

On Kato non-singularity

b

ROBIN HARTE (Dublin)

Abstract. An exactness lemma offers a simplified account of the spectral properties of the "holomorphic" analogue of normal solvability.

Call a bounded linear operator between Banach spaces normally solvable if it has closed range $TX = \operatorname{cl}(TX) \subseteq Y$; by an old theorem of Banach this implies that an equation Tx = y is solvable if there is the implication, for arbitrary bounded linear functionals $g \in Y^{\dagger}$,

$$qT = 0 \Rightarrow qy = 0.$$

When X and Y are Hilbert spaces then normal solvability implies that T is regular, or "relatively Fredholm", in the sense of having a (bounded) generalized inverse, $T^{\wedge}: Y \to X$, for which

$$(0.2) T = TT^{\wedge}T$$

(so that if y = Tx can be solved then $x = T^{\wedge}y$ is a solution). Goldberg and others have tried to make a "spectrum" out of this, collecting ([6], Definition VI.7.1) the complex numbers λ for which $T - \lambda I$ is not normally solvable, but nothing works: for example the operator $0: X \to X$ has empty spectrum, and ([2], § 2.8) there are simple examples which show that this spectrum is not closed, and does not satisfy the spectral mapping theorem (either way, even for the polynomial z^2).

For a Hilbert space X=Y Mbekhta ([13], [14]) has examined a "holomorphic" analogue of normal solvability, which of course coincides with regularity: we may call the operator $T:X\to X$ holomorphically regular or "Kato invertible" if there exists a neighbourhood U of 0 in $\mathbb C$ and a holomorphic function $T_*^{\wedge}:U\to X$ for which

(0.3)
$$T - \lambda I = (T - \lambda I)T_{\lambda}^{\wedge}(T - \lambda I) \quad \text{for each } \lambda \in U$$

The work of Mbekhta shows that, on a Hilbert space, the spectrum derived from "holomorphic regularity" is non-empty, closed and subject to the

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A53.

spectral mapping theorem. We have offered an extension of this to Banach spaces [8], and here wish to consider the corresponding extension to Banach spaces of the holomorphic analogue of normal solvability. The key to the definition is the observation ([13], Théorème 2.6; [8], Theorem 9) that if $T: X \to X$ is bounded and linear then

(0.4) T holomorphically regular $\Leftrightarrow T$ regular hyperexact, where T is called hyperexact if

$$(0.5) T^{-1}(0) \subseteq T^{\infty}(X) = \bigcap_{n} T^{n}(X),$$

i.e. its null space is included in its "hyperrange". There are ([8], Theorem 7) various equivalent versions of hyperexactness and related concepts; it is easy to see that, with no topology, T is hyperexact if and only if it is *perfect* in the sense of Saphar ([20], Definition 2). Hyperexactness by itself need not give a good spectrum: for example, any operator which is either one-one or onto satisfies this condition. We do get part of the spectral mapping theorem: if $T: X \to X$ and $S: X \to X$ commute, in the sense that ST = TS, then

(0.6)
$$ST$$
 hyperexact $\Rightarrow S, T$ hyperexact,

with the reverse implication if either S is a power of T,

$$(0.7) S = T^n for some $n \in \mathbb{N}$.$$

or the pair (S,T) satisfies the "middle exactness" condition of Taylor ([8], (3.4)):

$$(0.8) (-S T)^{-1}(0) \subseteq {T \choose S}(X).$$

This is enough for the spectral mapping theorem for non-constant polynomials. An example of Müller ([18], Example 2.2) shows that the implication (0.6) cannot be reversed in general. To extend (0.6) to holomorphic regularity we are able to use a simple lemma ([8], Theorem 3): if $T: X \to Y$ and $S: Y \to Z$ are bounded and linear between normed spaces, and if there are bounded linear $S': Z \to Y$ and $T': Y \to X$ for which

$$(0.9) S'S + TT' = I.$$

then

$$(0.10) ST \text{ regular} \Leftrightarrow S, T \text{ regular}.$$

Our main result in this note is the analogue of (0.10) for normal solvability:

1. THEOREM. If $T:X\to Y$ and $S:Y\to Z$ are bounded linear operators between Banach spaces then

(1.1)
$$S^{-1}(0) \cap TX = \{0\}, S^{-1}(0) + TX \text{ closed } \Rightarrow TX \text{ closed}$$

and, even if X is not complete,

(1.2) SY, $S^{-1}(0) + TX$ closed $\Rightarrow STX$ closed $\Rightarrow S^{-1}(0) + TX$ closed. In particular, if

$$(1.3) S^{-1}(0) \subseteq TX$$

then

$$(1.4) SY, TX closed \Rightarrow STX closed \Rightarrow TX closed.$$

Proof. The implication (1.1) is an application ([7], Theorem 4.8.2) of the open mapping theorem, the "lemma of Neuberger": renorm the operator range TX ([10], Lemma 1). The first part of (1.2) is a lemma of Kato ([9], Lemma 331): consider the quotient $(S^{-1}(0)+TX)/S^{-1}(0)$. The second part of (1.2) ([10], Lemma 1) reduces to the remark

(1.5)
$$S^{-1}(0) + T(X) = S^{-1}(STX).$$

(1.2) is converted to (1.4) by (1.3).

The argument of (1.1) extends to the case in which $S^{-1}(0) \cap TX$ is finite-dimensional, but such a condition cannot entirely be eliminated: let ST=0 with TX not closed. The assumption that SY is closed can be neither removed from the left hand side of (1.4) nor added to the right: take S to be one-one and either T=I or T=0. It is also not possible to add the closedness of STX to the right hand side of (1.1): take T=I and S to be one-one. Theorem 1 offers two different reasons why the product of two closed range operators should again have closed range (compare also the lemma of Bouldin [1]). Mbekhta and Laursen [10] are concerned with "central multipliers" T on a semiprime algebra X, for which $T^{-1}(0) \cap TX = \{0\}$; they use (1.1) and (1.2) to deduce that all the powers T^n have closed range. Our interest here is of course with operators T which satisfy the Saphar condition $T^{-1}(0) \subseteq T^{\infty}(X) \subseteq TX$.

We shall call $T: X \to X$ Kato non-singular if it is normally solvable and hyperexact. Combining (0.6) and (1.4), specialised to X = Y = Z, shows that if S and T commute then

(1.6)
$$ST$$
 Kato non-singular $\Rightarrow S, T$ Kato non-singular,

with the reverse implication if either (0.7) or (0.8) holds. To see that the spectrum derived from Kato non-singularity is closed, we might look for a "holomorphic" characterization (cf. [14], Théorème 2.7): call a point $x \in X$ a holomorphic kernel point for $T: X \to X$ if there exist a neighbourhood U of 0 in $\mathbb C$ and a holomorphic function $f: U \to X$ for which

(1.7)
$$f(0) = x$$
 and $(T - \lambda I)f(\lambda) = 0$ for each $\lambda \in U$;

more generally, call x a consorted kernel point for T if there exist sequences (x_n) in X and (S_n) in comm⁻¹(T), the invertible operators commuting with T, for which

$$(1.8) (T - S_n)x_n = 0 and ||S_n|| + ||x_n - x|| \to 0.$$

2. Theorem. If $T: X \to X$ is normally solvable on the Banach space X then the following conditions are equivalent:

- (2.1) every point of $T^{-1}(0)$ is consorted;
- (2.2) T is hyperexact;
- (2.3) every point of $T^{-1}(0)$ is holomorphic.

Proof. If T is normally solvable and hyperexact then by Theorem 1 every power T^n is normally solvable, so that the hyperrange $T^{\infty}(X) = \bigcap_n T^n(X)$ is closed, and therefore a Banach space in its own right. The hyperexactness implies in particular ([8], (7.8)) that the induced operator $T^{\wedge}: T^{\infty}(X) \to T^{\infty}(X)$ is onto:

(2.4)
$$y = Tx_0 = T^{n+1}x_n \Rightarrow x_0 - T^nx_n \in T^{-1}(0) \subseteq T^{\infty}(X)$$
$$\Rightarrow x_0 \in T^n(X)$$

for each $n \in \mathbb{N}$. By the open mapping theorem T^{\wedge} is therefore open, with k > 0 for which

(2.5) $y \in T^{\infty}(X) \Rightarrow y = Tx_0$ with $x_0 \in T^{\infty}(X)$ and $||x_0|| \le k||y||$, and hence inductively a sequence (x_n) in $T^{\infty}(X)$:

(2.6)
$$x_n \in T^{\infty}(X) \Rightarrow x_n = Tx_{n+1}$$
 with $x_{n+1} \in T^{\infty}(X)$ and $||x_{n+1}|| \le k||x_n||$.

Thus we also have $||x_n|| \le k^{n+1}||y||$; now define

(2.7)
$$U = \{|z| < k^{-1}\} \text{ and } f = \sum_{n=0}^{\infty} z^n x_n : U \to X.$$

This gives implication $(2.2)\Rightarrow(2.3)$; conversely, if every kernel point is consorted and Tx=0 then

(2.8)
$$x = \lim_{n} x_n \in \operatorname{cl} \bigcup_{n} (T - S_n)^{-1}(0) \subseteq \operatorname{cl} T^{\infty}(X) \subseteq \bigcap_{n} \operatorname{cl} T^n(X).$$

The argument is now induction on n, using Theorem 1: if TX and T^nX are both closed then so is $T^{n+1}X$. This shows $(2.1)\Rightarrow (2.2)$, and trivially $(2.3)\Rightarrow (2.1)$.

Theorem 2 generalises the observation of Finch ([4], Theorem 2) that if T is onto then the "single-valued extension property at 0" implies T is one-one; compare also Schmoeger ([22], Proposition 3) and Laursen and Neumann ([11], Remark 1.6).

Dual to the conditions of Theorem 2, we shall call $y \in X$ a consorted range point of T if there are x and (x_n) in X and (S_n) in comm⁻¹(T) for which

(2.9)
$$y = (T - S_n)x_n \text{ and } ||S_n|| + ||x_n - x|| \to 0,$$

and a holomorphic range point if there is $U \in \text{Nbd}(0)$ and holomorphic $f: U \to X$ for which

(2.10)
$$y = (T - \lambda I)f(\lambda)$$
 for each $\lambda \in U$.

These holomorphic range points coincide ([15], Proposition 1.3) with the "coeur analytique" of Mbekhta. Under the conditions of Theorem 2 (cf. [16], Theorem 1.1), we have

- 3. THEOREM. If $T: X \to X$ is Kato non-singular on the Banach space X and $y \in X$ then the following are equivalent:
- (3.1) y is a consorted range point of T;
- $(3.2) \quad y \in T^{\infty}(X);$
- (3.3) y is a holomorphic range point of T.

Proof. If (2.9) holds then $y = (T - S_n)x_n \to Tx \in TX$ with

(3.4)
$$x_n = S_n^{-1}(Tx_n - y) = TS_n^{-1}(x_n - x) \in TX$$
 and $x = \lim_{n} x_n \in cl(TX) = TX.$

For each $k \in \mathbb{N}$ this argument gives

$$(3.5) y \in T^k X \Rightarrow x \in \operatorname{cl}(T^k X) = T^k X \Rightarrow y \in T^{k+1} X,$$

so that (3.2) follows by induction. Conversely, if (3.2) holds then the construction of (2.7) gives (2.10), and trivially again $(2.10) \Rightarrow (2.9)$.

The equivalence of (3.2) and (3.3) is also given by Laursen and Neumann ([11], Theorem 1).

The "single-valued extension property" ([3], [4], [16]) says that $T - \lambda I$ has no non-zero holomorphic kernel points for any $\lambda \in \mathbb{C}$; dually, $0 \in \mathbb{C}$ is not in the "local spectrum" $\sigma_T(y)$ of $y \in X$ (this writer would prefer " $\sigma_y(T)$ ") if and only if $y \in X$ is not a holomorphic range point of T.

On closer examination Theorem 2 does not achieve its aim, to show that the Kato spectrum is closed: this is part of a perturbation theorem of Kato ([9], Theorem 3). Non-emptiness of the Kato spectrum, and the fact that it contains the topological boundary of the usual spectrum, follows from the local constancy of the hyperrange $(T - zI)^{\infty}(X)$ and of the closure of the hyperkernel $(T - zI)^{-\infty}(0)$ on its complement ([21], Satz 1); the proof seems to need gap theory ([5], Satz 3; [17], Théorème 4.1). More generally,

recalling the reduced minimum modulus

(3.6)
$$\gamma(T) = \inf\{\|Tx\| : \operatorname{dist}(x, T^{-1}(0)) \ge 1\},\$$

we have

4. THEOREM. If S commutes with T and $||S|| \leq \gamma(T)$ then

- $(4.1) \hspace{1cm} T \hspace{0.1cm} \textit{Kato non-singular} \Rightarrow T S \hspace{0.1cm} \textit{Kato non-singular}$ and
- (4.2) T-S invertible, T Kato non-singular $\Rightarrow T$ invertible. Proof. If S commutes with T then for each $n \in \mathbb{N}$,

(4.3)
$$(T^{-1}S)^n(0) \subseteq T^{-n}(0)$$
 and $T^n(X) \subseteq (S^{-1}T)^n(X)$,

and hence if T is hyperexact in the sense (0.5) then

(4.4)
$$(T^{-1}S)^n(0) \subseteq (S^{-1}T)^m(X)$$
 for each $m, n \in \mathbb{N}$.

But now the stability result of Kato ([9], Theorem 3) says that on the set $\{\lambda \in \mathbb{C} : |\lambda| \, ||S|| < \gamma(T)\}$ the range $(T-\lambda S)(X)$ is closed of constant (possibly infinite) codimension and the null space $(T-\lambda S)^{-1}(0)$ of constant (again possibly infinite) dimension, while (4.4) continues to hold with $T-\lambda S$ in place of T.

Kato's theorem also uses gap theory; we have been unable to find an elementary argument like the proof of the analogous result ([8], (9.5)) for hyperregularity. The stability result of Kato gives immediately a "punctured neighbourhood theorem"; we correct the statement of Lee ([12], Theorem 2) and further simplify the argument of Schmoeger ([23], Theorem 1):

- 5. Theorem. If
- (5.1) $T^{-1}(0) + T(X)$ is closed and $T^{-1}(0) \cap T(X)$ is finite-dimensional then for $S \in \text{comm}^{-1}(T)$ of sufficiently small norm

$$(5.2) T-S is normally solvable$$

and

(5.3)
$$\dim(T-S)^{-1}(0) = \dim T^{-1}(0) \cap T^{\infty}(X) < \infty$$
 independent of S.

Proof. Once again comm⁻¹ $(T) = BL^{-1}(X,X) \cap \text{comm}(T)$ is the "invertible commutant" of $T \in BL(X,X)$, and we write $U^{\sim}: T^{\infty}(X) \to T^{\infty}(X)$ for the operator induced by $U \in \text{comm}(T)$; then it is elementary that ([8], Lemma 6)

$$(5.4) S \in \operatorname{comm}^{-1}(T) \Rightarrow (T - S)^{-1}(0) \subseteq T^{\infty}(X)$$

and.

(5.5)
$$\dim T^{-1}(0) \cap T(X) < \infty \Rightarrow T^{\infty}(X) \subseteq T(T^{\infty}(X)).$$

It follows that for sufficiently small $S \in \text{comm}^{-1}(T)$,

(5.6)
$$\dim(T-S)^{-1}(0) = \dim(T-S)^{\sim -1}(0)$$
$$= \operatorname{index}(T-S)^{\sim} = \operatorname{index}T^{\sim} = \dim T^{\sim -1}(0):$$

the fourth equality is (5.5), which says that T^{\sim} is onto, the third equality is the continuity of the index on the Banach space $T^{\infty}(X)$ and the second the fact that the onto mappings on $T^{\infty}(X)$ form an open set; the first equality is just (5.4).

References

- [1] R. H. Bouldin, Closed range and relative regularity for products, J. Math. Anal. 61 (1977), 397-403.
- [2] S. R. Caradus, Operator Theory of the Pseudoinverse, Queen's Papers in Pure and Appl. Math. 38, Queen's Univ., Kingston, Ont., 1974.
- [3] I. Colojoară and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- [4] J. K. Finch, The single-valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- [5] K. H. Förster, Über die Invarianz einiger Räume, die zum Operator $T \lambda A$ gehören, Arch. Math. (Basel) 17 (1966), 56-64.
- [6] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
- [7] R. E. Harte, Invertibility and Singularity, Dekker, New York, 1988.
- [8] -, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801.
- [9] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
- [10] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135.
- [11] K. B. Laursen and M. M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J. 36 (1994), 331-343.
- [12] W. Y. Lee, A generalization of the punctured neighborhood theorem, Proc. Amer. Math. Soc. 117 (1993), 107-109.
- [13] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectrales, Glasgow Math. J. 29 (1987), 159-175.
- [14] —, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.
- [15] —, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
- [16] —, Local spectrum and generalized spectrum, ibid. 112 (1991), 457-463.
- [17] M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII.
- [18] V. Müller, On the regular spectrum, J. Operator Theory 31 (1995), 366-380.
- [19] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209.
- [20] P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384.
- [21] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.

114

STUDIA MATHEMATICA 117 (2) (1996)

- [22] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), 715-719.
- [23] —, On a generalized punctured neighborhood theorem in L(X), ibid. 123 (1995), 1237-1240.
- [24] T. Starr and T. West, A positive contribution to operator theory, Bord na Mona Bull. 5 (1938), 6.

SCHOOL OF MATHEMATICS TRINITY COLLEGE DUBLIN, IRELAND

Current address:
INSTITUTO DE MATEMÁTICAS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
MÉXICO 04510 DF, MEXICO
E-mail: RHARTE@GAUSS.MATEM.UNAM.MX

Received January 27, 1994
Revised version August 18, 1995

(3223)

Accretive approximation in C^* -algebras

b

RAINER BERNTZEN (Münster)

Abstract. The problem of approximation by accretive elements in a unital C^* -algebra suggested by P. R. Halmos is substantially solved. The key idea is the observation that accretive approximation can be regarded as a combination of positive and self-adjoint approximation. The approximation results are proved both in the C^* -norm and in another, topologically equivalent norm.

1. Introduction. For every unital C^* -algebra \mathcal{A} let $\mathcal{A}cc_{\mathcal{A}}$ be the set of all accretive elements of \mathcal{A} , i.e. the set of all elements with positive real part. For an element a of \mathcal{A} let $\mathcal{A}cc_{\mathcal{A}}(a)$ denote the set of all accretive approximants of a. Here an approximant means an element x of $\mathcal{A}cc_{\mathcal{A}}$ such that $||a-x|| \leq ||a-y||$ for every element y of $\mathcal{A}cc_{\mathcal{A}}$. Furthermore, let the norm $||\cdot||$ be defined by $||a|| = \left|\left|\frac{1}{2}(a^*a + aa^*)\right|\right|^{1/2}$ (cf. [Bo 2, Be 1]). The accretive approximants in this norm will be called accretive near-approximants; the set of all accretive near-approximants will be denoted by $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a)$.

The main purpose of this paper is to describe the sets $Acc_{\mathcal{A}}(a)$ and $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a)$. The key idea is the observation that accretive approximation is a combination of positive and self-adjoint approximation (Theorem 2.1(c)). As a consequence the real dimensions of the convex sets $Acc_{\mathcal{B}(\mathcal{H})}(A)$ and $\tilde{\mathcal{A}}cc_{\mathcal{B}(\mathcal{H})}(A)$ can be computed for every bounded linear operator A on a complex Hilbert space \mathcal{H} , and some extreme points can be constructed.

2. Accretive approximation in C^* -algebras. Let \mathcal{A} be a unital C^* -algebra. Then $\mathcal{S}_{\mathcal{A}}$ denotes the set of all self-adjoint elements of \mathcal{A} . For every element $a \in \mathcal{A}$ let $\mathcal{S}_{\mathcal{A}}(a)$ (respectively $\tilde{\mathcal{S}}_{\mathcal{A}}(a)$) be the set of all self-adjoint approximants (respectively self-adjoint near-approximants) of a. Similarly $\mathcal{P}_{\mathcal{A}}$ denotes the set of all positive elements of \mathcal{A} , and $\mathcal{P}_{\mathcal{A}}(a)$ (respectively $\tilde{\mathcal{P}}_{\mathcal{A}}(a)$) denotes the set of all positive approximants (respectively near-approximants) of a.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A58; Secondary 47B44.