappa)$, take $f(\gamma)<\gamma$ such that $(M(f(\gamma)), M(\gamma)] \times(N(f(\gamma)), N(\gamma)] \cap X \subset V$. By the PDL, we find $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X \subset V$. Since $\mathrm{Cl} V$ is disjoint from $X_{\{\mu\}} \cup X^{\{\nu\}}$, we conclude that $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$ is closed in X.

Lemma 11. Assume $\omega_{1} \leq \operatorname{cf} \mu=\operatorname{cf} \nu=\kappa, X \subset \mu \times \nu$ and $\triangle_{M N}(X)$ is stationary in κ.
(1) If \mathcal{U} is an open cover of X, then there are $\mu^{\prime}<\mu, \nu^{\prime}<\nu$ and a shrinking \mathcal{F} of \mathcal{U} by clopen sets in X such that $\bigcup \mathcal{F}=\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$.
(2) If \mathcal{H} is a discrete collection of closed sets in X, there are $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$ such that $\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$ meets at most one member of \mathcal{H}.

Proof. (1) For each $\delta \in \triangle_{M N}(X) \cap \operatorname{Lim}(\kappa)$, fix $g(\delta)<\delta$ and $U(\delta) \in \mathcal{U}$ such that $(M(g(\delta)), M(\delta)] \times(N(g(\delta)), N(\delta)] \cap X \subset U(\delta)$. By the PDL, we find $\mu^{\prime}<\mu, \nu^{\prime}<\nu$ and a stationary set $S \subset \triangle_{M N}(X) \cap \operatorname{Lim}(\kappa)$ such that $\left(\mu^{\prime}, M(\delta)\right] \times\left(\nu^{\prime}, N(\delta)\right] \cap X \subset U(\delta)$ for each $\delta \in S$. Then by an argument similar to the proof of Lemma 5, making use of the equivalence relation, we can find the desired shrinking of \mathcal{U}.
(2) is easy.

Lemma 12. Let \mathcal{P} be a topological property which is closed under taking closed subspaces and free unions. Assume $\omega_{1} \leq \operatorname{cf} \mu=\operatorname{cf} \nu=\kappa, X \subset$ $(\mu+1) \times(\nu+1) \backslash\{\langle\mu, \nu\rangle\}, V_{\mu}(X)$ is stationary in κ, but $\triangle_{M N}(X)$ is not stationary in κ; moreover, $X_{\mu^{\prime}+1}$ and $X^{\nu^{\prime}+1}$ have the property \mathcal{P} for each $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$. If V is an open set in X containing $X_{\{\mu\}}$, then $X(R, M, N) \backslash V$ has the property \mathcal{P}.

Proof. Take a cub set D in $\operatorname{Lim}(\kappa)$ disjoint from $\triangle_{M N}(X)$. For each $\delta \in N^{-1}\left(V_{\mu}(X)\right) \cap D$, fix $f(\delta)<\kappa$ and $g(\delta)<\delta$ such that

$$
(M(f(\delta)), \mu] \times(N(g(\delta)), N(\delta)] \cap X \subset V .
$$

For each $\delta \in \kappa \backslash\left[N^{-1}\left(V_{\mu}(X)\right) \cap D\right]$, put $f(\delta)=0$. By the PDL, take $\delta_{0}<\kappa$ and a stationary set $S \subset N^{-1}\left(V_{\mu}(X)\right) \cap D$ such that $g(\delta)=\delta_{0}$ for each $\delta \in S$. Put $\nu^{\prime}=N\left(\delta_{0}\right), D^{\prime}=\left\{\delta<\kappa: \forall \delta^{\prime}<\delta\left(f\left(\delta^{\prime}\right)<\delta\right)\right\}$ and $W=$ $\bigcup_{\delta \in S}(M(f(\delta)), \mu] \times\left(\nu^{\prime}, N(\delta)\right] \cap X$. Then D^{\prime} is cub in κ and $W \subset V$. Since $X^{\nu^{\prime}+1} \backslash V$ (and therefore $\left.X(R, M, N)^{\nu^{\prime}+1} \backslash V\right)$ has the property \mathcal{P}, it suffices
to represent $Y=X(R, M, N)^{\left(\nu^{\prime}, \nu\right]} \backslash W$ as the free union of subspaces having the property \mathcal{P}. Here note that Y is closed in X and disjoint from $X_{\{\mu\}} \cup$ $X^{\{\nu\}}$. To show this, put $C=\operatorname{Lim}(S) \cap D^{\prime}$. Then C is cub and $C \subset D \cap$ D^{\prime}. For each $\delta \in C$, put $h(\delta)=\sup (C \cap \delta)$. Then by the closedness of $C, h(\delta) \in C$ and $h(\delta) \leq \delta$. For each $\delta \in C \backslash \operatorname{Lim}(C)$ (in other words,
 therefore closed in X. Moreover, as $Y(\delta) \subset X_{M(\delta)+1}, Y(\delta)$ has the property \mathcal{P}. Since $Y(\delta)$'s, $\delta \in C \backslash \operatorname{Lim}(C)$, are pairwise disjoint, it suffices to show $Y=\bigcup_{\delta \in C \backslash \operatorname{Lim}(C)} Y(\delta)$. To show this, let $\langle\alpha, \beta\rangle \in Y$. Note $\alpha<\mu, \nu^{\prime}<\beta<\nu$ and $m(\alpha) \geq n(\beta)$. Let δ be the minimal ordinal number with $m(\alpha) \leq \delta \in C$. Note that $n(\beta) \leq \delta$.

First assume $n(\beta)=\delta$. Since $\delta=n(\beta) \leq m(\alpha) \leq \delta$, we have $\delta \in$ $\triangle_{M N}(X) \cap C$. This contradicts $C \subset D$. Therefore $n(\beta)<\delta$.

Next assume $\delta \in \operatorname{Lim}(C)$. Then by the minimality of δ, we have $m(\alpha)=$ δ. Using $n(\beta)<\delta$ and $\delta \in C \subset \operatorname{Lim}(S) \cap D^{\prime}$, pick $\delta^{\prime} \in S$ with $n(\beta)<\delta^{\prime}<\delta$. Since $\delta \in D^{\prime}$, we have $f\left(\delta^{\prime}\right)<\delta=m(\alpha)$, and therefore $M\left(f\left(\delta^{\prime}\right)\right)<\alpha$. Moreover, as $n(\beta)<\delta^{\prime}$, we have

$$
\langle\alpha, \beta\rangle \in\left(M\left(f\left(\delta^{\prime}\right)\right), \mu\right] \times\left(\nu^{\prime}, N\left(\delta^{\prime}\right)\right] \cap X \subset W
$$

This contradicts $Y \cap W=\emptyset$. Therefore $\delta \in C \backslash \operatorname{Lim}(C)$. By the minimality of δ, this shows that $h(\delta)<m(\alpha) \leq \delta$. This means $\alpha \in(M(h(\delta)), M(\delta)]$, hence

$$
\langle\alpha, \beta\rangle \in Y_{(M(h(\delta)), M(\delta)]}=Y(\delta) .
$$

This completes the proof.
3. Proof of the Theorem. The implications $(1) \rightarrow(3)$ and $(2) \rightarrow(3)$ are evident.
$(3) \rightarrow(4)$. Let X be normal and $\langle\mu, \nu\rangle \in(\lambda+1)^{2} \backslash X$ with $\omega \leq \operatorname{cf} \mu$ and $\omega \leq \operatorname{cf} \nu$. Since $\langle\mu, \nu\rangle \notin X, X_{\{\mu\}}$ and $X^{\{\nu\}}$ are disjoint closed sets in the normal space X. Thus (4-1) holds.

To show (4-2), assume $\omega_{1} \leq \operatorname{cf} \nu$ and $V_{\mu}(X) \cap \nu$ is not stationary in ν. Then there is a cub set D in $\operatorname{cf} \nu$ such that $V_{\mu}(X) \cap N(D)=\emptyset$. Since $X_{\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ are disjoint closed sets, (4-2) holds.
(4-3) is similar.
To show (4-4), since the remaining case is similar, we may assume $\omega_{1} \leq$ cf $\mu<$ cf $\nu, V_{\mu}(X) \cap \nu$ is not stationary in ν, and both $H_{\nu}(X) \cap \mu$ and A_{μ}^{ν} are non-stationary in μ. By the non-stationarity of A_{μ}^{ν} and Lemma 3, there are cub sets C^{\prime} in cf μ and D^{\prime} in cf ν such that $X \cap M\left(C^{\prime}\right) \times N\left(D^{\prime}\right)=\emptyset$. Since $V_{\mu}(X) \cap \nu$ and $H_{\nu}(X) \cap \mu$ are non-stationary in cf ν and $\operatorname{cf} \mu$ respectively, take cub sets $C \subset C^{\prime}$ and $D \subset D^{\prime}$ such that $M(C) \cap H_{\nu}(X)=\emptyset$ and $N(D) \cap V_{\mu}(X)=\emptyset$. Then $X \cap(M(C) \cup\{\mu\}) \times(N(D) \cup\{\nu\})=\emptyset$. Therefore
$X_{M(C) \cup\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ are disjoint closed sets in the normal space X. This shows (4-4).

To show (4-5), assume $\omega_{1} \leq \operatorname{cf} \mu=\operatorname{cf} \nu=\kappa$. By $\langle\mu, \nu\rangle \notin X, X(\triangle, M, N)$ and $X_{\{\mu\}} \cup X^{\{\nu\}}$ are disjoint closed sets in the normal space X. This shows (4-5-a).

To show (4-5-b), assume $\triangle_{M N}(X)$ is not stationary in κ. Since X is normal, (b1) and (b3) are evident. Assume $V_{\mu}(X) \cap \nu$ is not stationary in ν. By Lemma 4 and the non-stationarity of $V_{\mu}(X) \cap \nu$, there is a cub set $D \subset \kappa$ such that $X \cap M(D) \times N(D)=\emptyset$ and $N(D) \cap V_{\mu}(X)=\emptyset$. Then $X \cap(M(D) \cup\{\mu\}) \times N(D)=\emptyset$. Since $X(R, M, N)$ is disjoint from $X^{\{\nu\}}$, we have $X(R, M, N) \cap(M(D) \cup\{\mu\}) \times(N(D) \cup\{\nu\})=\emptyset$. Since $X(R, M, N)$ is closed in $X, X(R, M, N)_{M(D) \cup\{\mu\}}$ and $X(R, M, N)^{N(D) \cup\{\nu\}}$ are disjoint closed sets in the normal space X. This shows (b2).

Similarly we can show (b4).
$(4) \rightarrow(1)$. Assume (4) holds but X is not shrinking. Put

$$
\begin{aligned}
\mu & =\min \left\{\zeta \leq \lambda: X_{\zeta+1} \text { is not shrinking }\right\} \\
\nu & =\min \left\{\eta \leq \lambda: X_{\mu+1}^{\eta+1} \text { is not shrinking }\right\}
\end{aligned}
$$

Note that $X_{\mu+1}^{\nu+1}$ is not shrinking, but $X_{\mu^{\prime}+1}^{\nu+1}$ and $X_{\mu+1}^{\nu^{\prime}+1}$ are shrinking for each $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$. Since $X_{\mu+1}^{\nu+1}$ is a clopen subspace of X, we may assume $X=X_{\mu+1}^{\nu+1}$. Then again note that X is not shrinking, but $X_{\mu^{\prime}+1}$ and $X^{\nu^{\prime}+1}$ are shrinking for each $\mu^{\prime}<\mu$ and $\nu^{\prime}<\nu$. So there is an open cover \mathcal{U} of X which does not have a closed shrinking which covers X.

Claim 1. $\langle\mu, \nu\rangle \notin X$.
Proof. Assume $\langle\mu, \nu\rangle \in X$. Then there are $\mu^{\prime}<\mu, \nu^{\prime}<\nu$ and $U \in$ \mathcal{U} such that $Z=\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right] \cap X \subset U$. Since Z is clopen in X and $X_{\mu^{\prime}+1} \cup X^{\nu^{\prime}+1} \cup Z=X$, and $X_{\mu^{\prime}+1}$ and $X^{\nu^{\prime}+1}$ are shrinking, by Lemma 1, \mathcal{U} has a closed shrinking which covers X, a contradiction. This completes the proof of Claim 1.

Claim 2. $\omega \leq \operatorname{cf} \mu$ and $\omega \leq \operatorname{cf} \nu$.
Proof. Assume $\mu=\mu^{\prime}+1$. Since X is the free union $X_{\mu} \oplus X_{\{\mu\}}$ of shrinking subspaces, \mathcal{U} can be shrunk, a contradiction. Therefore $\omega \leq \operatorname{cf} \mu$. Similarly $\omega \leq \operatorname{cf} \nu$.

First we consider the following case.
Case 1: cf $\mu \neq \operatorname{cf} \nu$. We may assume $\operatorname{cf} \mu<\operatorname{cf} \nu$. We consider two subcases:
(1-1): $V_{\mu}(X) \cap \nu$ is stationary in ν. Applying Lemma 5 (1) to $\mathcal{U} \mid X^{\nu}$, we find $\mu^{\prime}<\mu, \nu^{\prime}<\nu$ and a shrinking \mathcal{F} of $\mathcal{U} \mid X^{\nu}$ by closed sets in X^{ν} such
that $\bigcup \mathcal{F}=\left(\mu^{\prime}, \mu\right] \times\left(\nu^{\prime}, \nu\right) \cap X$. Since $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated by (4-1), applying Lemma 6 , we get $\mu^{\prime \prime}<\mu$ and $\nu^{\prime \prime}<\nu$ with $\mu^{\prime}<\mu^{\prime \prime}$ and $\nu^{\prime}<\nu^{\prime \prime}$ such that $Z=\left(\mu^{\prime \prime}, \mu\right] \times\left(\nu^{\prime \prime}, \nu\right) \cap X$ is closed in X. Then $\mathcal{F} \mid Z$ is a shrinking of \mathcal{U} by closed sets in X which covers Z. Since $X_{\mu^{\prime \prime}+1}, X^{\nu^{\prime \prime}+1}$ and $X^{\{\nu\}}$ are shrinking closed subspaces and $X=X_{\mu^{\prime \prime}+1} \cup X^{\nu^{\prime \prime}+1} \cup X^{\{\nu\}} \cup Z$, by Lemma $1, \mathcal{U}$ has a closed shrinking which covers X. A contradiction.
(1-2): $V_{\mu}(X) \cap \nu$ is not stationary in ν. In this case, by (4-2), there is a cub set D in cf ν such that $X_{\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ are separated. Take disjoint open sets V and W containing $X_{\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ respectively. Assume cf $\mu=\omega$. Then by Lemma $7(1), X_{\mu}$ is shrinking, thus $X \backslash V$ is shrinking. Moreover, by (2) of the analogue of Lemma $7, X \backslash W$ is also shrinking. Therefore by Lemma 1, X is shrinking, a contradiction. Therefore we have $\omega_{1} \leq \operatorname{cf} \mu$.

Then by an argument similar to (1-1), assuming $H_{\nu}(X) \cap \mu$ is stationary in μ, we get a contradiction (of course we would use the "analogous" lemmas). So $H_{\nu}(X) \cap \mu$ is not stationary in μ.

Now we are in the situation where $\omega_{1} \leq \operatorname{cf} \mu<\operatorname{cf} \nu$, and $H_{\nu}(X) \cap \mu$ and $V_{\mu}(X) \cap \nu$ are not stationary in μ and ν respectively. By (4-3), we also have a cub set C in cf μ such that $X^{\{\nu\}}$ and $X_{M(C) \cup\{\mu\}}$ are separated. Again, we consider two subcases:
(1-2-1): A_{μ}^{ν} is stationary in μ. In this case by Lemmas 8 and 9 (1), we find $\mu^{\prime}<\mu, \nu^{\prime}<\nu$ and a shrinking \mathcal{F} of \mathcal{U} by closed sets in X such that $Z=\left(\mu^{\prime}, \mu\right) \times\left(\nu^{\prime}, \nu\right) \cap X$ is clopen in X and $\bigcup \mathcal{F}=Z$. Since $X_{\mu^{\prime}+1}, X^{\nu^{\prime}+1}$, $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are shrinking closed subspaces and $X=X_{\mu^{\prime}+1} \cup X^{\nu^{\prime}+1} \cup$ $X_{\{\mu\}} \cup X^{\{\nu\}} \cup Z$, by Lemma $1, \mathcal{U}$ has a closed shrinking which covers X. A contradiction.
(1-2-2) : A_{μ}^{ν} is not stationary in μ. In this case by (4-4), there are cub sets C in cf μ and D in cf ν such that $X_{M(C) \cup\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ are separated. Take disjoint open sets V and W containing $X_{M(C) \cup\{\mu\}}$ and $X^{N(D) \cup\{\nu\}}$ respectively. Then by Lemma 7 (2), $X \backslash V$ and $X \backslash W$ are shrinking closed subspaces. Therefore by Lemma $1, X$ is shrinking, a contradiction.

Next we consider the remaining case.
Case 2: $\operatorname{cf} \mu=\operatorname{cf} \nu=\kappa$. Assume $\kappa=\omega$. Then by Lemma $7(1), X_{\mu}$ and X^{ν} are shrinking. By (4-1), $X_{\{\mu\}}$ and $X^{\{\nu\}}$ are separated. Then by Lemma 2, $X=X_{\mu} \cup X^{\nu}$ is shrinking, a contradiction. Therefore $\omega_{1} \leq \kappa$. Two subcases are now considered:
(2-1): $\triangle_{M N}(X)$ is stationary in κ. In this case by Lemmas 10 and 11, we have a contradiction as previously.
(2-2): $\triangle_{M N}(X)$ is not stationary in κ. Since X is the union of the closed subspaces $X(R, M, N)$ and $X(L, M, N)$, we may assume that \mathcal{U} does not have a closed shrinking which covers $X(R, M, N)$. Two cases are to consider:
(2-2-1): $V_{\mu}(X) \cap \nu$ is stationary in ν. As in the proof of Lemma $5(1)$, for each $\delta \in N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}(\kappa)$, fix $f(\delta)<\kappa, g(\delta)<\delta$ and $U(\delta) \in \mathcal{U}$ such that $(M(f(\delta)), \mu] \times(N(g(\delta)), N(\delta)] \cap X \subset U(\delta)$. Applying the PDL, we can find $\delta_{0}<\kappa$ and a stationary set $S \subset N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}(\kappa)$ such that $g(\delta)=\delta_{0}$ for each $\delta \in S$. Put $\nu^{\prime}=N\left(\delta_{0}\right)$.

Claim 3. There is a closed shrinking \mathcal{F} of \mathcal{U} such that $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X \subset$ $\operatorname{Int}(\bigcup \mathcal{F})$ and $\bigcup \mathcal{F}$ is closed in X.

Proof. As previously, for each δ and δ^{\prime} in S, define $\delta \sim \delta^{\prime}$ by $U(\delta)=$ $U\left(\delta^{\prime}\right)$, and let S / \sim be its quotient. For each $E \in S / \sim$, put $U_{E}=U(\delta)$ for some (any) $\delta \in E$. Observe that $(M(f(\delta)), \mu] \times\left(\nu^{\prime}, N(\delta)\right] \cap X \subset U_{E}$ for each $\delta \in E$.

First, assume there is $E \in S / \sim$ such that E is unbounded in κ. Put $W=\bigcup_{\delta \in E}(M(f(\delta)), \mu] \times\left(\nu^{\prime}, N(\delta)\right] \cap X$. Note that $W \subset U_{E}$. Since by the condition (b1), $X_{\{\mu\}}$ and $X \backslash\left(W \cup X^{\nu^{\prime}+1}\right)$ are separated, we can find an open set V in X such that $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X \subset V \subset \mathrm{Cl} V \subset W$. For each $U \in \mathcal{U}$, put

$$
F(U)= \begin{cases}\mathrm{Cl} V & \text { if } U=U_{E}, \\ \emptyset & \text { otherwise } .\end{cases}
$$

Then $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U}.
Next assume all E 's, $E \in S / \sim$, are bounded in κ. As in Lemma 5, define $\delta(\eta) \in E(\eta) \in S / \sim$ for each $\eta \in \kappa$ so that $\eta+\sup \left(\bigcup_{\zeta<\eta} E(\zeta)\right)<\delta(\eta)$. For each $U \in \mathcal{U}$, put

$$
W(U)=\left\{\begin{array}{l}
(M(f(\delta(\eta))), \mu] \times\left(\nu^{\prime}, N(\delta(\eta))\right] \cap X \\
\quad \text { if } U=U_{E(\eta)} \text { for some } \eta<\kappa, \\
\emptyset \quad \text { otherwise } .
\end{array}\right.
$$

Then $\mathcal{W}=\{W(U): U \in \mathcal{U}\}$ is a shrinking of \mathcal{U} by clopen sets in X with $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X \subset \bigcup \mathcal{W}$. By the condition (b1), take an open set V in X such that $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X \subset V \subset \mathrm{Cl} V \subset \bigcup \mathcal{W}$.

For each $U \in \mathcal{U}$, put

$$
F(U)=W(U) \cap \mathrm{Cl} V .
$$

Then $\mathcal{F}=\{F(U): U \in \mathcal{U}\}$ is the desired shrinking of \mathcal{U}. This completes the proof of the claim.

Take the shrinking \mathcal{F} of \mathcal{U} in Claim 3. By Lemma 12,

$$
Z=X(R, N, M)^{\left(\nu^{\prime}, \nu\right]} \backslash \operatorname{Int}(\bigcup \mathcal{F})
$$

is a shrinking closed subspace. Since $X(R, M, N) \subset X^{\nu^{\prime}+1} \cup Z \cup \bigcup \mathcal{F}$, by Lemma $1, \mathcal{U}$ has a closed shrinking which covers $X(R, M, N)$. A contradiction.
(2-2-2): $V_{\mu}(X) \cap \nu$ is not stationary in ν. Using the clause (b2), take a cub set D in κ such that $X(R, M, N)_{M(D) \cup\{\mu\}}$ and $X(R, M, N)^{N(D) \cup\{\nu\}}$ are separated. Take disjoint open sets V and W containing $X(R, M, N)_{M(D) \cup\{\mu\}}$ and $X(R, M, N)^{N(D) \cup\{\nu\}}$ respectively. Then applying Lemma $7(2)$ to $X(R, M, N)$, we see that $X(R, M, N) \backslash V$ and $X(R, M, N) \backslash W$ are shrinking. Therefore by Lemma $1, X(R, M, N)$ is shrinking, a contradiction.

Thus in all cases, we get contradictions. This completes the proof of (4) \rightarrow (1).
$(4) \rightarrow(2)$. This proof is almost similar to the one of $(4) \rightarrow(1)$ except for the case (2-2-1). So we only give a proof of case (2-2-1) for the CWN case.
(2-2-1): $\omega_{1} \leq \operatorname{cf} \mu=\operatorname{cf} \nu=\kappa, \triangle_{M N}(X)$ is not stationary in $\kappa, V_{\mu}(X) \cap \nu$ is stationary in ν and \mathcal{H} is a discrete collection of closed sets in X which cannot be separated. In this case, for each $\delta \in N^{-1}\left(V_{\mu}(X)\right) \cap \operatorname{Lim}(\kappa)$, fix $g(\delta)<\delta$ such that $\{\mu\} \times(N(g(\delta)), N(\delta)] \cap X$ meets at most one element of \mathcal{H}. By the PDL, we can take $\nu^{\prime}<\nu$ such that $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X$ meets at most one element of \mathcal{H}.

Claim 3^{\prime}. There is an open set V such that $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X \subset V$ and $\mathrm{Cl} V$ meets at most one element of \mathcal{H}.

Proof. Put $\mathcal{H}^{\prime}=\left\{H \in \mathcal{H}: H \cap\left(\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X\right)=\emptyset\right\}$, and $W=$ $X \backslash \bigcup \mathcal{H}^{\prime}$. Since $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X \subset W$, take an open set V such that $\{\mu\} \times\left(\nu^{\prime}, \nu\right) \cap X \subset V \subset \mathrm{Cl} V \subset W$ using the clause (b1). Then this V works.

As $X(R, M, N)$ is covered by closed sets $X^{\nu^{\prime}+1}, Z=X(R, M, N)^{\left(\nu^{\prime}, \nu\right]} \backslash V$ and $\mathrm{Cl} V$, we get a contradiction as in case $(2-2-1)$ in the proof of $(4) \rightarrow(1)$. This completes the proof.
4. Non-normal examples and related questions. In [KOT], it is proved that, for subspaces A and B of $\omega_{1}, A \times B$ is normal (countably paracompact) if and only if A is not stationary in ω_{1}, B is not stationary in ω_{1} or $A \cap B$ is stationary.

According to this result, if A is a countable subspace of ω_{1}, then, since A is non-stationary, $A \times B$ is normal for each $B \subset \omega_{1}$. In particular, as is well known, $(\omega+1) \times \omega_{1}$ is normal. But as is shown in the next example, there is a non-normal subspace of $(\omega+1) \times \omega_{1}$.

Example 1. Put $X=\omega \times \omega_{1} \cup\{\omega\} \times\left(\omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)\right)$. Put $F=\omega \times \operatorname{Lim}\left(\omega_{1}\right)$ and $H=\{\omega\} \times\left(\omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)\right)$. Then F and H are disjoint closed sets in X. Let U be an open set containing H. For each $\alpha \in \omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)$, pick $n(\alpha) \in \omega$
such that $[n(\alpha), \omega] \times\{\alpha\} \subset U$. Since $\omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)$ is uncountable, there is an uncountable subset $C \subset \omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)$ and $n \in \omega$ such that $n(\alpha)=n$ for each $\alpha \in C$. Observe that $[n, \omega] \times C \subset U$. Pick $\alpha \in \operatorname{Lim}(C)$. Noting that $\operatorname{Lim}(C) \subset \operatorname{Lim}\left(\omega_{1}\right)$, we have $\langle n, \alpha\rangle \in[n, \omega] \times \operatorname{Lim}(C) \cap F \subset \mathrm{Cl} U \cap F$. This argument shows X is not normal.

Next we give a corollary of the Theorem for subspaces of ω_{1}^{2}. For simplicity, we use the following notation: Let $X \subset \omega_{1}^{2}, \alpha<\omega_{1}$ and $\beta<\omega_{1}$. Put $V_{\alpha}(X)=\left\{\beta<\omega_{1}:\langle\alpha, \beta\rangle \in X\right\}, H_{\beta}(X)=\left\{\alpha<\omega_{1}:\langle\alpha, \beta\rangle \in X\right\}$ and $\triangle(X)=\left\{\alpha<\omega_{1}:\langle\alpha, \alpha\rangle \in X\right\}$. For subsets C and D of ω_{1}, put $X_{C}=X \cap C \times \omega_{1}, X^{D}=X \cap \omega_{1} \times D$ and $X_{C}^{D}=X \cap C \times D$.

Consider M and N as the identity map on ω_{1} if $\mu=\nu=\omega_{1}$ in the Theorem. Then, by checking all clauses in (4) of the Theorem, we can see:

Corollary. Let $X \subset \omega_{1}^{2}$. Then the following are equivalent.
(1) X is normal.
(2) (2-1-a) If α is a limit ordinal in ω_{1} and $V_{\alpha}(X)$ is not stationary in ω_{1}, then there is a cub set $D \subset \omega_{1}$ such that $X_{\{\alpha\}}$ and X^{D} are separated.
(2-1-b) If β is a limit ordinal in ω_{1} and $H_{\beta}(X)$ is not stationary in ω_{1}, then there is a cub set $C \subset \omega_{1}$ such that $X^{\{\beta\}}$ and X_{C} are separated.
(2-2) If $\triangle(X)$ is not stationary in ω_{1}, then there is a cub set $C \subset \omega_{1}$ such that X_{C} and X^{C} are separated.

Intuitively, we may consider (2-1-a) to be a condition which guarantees the normality of $X_{\alpha+1}$ for each $\alpha<\omega_{1}$, and (2-1-b) the normality of $X^{\beta+1}$ for each $\beta<\omega_{1}$. If we know that $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta<\omega_{1}$, then (2-2) is a condition which guarantees the normality of X.

Consider $X=\omega_{1}^{2}$. Since $V_{\alpha}(X)$ and $H_{\beta}(X)$ are the stationary set ω_{1} for each $\alpha, \beta<\omega_{1}$ and $\triangle(X)$ is also the stationary set ω_{1}, the clause (2) of the Corollary is satisfied. So X is normal.

Example 2. Let A and B be disjoint stationary sets in ω_{1} and put $X=A \times B$. Let α be a limit ordinal in ω_{1}. Then we have

$$
V_{\alpha}(X)= \begin{cases}B & \text { if } \alpha \in A \\ \emptyset & \text { otherwise } .\end{cases}
$$

Therefore, if $V_{\alpha}(X)$ is not stationary, then necessarily $\alpha \notin A$ and $V_{\alpha}(X)=\emptyset$, so $X_{\{\alpha\}}=\emptyset$. Therefore $X_{\{\alpha\}}$ and $X^{\omega_{1}}$ are separated. This argument proves (2-1-a). Similarly we have (2-1-b). Therefore $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta<\omega_{1}$.

Note that $\triangle(X)=\emptyset$. Let C be a cub set in ω_{1}. Then $X \cap C^{2}=(A \cap$ $C) \times(B \cap C) \neq \emptyset$, equivalently $X_{C} \cap X^{C} \neq \emptyset$. Thus X_{C} and X^{C} cannot
be separated. Therefore X is not normal, because the clause (2-2) is not satisfied.

Example 3. Let $X=\left\{\langle\alpha, \beta\rangle \in \omega_{1}^{2}: \alpha \leq \beta\right\}, Y=\left\{\langle\alpha, \beta\rangle \in \omega_{1}^{2}: \alpha<\beta\right\}$. Checking (2-1-a) and (2-1-b), we can show that $X_{\alpha+1}, X^{\beta+1}, Y_{\alpha+1}$ and $Y^{\beta+1}$ are normal for each $\alpha, \beta<\omega_{1}$.

Since $\triangle(X)=\omega_{1}$ is stationary, (2-2) for X is satisfied. Thus X is normal (but this is obvious, because X is a closed subspace of ω_{1}^{2}). On the other hand, note that $\triangle(Y)=\emptyset$. For each cub set C in ω_{1}, pick α and β in C with $\alpha<\beta$. Then $\langle\alpha, \beta\rangle \in Y \cap C^{2}$. Therefore (2-2) for Y is not satisfied. Thus Y is not normal.

Let $X=\omega_{1} \times\left(\omega_{1}+1\right)$. Observe that $X \cap \omega_{1}^{2}=\omega_{1}^{2}$ is normal, and $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta<\omega_{1}$. Since $\left\{\langle\alpha, \alpha\rangle: \alpha \in \omega_{1}\right\}$ and $X^{\left\{\omega_{1}\right\}}$ cannot be separated, X is not normal. Note that both $\triangle(X)$ and $H_{\omega_{1}}(X)$ are the stationary set ω_{1}. Next we give a similar example $X \subset \omega_{1} \times\left(\omega_{1}+1\right)$, but with $\triangle(X)$ and $H_{\omega_{1}}(X)$ not stationary.

Example 4. Let

$$
X=\left[\omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)\right] \times\left[\left(\omega_{1}+1\right) \backslash \operatorname{Lim}\left(\omega_{1}\right)\right] \cup\left\{\langle\alpha, \alpha+1\rangle: \alpha \in \operatorname{Lim}\left(\omega_{1}\right)\right\} .
$$

Observe that $X \cap \omega_{1}^{2}$ is normal, $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha, \beta<$ ω_{1} and both $\triangle(X)$ and $H_{\omega_{1}}(X)$ are the non-stationary set $\omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)$. By an argument similar to that for Claim 1 of Lemma 4, we can see that $F=\left\{\langle\alpha, \alpha+1\rangle: \alpha \in \operatorname{Lim}\left(\omega_{1}\right)\right\}$ is closed (discrete). We shall show F and $X^{\left\{\omega_{1}\right\}}$ cannot be separated. To see this, let U be an open set containing F. For each $\alpha \in \operatorname{Lim}\left(\omega_{1}\right)$, since $\langle\alpha, \alpha+1\rangle \in F \subset U$, take $f(\alpha)<\alpha$ such that $(f(\alpha), \alpha] \times\{\alpha+1\} \cap X \subset U$. By the PDL, there are $\alpha_{0}<\omega_{1}$ and a stationary set $S \subset \operatorname{Lim}\left(\omega_{1}\right)$ such that $f(\alpha)=\alpha_{0}$ for each $\alpha \in S$. Take $\beta \in \omega_{1} \backslash \operatorname{Lim}\left(\omega_{1}\right)$ with $\alpha_{0}<\beta$. Noting that $\langle\beta, \alpha+1\rangle \in X$ for each $\alpha \in S$ with $\alpha>\beta$, we have

$$
\left\langle\beta, \omega_{1}\right\rangle \in \operatorname{Cl}\{\langle\beta, \alpha+1\rangle: \alpha \in S, \alpha>\beta\} \cap X^{\left\{\omega_{1}\right\}} \subset \mathrm{Cl} U \cap X^{\left\{\omega_{1}\right\}} .
$$

Thus F and $X^{\left\{\omega_{1}\right\}}$ cannot be separated.
In this connection, we have the next question which relates to the clause (4-4) of the Theorem.

Question 1. Does there exist a non-normal subspace X of $\omega_{1} \times \omega_{2}$ such that $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha<\omega_{1}$ and $\beta<\omega_{2}$?

In this connection, we show:
Proposition. If $X=A \times B$ is a subspace of $\omega_{1} \times \omega_{2}$ such that $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha<\omega_{1}$ and $\beta<\omega_{2}$, then X is normal.

Proof. If A is not stationary in ω_{1}, then take a cub set C in ω_{1} disjoint from A. Put $h(\alpha)=\sup (C \cap \alpha)$ for each $\alpha \in C$. Observe that
$X=\bigoplus_{\alpha \in C \backslash \operatorname{Lim}(C)} X_{(h(\alpha), \alpha]}$. Since $X_{(h(\alpha), \alpha]}$ is a closed subspace of $X_{\alpha+1}$, by the inductive assumption, X is normal. Similarly X is normal if B is not stationary in ω_{2}. So we may assume A and B are stationary in respectively ω_{1} and ω_{2}. Let $\mathcal{U}=\left\{U_{i}: i \in 2\right\}$ be an open cover of X. Fix $\alpha \in A$. For each $\beta \in B$, fix $f(\alpha, \beta)<\alpha, g(\alpha, \beta)<\beta$ and $i(\alpha, \beta) \in 2$ such that $(f(\alpha, \beta), \alpha] \times(g(\alpha, \beta), \beta] \cap X \subset U_{i(\alpha, \beta)}$. Applying the PDL to B, we find $f(\alpha)<\alpha, g(\alpha)<\omega_{2}, i(\alpha) \in 2$ and a stationary set $B(\alpha) \subset B$ in ω_{2} such that $f(\alpha, \beta)=f(\alpha), g(\alpha, \beta)=g(\alpha)$ and $i(\alpha, \beta)=i(\alpha)$ for each $\beta \in B(\alpha)$. Then, applying the PDL to A, we find $\alpha_{0}<\omega_{1}, i_{0} \in 2$ and a stationary set $A^{\prime} \subset A$ in ω_{1} such that $f(\alpha)=\alpha_{0}$ and $i(\alpha)=i_{0}$ for each $\alpha \in A^{\prime}$. Put $\beta_{0}=\sup \left\{g(\alpha): \alpha \in A^{\prime}\right\}$. Then we have $Z=\left(\alpha_{0}, \omega_{1}\right) \times\left(\beta_{0}, \omega_{2}\right) \cap X \subset U_{i_{0}}$. Since X is the union of closed subspaces, $X_{\alpha_{0}+1}, X^{\beta_{0}+1}$ and Z, \mathcal{U} has a closed shrinking which covers X. Therefore $X=A \times B$ is normal.

By the result in [KOT], normality and countable paracompactness of $A \times B \subset \omega_{1}^{2}$ are equivalent. In this connection, it is natural to ask:

Question 2. For any $X \subset \omega_{1}^{2}$, are normality and countable paracompactness of X equivalent?

Note that, by [KS], normality implies countable paracompactness in the realm of subspaces of product spaces of two ordinals.

Finally, we restate a question from [KOT]:
Question 3. For any subspace X of the product space of two ordinals, are countable paracompactness, expandability, strong D-property and weak $\mathrm{D}(\omega)$-property of X equivalent?

References

[KOT] N. Kemoto, H. Ohta and K. Tamano, Products of spaces of ordinal numbers, Topology Appl. 45 (1992), 245-260.
[KS] N. Kemoto and K. D. Smith, The product of two ordinals is hereditarily countably metacompact, ibid., to appear.
[Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.

Department of Mathematics Department of Mathematics
Faculty of Education Faculty of Science
Oita University Ehime University
Dannoharu, Oita, 870-11, Japan Matsuyama, Japan

E-mail: nkemoto@cc.oita-u.ac.jp
Department of Mathematical Sciences
Franklin College
Franklin, Indiana 46131, U.S.A.
E-mail: smithk@franklincoll.edu

E-mail: nogura@dpcs4370.dpc.ehime-u.ac.jp
Department of Mathematics Kanagawa University Yokohama 221, Japan
E-mail: yuki@kani.cc.kanagawa-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: 54B10, 54D18.
 Key words and phrases: (collectionwise) normal, shrinking, product space.

