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On Kato non-singularity
by

ROBIN HARTE (Dublin)

Abstract. An exactness lemma offers a gimplified account of the spectral properties
of the “holomorphic” analogue of normal solvability,

Call a bounded linear operator between Banach spaces normally solvable
if it has closed range TX = cl{TX) C Y; by an old theorem of Banach this
implies that an equation Tx = y is solvable if there is the implication, for
arbitrary bounded linear functionals g € Y1,

(0.1) g =0=gy=0.

When X and ¥ are Hilbert spaces then normal solvabﬂity implies that T
is regular, or “relatively Fredholm”, in the sense of having a (bounded)
generalized inverse, T" : ¥ — X, for which

(0.2) T =TT T

(so that if y = Tz can be solved then z = 7%y is a solution). Goldberg
and others have tried to make a “spectrum” out of this, collecting {[6],
Definition VI.7.1) the complex numbers A for which T — AT is not normally
solvable, but nothing works: for example the operator 0 : X ~» X has empty
spectrum, and ([2], § 2.8) there are simple examples which show. that this
spectrum is not closed, and does not satisfy the spectral mappmg theorem
(either way, even for the polynomial z*). -

For a Hilbert space X = Y Mbekhta ([13], [14]) has examined a “holo-
morphic” analogue of normal solvability, which of course coincides with reg-
ularity: we may call the operator T : X — X holomorphically regular or
“Kato invertible” if there exists a neighbourhood I of 0 in € and a h010~
morphic function T2 : U — X for which

(0.3) T M= (T-M)T{T—-M) foreachAel.

The work of Mbekhta shows that, on a Hilbert space, the spectrum de-
rived from “holomorphic regularity” is non-empty, closed and subject to the
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spectral mapping theorem. We have offered an extension of this to Banach
spaces (8], and here wish to consider the corresponding extension to Banach
spaces of the holomorphic analogue of normal solvability. The key to the
definition is the observation ([13], Théoréme 2.6; [8], Theorem 9) that if
T:X — X is bounded and linear then

(0.4) T holomorphically regular < T regular hyperexact,
where T is called hyperezact if

(0.5) T7H0) C T (X) = [ T™(X),

i.e. its null space is included in its “hyperrange”. There are ([8], Theorem 7)
various equivalent versions of hyperexactness and related concepts; it is easy
to see that, with no topology, T' is hyperexact if and only if it is perfect in the
sense of Saphar ([20], Definition 2). Hyperexactness by itself need not give
a good spectrum: for example, any operator which is either one-one or onto
satisfies this condition. We do get part of the spectral mapping theorem: if
T''X— X and §: X — X commute, in the sense that ST = TS, then

(0.6) ST hyperexact = S5, T hyperexact,
with the reverse implication if either S is a power of T,
(0.7) S=T"
or the pair (5,7) satisfies the “middle exactness” condition of Taylor ([8]

(3.4)):

(0.8) s mree ().

This is enough for the spectral mapping theorem for non-constant polyno-
mials. An example of Miiller ([18], Example 2.2) shows that the implication
(0.6) cannot be reversed in general. To extend (0.6) to holomorphic regular-
ity we are able to use a simple lemma ([8], Theorem 3): if T : X — ¥ and
§:Y — Z are bounded and linear. hetween normed spaces, and if there are
bounded linear $': Z — Y and T’ : ¥ — X for which

for some n € N,

H

(0.9) S'S+TT' =1,
then
(0.10) ST regular & 8, T regular.

Our main result in this note is the analogue of (0.10} for normal solvability:

1L THEOREM. If T: X — Y and § : Y — Z are bounded linear operators
between Banach spaces then

(L1)  S7HONTX = {0}, S7H0)+ TX closed = TX closed
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and, even if X is not complete,
(1.2) SY, §7M0) + TX closed = STX closed = S~ (0} + T'X closed.

In particular, if

(1.3) STHoyCcTX
then
(1.4) SY, T'X closed = STX closed = TX closed.

Proof. The implication (1.1) is an application ([7], Theorem 4.8.2) of
the open mapping theorem, the “lemma of Neuberger”: renorm the operator
range TX ({10], Lemma 1). The first part of (1.2) is a lemma of Kato ([9],
Lemma 331): consider the quotient ($~*(0)+7X)/5~1(0). The second part
of (1.2) {[10], Lemma 1) reduces to the remark

(1.5) S7H0Y+ T(X) = S7HSTX).
(1.2) is converted to (1.4) by (1.3). m

The argument of (1.1) extends to the case in which ™M) N TX is
finite-dimensional, but such a condition cannot entirely be eliminated: iet
ST = 0 with TX not closed. The assumption that SY is closed can be
neither removed from the left hand side of (1.4) nor added to the right: take
g to be one-one and either T'= [ or T = 0. It is also not possible to add
the closedness of STX to the right hand side of (1.1): take 7" = I and §
to be one-one. Theorem 1 offers two different reasons why the product of
two closed range operators should again have closed range (compare also
the lemma of Bouldin [1]). Mbekhta and Laursen [10] are concerned with
“central multipliers” 7 on a semiprime algebra X, for which T-1(0)NTX =
{0}; they use (1.1) and (1.2} to deduce that all the powers T™ have closed
range. Our interest here is of course with operators T' which satisfy the
Saphar condition T—}(0) C T®(X)C TX.

We shall call T : X — X Koto non-singuler if it is normally selvable and
hyperexact. Combining (0.6} and (1.4), specialised to X = ¥ = Z, shows
that if S and 7" commute then .

(1.6) ST Kato non-singular = S, T Kato non-singular,

with the reverse implication if either (0.7) or (0.8) holds. To see that the
spectrum derived from Kato non-singularity is closed, we might look for a
“holomorphic” characterization {(cf. [14], Théoréme 2.7): call a point x € X
a holomorphic kernel point for T' : X — X if there exist a neighbourhood U
of 0 in C and a holomorphic function f : U — X for which

(1.7) F0)=z and (T—ADf(A) =0 for each X-€ U;
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more generally, call ¢ a consoried kernel point for T if there exist sequences
{zn)in X and (Sn) in comm™ (T), the invertible operators commuting with

T, for which
(1.8) (T = 5:)2n =0 and | Sal + ||zn — 2| — 0.

2. THEOREM. IfT': X — X is normally solvable on the Banach space
X then the following conditions are equivalent:
(21)  every point of T™1(0) is consorted;
(22) T 4s hyperezact;
(23)  every point of T™(0) is holomorphic.

Proof If T is normally solvable and hyperexact then by Theorem 1
every power I"™ is normally solvable, so that the hyperrange T°(X) =

. T™(X) is closed, and therefore a Banach space in its own right. The
hyperexactness implies in particular ([8], (7.8)) that the induced operator

Th: T°°(X) — T°°(X) is onto:
(2.4) y=Tzo=T""2, = 5o - Tz, € T7H{0) C T™(X)
= Ip € T“(X)

for eack n € N, By the open mapping theorem 7 is therefore open, with
k > 0 for which
(258) yeT™(X)=y="Tr withzoeT®(X)and l|lzo]l < &liyll,
and hence inductively a sequence (z,,) in T°°(X):
(26) CIn € TW(X) = By = Tmn+1

With 211 € T°°(X) and |zn4a] < k||za].-
Thus we also have ||z,] < &™*!|y|l; now define

g 0o
@n U={z<k} and f= Zz”mn U - X
n=0
This gives implication (2.2)=>(2.3); conversely, if every kernel point is con-
sorted and Tz = 0 then

(28)  w=limz,ed| J(T-8,)71(0) CdT™(X) C (aT(X).

The argument is now induction on n, using Theorem 1: if TX and TTX

are both closed then so is T™tX. This shows (2.1 -
(2.3)=(2.1). = ws (2.1)=(2.2), and trivially

. Theorem 2 generalises the observation of Finch ([4], Theorem 2) that

if T is onto then the “single-valued extension property at 0” implies T is

one-one; compare also Schmoeger ([22], Proposition 3) and Laursen and
Neumann ([11}, Remark 1.6).
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Dual to the conditions of Theorem 2, we shall call y € X a consorted
range point of T if there are z and (z,) in X and (S,) in comm™*(T) for
which

(2.9) y= (T — Sa)xn and | Spll+{lzn —2| -0,

and a holomorphic range pownt if there is U & Nbd(0) and holomorphic
f:U — X for which '

for each A ¢ U.

These holomorphic range points coincide ([15], Proposition 1.3) with the
“coeur analytique” of Mbekhta. Under the conditions of Theorem 2 {cf. [16],
Theorem 1.1), we have

3. THEOREM. If T : X — X is Kato non-singular on the Banach space
X and y € X then the following are equivalent:

(3.1) y is a consorted range point of T;
(32) yeT™(X);
(3.3) v is o holomorphic range point of T.

Proof. If (2.9) holds then y = (T — 8}z, — T'z € T'X with
2q = S Ty —y) =TS (wn — 2} €TX

(3.4)
and x=limz, € cl(TX)=TX.

For each k& € N this argument gives
(3.5) yeTr*X =z ec(T?X) =TFX = y e TFHX,

so that (3.2) follows by induction. Conversely, if (3.2) holds then the con-
struction of (2.7) gives (2.10), and trivially again (2.10)=>(2.9). =

The equivalence of {3.2) and (3.3) is also given by Laursen and Neumann
([11], Theorem 1).

The “single-valued extension property” ([3], [4], [16]) says that T — AL
has no non-zero holomorphic kernel points for any A € C; dually, 0 € C
is not in the “local spectrum® or(y) of y € X (this writer would prefer
“o,(T)") if and only if y € X is not a holomorphic range point of T

On closer examination Theorem 2 does not achieve its aim, to show that
the Kato spectrum is closed: this is part of a perturbation theorem of Kato
{[9], Theorem 3). Non-emptiness of the Kato spectrum, and the fact that
it contains the topological boundary of the usual spectrum, follows from
the local constancy of the hyperrange (T — 2I)°°(X) and of the closure of
the hyperkernel (T — zI)~°°(0) on its complement ([21], Satz 1); the proof
seems to need gap theory ([5], Satz 3; {17], Théoréme 4.1}. More generally,
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recalling the reduced minimum modulus
(3.6) YT = inf{||Tz| : dist(z, T71(0)) > 1},
we have
4. THEOREM. If 5 commutes with T and ||S|| < (T then
(4.1) T Kato non-singular = T — 8§ Kato non-singular
and
(4.2) T — 8 invertible, T Kato non-singular = T invertible.
Proof If § commutes with 7' then for each n € N,
(4.3) (T718)™0) S T7(0) and T"(X) C (§~'T)™X),
and hence if T is hyperexact in the sense (0.5) then
(4.4) (T=8)"(0) S (S7'T)™(X)

But now the stability result of Kato ([9], Theorem 3) says that on the set
{A e C: A8 < v(T)} the range (T — AS)(X) is closed of constant
(possibly infinite) codimension and the null space (T — AS)~*(0) of constant
(again possibly infinite) dimension, while (4.4) continues to hold with T —AS
in place of T'.

for each m,n € N.

Kato’s theorem also uses gap theory; we have been unable to find an
elementary argument like the proof of the analagous result ([8], (9.5)) for
hyperregularity. The stability result of Kato gives immediately a “punctured
neighbourhood theorem”; we correct the statement of Lee ([12], Theorem 2)
and further simplify the argument of Schmoeger ([23], Theorem 1):

5. THEOREM. If
(5.1) T7H0)+ T(X) is closed and T=1(0) NT(X) is finite-dimensional
then for § € comm™(T) of sufficiently small norm
(5.2) T~ § is normally solvable
and
(6.3) dim(T — 8)7H0) = dimT-H0) N T=(X) < oo independent of §.
Proof Once again comm™Y(T) = BL™HX, X) N comm(T) is the “in-
vertible commutant” of 77 € BL(X, X), and we write U™~ : T%(X) —
T*°(X) for the operator induced by U € comm(T); then it is elementary
that {[8], Lemma 6)
(5.4) - Secomm™N(T) = (T-87Y0) C T (X)
and.

(5.5) | dim T (0) N T(X) < 00 = T®(X) C T(T>=(X)).
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It foliows that for sufficiently small S € comm (T
(5.6) dim{T ~ S$)~Y(0) = dim(7 ~ §)~"1(0)

= index(T — )™ = index T~ = dim T~71(0):
the fourth equality is (5.5}, which says that T~ is onto, the third equality is
the continuity of the index on the Banach space T7°°(X) and the second the

fact that the onto mappings on 7"°7(X) form an open set; the first equality
is just (5.4). m

¥
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Accretive approximation in C*-algebras
by

RAINER BERNTZEN {Miinster)

Abstract. The problem of approximation by accretive elements in a unital C™*-algebra
suggested by P. R. Halmos is substantially solved. The key idea is the observation that
aceretive approximation can be regarded as a combination of positive and self-adjoint
approximation. The approximation results are proved both in the ¢"-norm and in another,
topologically equivalent norm.

1. Introduction. For every unital C*-algebra A let Accy be the set
of all accretive elements of A, i.e. the set of all elements with positive real
part. For an element a of A let Accq(a) denote the set of all accretive
approximants of ¢. Here an approzimant means an element x of Acc4 such
that [|[e—z|| € |la—y]| for every element y of Acc 4. Furthermore, let the norm

|- | be defined by jla] = ||%(a‘*cﬁ—:m*)”l"2 (cf. [Bo 2, Be 1]). The accretive
approximants in this norm will be called accretive near-approzimants; the
set of all accretive near-approximants will be denoted by Acc4(a).

The main purpose of this paper is to describe the sets Acc4(a) and
Ace 4{a). The key idea is the observation that accretive approximation is
a combination of positive and self-adjoint approximation (Theorem 2.1(c)).
As a consequence the real dimensions of the convex sets Accg){A) and
.flccB(H)(A) can be computed for every bounded linear operator A on a
complex Hilbert space H, and some extreme points can be constructed.

2. Accretive approximation in C*-algebras. Let .A be a unital
C*-algebra. Then & 4 denotes the set, of all self-adjoint elements of A. For ev-
ery element a € A let S 4{a) (respectively S4(a)) be the set of all self-adjoint
approximants (respectively self-adjoint near-approximants) of a. Similarly
P4 denotes the set of all positive elements of A, and P 4(a) (respectively
P4(a)) denotes the set of all positive approximants (respectively near-
approximants) of a.
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