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Open mapping theorem and inversion theorem for
v~paraconvex multivalued mappings and applications

by
ABDERRAHIM JOURANI (Dijon)

Abstract. We extend the open mapping theorem and inversion theorem of Robinson
for convex multivalned mappings to y-paraconvex multivalued mappings. Some questions
posed by Rolewicz are also investigated. Our results are applied to obtain.a generalization
of the Farkas lemma for y-paraconvex multivalued mappings.

1. Introduction. The open mapping theorem and inversion thecrem
play a key role in analysis and optimization theory, namely in the study
of necessary optimality conditions and the stability of parametric optimiza-
tion problems (see for example [4], [8-13], and references therein). It slso
lies at the heart of some particularly effective methods for establishing cal-
culus rules for directional derivatives and subgradients of nondifferentiable
mappings (see {10], [20] and references therein).

In his paper [12] (see also [19]), Robinson established the open mapping
theorem and inversion theorem for convex multivalued mappings. Rolewicz
{16] studied Lipschitz properties of y-paraconvex multivalued mappings. A
multivalued mapping F from a normed vector space X into a normed vector
space Y is called «y-paraconver {y > 0) if there is a constant C' > 0 such that
for all 2,4 € X and all & € [0,1],

af(z)+ (1 - a)F(u) C Flaz+ (1 - a)u) + Oz ~ u||7By.

BHere By denotes the cloged unit ball of Y. ‘
In the case v > 1, Rolewicz [14-15] showed that F' is y-paraconvex iff
there exists C' > 0 such that for all z,u € X and all a € [0,1], '

(11)  aF{z)+(1~a)F(u) C Flaz+(1l-a)u)+C min{a, 1—a)|z—uj|?By.

Note that any convez multivalued mapping, i.e. satisfying for all z,u € X
and all & € [0,1], S

aF(z) + (1 - a)F(u) C Flaz + (1 — a)u),
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is v-paraconvex, but the converse may be false. Let, for example, f be a
function from R into R given by f(z) = ||z| -~ 1| and define the multivalued
mapping F by
F(z) = f(z) +R,.
Then F is l-paraconvex but not convex.
For this class of multivalued mappings, Rolewicz [16] established the
following theorem.

TraeorREM 1.1, Let X be a real Hilbert space, and let F: X 3Y be
a closed-valued 2-paraconver multtvalued mapping. Let zq € int F-iy.
Suppose that int F(xg) # 0. Then for all yo € F(zy) there exist r,a > 0
such that

Fle) N (yo + rBy) C Flzo) + allz — x| By
for all x € 2y + rBx.

In this paper, we extend the results of [12, Theorems 1 and 2] to
y-paraconvex multivalued mappings, for any v > 1, and we give affirma-
tive answers to the following questions posed by Rolewicz [16]:

o Is Theorem 1.1 true without the hypothesis that F{zp) bas nonempty
interior?

e Is it true in Banach spaces?

o Is it true for 1 < < 27

We apply our results to obtain a generalization of the Farkas lemma for
v-paraconvex multivalued mappings.

2. Open mapping theorem, inversion theorem and Lipschitz
property of ~-paraconvex multivalued mappings. To present our
open mapping theorem for -paraconvex multivalued mappings, we estab-
lish the following technical lernma which is in the spirit of that of Robin-
son [12, Lemmoa 1].

LEMMA 2.1. Let X and Y be normed linear spaces, and let F': X 3 Y
be o multivalued mapping with closed graph. Suppose thaot:

(a1) there emists & > 0 such that the set Cy = GrF N{aBx xY) is
nonempty;

(ag) F~1 is y-paraconvezr with v > 1, and

(ag) X is complete.
Then for all § > &,

«oint el Py (O} Cint Py (Ch).

icm

Paraconver multivalued mappings 125

Here Py denotes the projection from X XY onto Y and Gr F is the graph
of F, that is,

GrF={(zy)e X xY :yec F(z)}
and F~' denotes the inverse multivalued mapping of F.

Proof. Since F~! is v-paraconvex there exists ¢ > 0 such that for all
y,z €Y and all & € [0, 1],

P~ (y) + (1 = @)F () € F~ oy + (1 - a)2)
+ Cmin{a, 1 — a)||ly — 2||"Bx
(see (1.1)). Let ' € int el Py (Cl,) and let & €]0,1/2[ be such that
K:=20e<f~ca and y +eBy CclPr(G,).

Choose {zg,y0) € Cq so that yo = ¢ -+ rp and ||rg]| < %5; define z_.1 = xp.
For k = 0 we have

sl < 3¢,

Yo =y 427 g,
(2.1) |k = k1] < 225K + o),

(zk,yn) € Gr F,

lon|] < o+ K(1—2751),

Suppose that (2.1) holds for k = n > 0. Let r, € 2By, Then we have
[[{2—2"™)r,| <€ and hence ' — (2 —27")r, € ¢ +&By. Thus there exists
Tril € %sBy such that v := 9 = (2= 27™)ry, + rp41 € Py(Cq) and hence
there exists u € X with (u,v) € Cy. Define

Ynts = (1= 27"y + 27" o,
By v-paraconvexity of F~1 there exists bp+1 € By such that
Bt 3= (1= 27V £+ 27 0277 g — ]| s € F7 ).
So |
Yoir = (1= 27" Vg 27" |
= (127" + 27" ) + 27Ny — (2 - 27 o+ )
=y 27 i,
and consequently,
[yn =0l € flym = 9|+ (2= 27")Irn]l + firasall S 26
Now,
lonis = 2nl < 2772, — ull + 027"y —o]”
< 27" fzafl + ul + K]
<27 a+ K(1—27""1) 4+ a+ K]
< 27"+ K), '
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and thus
l2aga]l < (1= 27 Dllza] 427 Ml + €27y —ol|”
<(1-2""Ya+K(1-27"") 427" e+ K)
—a+ K((1-2""" 42 ) Ca+ K(1-27"F).

So (2.1) holds for k = n + 1 and hence, by induction, for all k. For any &
and any n = 1 we have

n-l nl
[han — 26l Y [2ppits — Thill < (K +0) Z gk
i=0 i)
< (K +a)2' ",

Thus (zy) is a Cauchy sequence and so, by the completenebs of X, (zx)
converges to some ¢’ € X . However, (yz) converges to y', so by the Closedness
of Gt F, (z',y') e GrF. As

|zl S+ K <8
we have ' € 8By and hence y' € Py(Cg). w

Now we may state our open mapping theorem which extends Theorem 1
of Robinson. [12] to y-paraconvex multivalued mappings.

THEOREM 2.2 (Open mapping theorem), Let X and ¥ be Banach spaces,
and let F+ X =3V be o multivalued mapping with closed graph. Suppose

that F~1 is y-paraconvex, with v > 1. Then the following are equivalent:
(i) yo € int F{X);
(i) for all zp € F~
F(zy + BBx).

o) there are o, > 0 such that yy + aBy C

Proof. = Without loss of generality we may suppose that zg = 0 and
yo = 0, this simply translates the origins in X and Y. Set D = clco(F(Bx)
M By').

Step 1t D is absorbing. Let y € Y. Since 0 € int F{X) there exists
¢ € R such that py € F(z) N By for some z € X. If & € Bx then py € D;
otherwise let A = 1/(||z|| + C|luy!) € {0,1], where C' is as in the definition
of y-paraconvexity for F~1. Then

Az +(1—2A)0 € F~H(Auy) + CX||puy| Bx
and hence there exiéts b (—: Bx such that

cowi= A+ O\ uyllb € 7 ).
Thus Ay € F(u) N By and |l < 1. -
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Step 2 Forall k € N* and M\ > 0,...,0 > 0 with ©°_ A, = 1 and

all y1,--. 4% € By,
k k
Z)‘z’F—l(y ) C Fﬁl(z)\iyi) + CBx.
=1 il
For k=2,
(2.2)  MF" ) + A F " (1)

C E Ay + Aaye) + Cmin(A1, A2)||y1 — 2| Bx
C F YAy + Aagn) + CBy.

Suppose that (2.2) holds for k = 2,...,n and let us show it for k = n + 1.

Let A1 > 0,...,An+1 > 0 with 2n+1 A = 1 and let y1,...,yn+1 € By.
Then

Z/\ F 7 (3) + Antt F 7 ()

LE=I

= g )\1: ( Z Zz'-l )\1, _1(%)) + )\n+1F—l (yn+l)

[ (St
F_l(nZ )\i%) + C(i%)Bx + CArt1Bx

) + CBX] + A1 F 7 (ynp1)

=1 i=l -
n41

= F—](Z )\,;yi) +(CBx.
geml

Step 3: D Ccl(F((C+1)Bx)N By). Let y € co(F(Bx) N By). Then
there exist k € N™, Ay > 0,..., A% > 0 with Ew:l)\‘ =1, %, ..., € By
and 21,..., 2, € Bx such that w; € F=l(y;)and y = mel Ao By Step 2,

f_: Mizi € F‘l(i Aiti ) + CBx

feml PE N
and so there exists b € Bx such that

k k .
Z Az + Ch.g F‘l.(y)

gm=l

and hence y € F(3F Ami 4 ¢b) ¢ F((1+ C)Bx).

gl
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Step 4: By Step 1, D is a neighbourhood of 0 and hence there exists
a > 0 such that 208y C D and, by Step 3,

2aBy C cl(F((C+ 1)Bx) N By).
GrFN((C+1)Bx xY). Then, by Lenuna 2.1,
aBy Cintcl Py(Coyy) Cint Py (Coga)

and hence aBy C F({C -+ 2)Bx).
< Thig ig immediate. m

Set CC+1 =

Note that, by v-paraconvexity of F1, (ii) is equivalent to the following
condition: for all g € F~(y,) there are o, 8 > 0 such that for all A € [0,1],

yo + AaBy C F(zg+ MBx).

" As a consequence of Lemma 2.1 and the previous steps in the proof of
Theorem 2.2, we may obtain the following characterization:

Deint F(X) iff 0 €& core F(X)
provided that F~! is y-paraconvex with closed graph, and v > 1. Indeed, the
implication = ig obvicus, so let us prove the other one. As in Step 1, we show
that the set clco(F(Bx) N By) is absorbing and so it is a neighbourhood
of 0. By Step 3, cleo(F(Bx) N By) C c(F((C + 1)Bx) N By), and hence,
by Lemma 2.1, there exists s > 0 such that sBy C intclco(F(Bx)NBy) C
intcl(F((O+ l)Bx) n By) C F{(O + Q)Bx) NBy. m

The following theorem is an extension of that of Robinson [12, Theo-
rem 2| to y-paraconvex multivalued mappings.

THEOREM 2.3 (Inversion theorem). Let X, Y and F be as in Theo-
rem 2.2. Then the following are equivalent:

(i) o € int F(X); |
(ii') for all zg € F~ (yp) there are a,r > 0 such that

(23) ' d(z, F(y)) < ad(y, F(z))

foralla € o +rByx and y € +rBy. Here d( , ) denotes the dtstance
function from z to a set S.

~Proof. The proof is similar to that given by Robinson [12].
- < This is immediate.
= By Theorem 2.2 there exist o, 3 > 0 such that yg + aBy C Fzg+
8Bx). Let r =  min(a, 3). Let y € yo +rBy and z € zo +rByx. [nequality
(2.3) follows at once if either z € dom F or y € F(x), so suppose neither
is true. Choose some 6 > 0 and find'yy € F(z) with 0 < |ly — ya] <
d(y, F(z)) + 8; define s := o — ||y — yo|| > 0 and take ¢ € 10, s[. Let

Ve =y + (s-e)lly — voll ' (y ~ o)s
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then |lys — yoll € |y — woll +9—€ < @, 80 ¥ € yo + aBy. Thus there exists
ze € Tp + 0Bx with y. € F(z.), Define A = (1 + (s —&)|ly — s/ ~")~ . By
the 4-paraconvexity of F~! there exists C > 0 such that

(1= Nz +dze € F7H(1 = Nug + M) CMlys ~ yel|Bx.
Thus, since ¥ = Yo + AMye — yo),
dle, F7H W) < Ml = (8 = N2+ Aze)|| + CAljye — yall
S Az~ el + Clly — yal-
However, |z — x|l € ||z — @ol| + |20 — 2¢|| £ r 4+ (8 and

A= (L (s =)y —pol ™)™ < (s ~&) "y ~ el
1

- o — H(U‘“‘UOH“EH?JW?JBH'
Therefore
-+ 8
d(z, F~ <[ i +4 -
(3&' (y))—— CY"‘HU‘?)'O”"E ”y yﬁ“
r+4 } :
< + O\ (d(y, F(z)) + 9).
s O FE )

The proof is completed by letting 8, — 0 because (& — |ly — yol)™?
<(a—-r)~l w

The aim of this theorem ig to give answers to the questions posed by
Rolewicz [16].

THEOREM 2.4 (Lipschitz property). Let X and Y be Banach spaces, and
let F: X 2Y be a multivalued mapping with closed graph. Suppose that F'
is y-paraconver with v > 1. Then the following are equivelent :

(i") mo € int 1Y),
(ii"Y for all yo € F(zg) there are a,r > 0 such that
F@) N (yo +rBy) ¢ F(z') +alle — '| By
for allz, o’ € g +-rBx.
Proof (1)=(ii"). By Theorem 2.3 there exist a,r > 0 such that
d(y, F(z)) < ad(z, F7(y))

for all z € wp + rBx and y € yo. -+ rBy. So 1et x, 2 € @+ 'er and let
y € (4o + rBy) N F{z). Then

d(y, Fa") < ad(e, F~H(y) £ 2afle —2'|]

and hence there exists ¢ € F(z') such that |y — y || < 2aHm -z 1
The other implication is immediate, = R
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Remarks. 1) Note that in Theorem 2.4 we replaced the closedness of
the values of F' (which is assumed in Theorem 1.1) by that of Gr F.

2) We can use the relation of openness, metric regularity and pseudo-
Lipschitzian property of multivalued mappings (see [1], [11]) to obtain The-
orems 2.3 and 2.4 from Theorem 2.2.

As an application, we extend some results concerning the Lipschitz prop-
erty of convex functions to v-paraconvex functions.

An extended real-valued function f on X is said to be y-paraconves if
there exists a > 0 such that for all z,u € X and « € [0, 1],

flaz 4 (1 - a)u) < of (z) + (1 - o) f(u) + af|z — ul]”
or equivalently, if the multivalued mapping F defined by F(z) = f(z) + R,
is y-paraconvex.
Using (1.1) we may also show that f ig y-paraconvex iff there exists @ > 0
such that for all z,u € X and a € [0, 1],
flaz + (1 - aju) £ of (z) + (1 — &) f(u) + amin(e, 1 — )|z — u||”

provided that v > 1.
As in the convex case we have the following lemma.

- LEMMA 2.5. Let f be v-paraconvez with v > 0. If there exist b,s > 0
such that f(x) < b for all © € zo + sByx, then f is continuous at zg.

Proof Without loss of generality we assume that 29 = 0 and f(zg) = 0.

Let £ € |0,57[ and let & € &7 Bx. Then ¢~z & sBx and hence by
assumptions there exists €' > 0 such that

flz)y=f(e(e ) + (1 - £)0) < ef(e™
< &b+ Ce. ' '
Omn the other hand,

'z) + (1= £)f(0)+ Cle ™ a||”

z £ | 1 &
0 = 4= -1 [ —e—l ¥
100 =1 (it rs(-e70)) € P o f(e e Olurele
and so f(z) > —sb— C(L + )" le. Thus for all z € &2+77 By,

[f(@)] S elb+C(1+e)™*). u

Using the previous results we obtain the following proposition about the

Lipschitz property of v-paraconvex functions (see {9] for another proof in
normed vector spaces). '

- PROPOSITION 2.6. Let f be ‘y pamconver with v > 1. If there exist b > 0
and a nonempty open set O. such: that f(a:) £ b fm‘ all z € O, then f 18
locally Lipschitzian on O. N ,
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Proof. Note that, by Lemma 2.5, f i3 continuous at every element of O.
So let zp € O and s > 0 be such that zq+ sBxy C Q. Then the multivalued
mapping

Flz) = {f{:o}-i—]R_,_ ifze 3:‘0 + 8By,
0 otherwise,

is y-paraconvex. Since f is continuous on the closed set o+ 8By, Gr F
is closed. Then, by Theorem 2.4, there exists v € ]0, s[ such that for all
z,2 € xp 4 rBx,

/(@) € fa') + Ry + Cffz ~ &/[i[~1,1]
and hence |f(z) - f(z")| £ Cllz — 2|l w

To close this section, let us give the following characterization of y-para-
convex multivalued mappings.

PROPOSITION 2.7. 1) A multivalued mapping F : X 3Y is v-paraconvez
iff there exists C' > 0 such that for all 2,u € X, y,2 €Y and o € [0,1],

dlay + (1 — a)z, Flaz + (1 - a)u))
£ ad(y, F(z)) + {1 - a)d(z, F(u)) + Cllz ~ u]".

2) If F is vy-paraconvex then the function (z,y) — d{y, F(z)) is vy-para-
conves.

3. Farkas lemma for ~-paraconvex multivalued mappings. The
original Farkas lemma states that, for «%,...,5), € X*, the following condi-
tions are equivalent:

(a1) {&fh2) 0, i=1,...,n = (z*,2) <0,
(az) there exist A; > 0,i=1,...,n, such that z* = Y"1 A2},

This version is equivalent to the following one: if z§,...,2} € X* are
linearly independent then (a;) and (ag) are equivalent.

This lemma is used in deriving necessary optimality conditions in linear
programming problems. Further progress is made in convex programs. In
[17], the Farkas lemtna is generalized to a system of linear inequalities with
max operations. Swartz [18] established this lemma for infinitely many in-
equalities. In 7], Jeyakumar presented a general Farkas lemma for a corivex
process and a generalized convex function. A further extension is established
in [6] by replacing the usual bilinear coupling by a convex-concave positively
homogeneous function. Recently Glover, Jeyakumar and Oettli [5] studied
general cone-constrained quasidifferentiable programming problems and es-
tablished versions of theorems of the alternative for systems of i‘unctmns
bounded above by sublinear functions.

. In this contribution a further extension is established. Usmg the regults
of Section 2 we present a general Farkas lemma for linedr and nenlinear
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mappings involving y-paraconvex multivalued mappings. We show that the
classical Farkas lemma can be summarized in the following formula;

N(F~H(0),0) = Ry 87d(0, F(-))(0),
where F' : X ™3 Y is a multivalued mapping, and X and Y are Banach
spaces. N (S5, z) is the normal cone to a convex set S at x € S, that is,
N(Sz)={z" € X*: (a*,h—1) <0, Vh € §}
and 8~ f(z) denotes the Dini subdifferential of f at =, that is,
O fl@)={z" e X*: (2", h) < d" f(=z,h), Vh € X},

where d= f(, h) = liminf, ., .o+ t71(flz +tu) ~ f{2)).

When f is convex 07 f(z) coincides with the subdifferential 8f(z) in the
sense of convex analysis.

As a consequence we obtain a Farkas lemma for cone-constrained convex

programming problems.

Now we present a Farkas lemma for y-paraconvex muitivalued mappings.

THEOREM 3.1 (Generalized Farkas lemma). Let £ : X 33 Y be a mulii-
valued mapping with closed graph and let (0,0) € Gr F. Suppose that F~!
48 y-paroconvez, v > 1, and 0 € int F(X). Then

N(F~Y0),0) = R+.87d(0, F (-))(0).

Proof. Let o* € N(F~%(0),0). Then (2*,z) < 0 for all z € F~1(0), or

equivalently,
(z*,2) < ||lz*||d(z, F71(0)), Ve X.

By Theorem 2.3 there exist a > 0 and a neighbourhood V of 0 in X such
that

d(z, F~H0)) € ad(0, F(z)),
Thus for all z € V,

Yoz e V.

| (a*,5) < ala*d(0, P(x)
and hence z* € allz*]|8~4d(0, F())(0). _ _ _ _
. Conversely, let z* € 90-d(0,F(-))(0). Then since the function A —
d(0, F(h)} is ~y-paraconvex, it follows, by Theorem 3.4 of [9], that
(@' k) < d{0, F(h)) + Ciln|",  vhe X,

for some pos1t1ve constant C. Thus for all h € F~1(0) and t € 0, 1[, we have
th'€ F~4(0) and (z*, h) < 7~ A Lettmg t go to 0 we get (z*,h) <0
for all h €F” L{0). w

- Remark. Using Theorem:3.4 of [9] we may replace in Theorem 3.1 the
Dini subdifferential by the:Clarke: subdifferential.
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In order to deduce a Farkas lemma for general cone-constrained convex
programming problems, suppose that the space Y is ordered by a closed
convex cone F satisfying P N (—P) = {0}, Then y < z is equivalent to
y—ze P, forally,zeY. :

A mapping g : X — Y is called P-conver if dom g is a convex subset of
X and if for all z,u € dom g and X € [0, 1],

g0z + (1 = Nu) € Agla) + (1~ Ng(w).

PROPOSITION 3.2. Let g: X — Y be a P-conver mapping, g(0) € P and
let yv* € N(P, g(0)). Then:
(a) the function y — d(y, P) is increasing in the following sense:
P) < d(z, P),
and the functions © — d{g(z), P) and © — (y* o g)(x) are convez;
(b) (z*,~y") € N(enig,0,9(0)) ¢ z* € d(y* o g)(0);
(¢} 8d(g(-), P)(0) = U'y*Eﬂd(g(U),P) A(y* 0 9)(0).
Here epig denotes the epigraph of g, that s,
epig = {(z,y) EX x Y : 9(z) < y}.

Proof. (a) Since y < z there exists p € P such that y = z + p. Thus, as
P+P=P,

y <= d(y,

d(y:P) = d(z,P—-—p) = d(Z,P+P—p) <d(z P)
(b) Let («*, —y") € N(epig,0,9(0)). Then (z*,z} < {y*,g(z) — 9(0)) for
all z € X, and hence z* € 8(y* ¢ g)(0).
Canversely, if z* € d(y* o g)(0) then
{g" @) — (Y og)(a) + (¥" 0 g)(0) <0, Vel
Thus for all (z,y) € epig,
{@*,2) ~ {y*, 9(2) —y) — "y — g(0)) < 0.

But y* € N(P, g(0)), therefore (y*, g(z) ~y) < 0 and so for all (z,y) € epig,
~{y*y —g(0)} £ 0.
(¢) Using (a) we obtain for all (z,y) € X XY,

d(g(x), P) < d(y, P) + ¥(epiyg, . y),

where (S, z) is the indicator function of § which is equal to 0 if = G S and
co otherwise, Thus if 2* € 8d(g(-), P)(0), we have

(z*,0) € {0} x 8d(g(0), P) + N(epig, 0;9(0))

and so there exists y* € 6‘d( (0), P} such that (= —y*) € N{epig,0, g(0)).
By (b) we deduce that z* & 8(y* o g)(0).

(", @)
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Conversely, if y* € 8d(g(0), P) and z* € d(y” c g)(0), then for all z € X,
(&%) < (W7, g(z) — 9(0)) < dlg(w), P)
and hence z* € 8d(g(-), P)(0). m

CoroLLARY 3.3. Let g : X — Y be a P-conver mapping which is Lip-
schite continuous, let ¥ € X" and C be a closed convex subset of X con-
taining 0 € g~ (P)N C. Suppose that 0 € int{g(C) — P). Then the following
are equivalent:

(1) g(z) € Pz e C= (2*,2) < 0
(2) there ewists y* € N(P, g(0)) such that z* € 8(y* o g)(0) + N(C,0).

Proof. Consider the multivalued mapping F: X 33 Y defined by

o) =1{,

Then (1) is equivalent to 2* € N(F~*(0),0). Since F is a closed convex
multivalued mapping and 0 € int F(X), it follows that, by Theorem 3.1,

g* € N(F710),0) iff =*e R.8d(0,F())(0).
The corollary is then established if we show that
Ry04(0,F(-))(0)= ] 8y o g)(0)+ N(C,0).

-g(z)+ P ifzeC,
otherwise.

y*EN(Pg(0))
Indeed, if 2* € 8d(0, F(-))(0), then since d(0, F(z)) < d(g(z), P) + ¥(C,z),
we have .
(", 3} < d(g(c), P) + ¥(C,2)

and so by the subdifferential calculus rules and Proposition 3.2 we obtain
g€ U A{y* o 9)(0) + N(C,0).
' y*EN(Pg(0))

The inverse inclusion is immediate. =

T.hlese results can be readily applied to produce necessary optimality
conditions for y-paraconvex prograrms

(P} min f(z) subject to 0 € F(z),

where f : X — R is a y-paraconvex function which is locally Lipschitzian
around g a,nd F:XZYisa multivalued mapping with closed graph and
such that F'~' js 'y~paraconvex

THEOREM 3.4, Let >l If :co is a.local minimum for (P) then
: Qe d” f(:n())-!-N(F ) 230)
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If in addition 0 € int F'(X), then there exists K > 0 such that
0 &0 flzo)+ KO d(0, F(:))(zo),
or equivalently, there exists Cy > 0 such that for all h € X,
flzo) £ fla) + Kd(0, F(z)) + Cy[|A]".

Proof. Denote by ¥~ the indicator function of a set C'. Then since
FH(0) is a convex set we have N(F=(0), zp) = 8~ Wp-1(g)(20). As o is a
local minimum for {P) it follows that 0 € 8~ (f+¥p-1(p))(z0) or equivalently
(Theorem 3.4 and Corollary 5.4 of [9]),

0€ 87 f(za) + N(F(0), 20).

For the second patt we have, by Theorem 3.1, the existence of K > 0 such
that

0 & 07 f(zo) + KO7d(0, F(-)){zo)
or equivalently (Theorem 3.4 and Corollary 5.4 of [9]), the existence of
C1 > 0 such that for all h € X,

f(za) < f(=) + Kd(0, F()) + C1[|h]7. =

4. Remarks. 1) If we adopt the following definition of ¢-paraconvex
multivalued mappings: there exists € > 0 such that for all z,w € X and all
a€0,1], '

aF(z) + (1 — a)F(u) C Flaz + (1 — a)u) + Cmin(e, 1 ~ a)|lz — u||" By,

then the results of Theorems 2.2-2.4 are valid for all ¢ > 0.

2) Using the Lipschitz property of v-paraconvex functions and Lemma
2.1, we may also give another proof to Theorem 2.3 (see for example the
proof of Thearem 2.2 in {3]). V
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Jordan polynomials can be analytically recognized
Ty

M. CABRERA GARCIA (Granada),
AL MORENQ GALINDO (Granada),
A. RODRIGUEZ PALACIOS (Granada) and
E. I ZEL'MANOV (Chicago, T11.)

Abstract. We prove that there exists a real or complex central simple associative
algebra M with minimal one-sided ideals such that, for every mon-Jordan associative
polynomial p, a Jordan-algebra norm can be given on M in such a way that the action
of p on M becomes discontinuous.

1. Introduction. Among the associative polynoiials (elements in the
free associative algebra on a countably infinite set of indeterminates) the
so-called “Jordan polynomials” are of special interest in Jordan theory. Jor-
dan polynomials are those associative polynomials that can be expressed
through the indeterminates by means of the sumn and the Jordan product.
Well-known examples of Jordan polynomials are x* and xyx, whereas the as-
sociative product xy and the tetrad xyzt-+tzyx are examples of non-Jordan
polynomials.

Let A be an associative algebra over K (== R or C), and |- | be a Jordan-
algebra norm on A. Then obviously every Jordan polynomial acts | |-
continuously on A. If either A is semiprime and |- | is complete or A is simple
and has a unit element, then the associative product of A is |+ }-continuous
([14], [13], [4]), hence every assoclative polynomial acts |- feontinuously on
A. An example of |+ |-discontinuity of the associative product of A with
b-| complete (hence A not semiprime) is given in {14]. The first example of
| |-discontinuity of the associative product of A with A semiprime (hence
|| not complete) appears in 2] (see also [17]), but the algebra A in this
example is very far from being simple (and even prime): it is an infinite
direct sum of finite-dirmensional simple ideals. Very recently an example of
|f|~discontinuity of the associative product of 4 with 4 simple (hence nei-
ther || can be complete nor A can have a unit) has been provided in [4],
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