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Hilbert space representations of the graded analogue of
the Lie algebra of the group of plane motions

by

SERGEI D. SILVESTROV (Umed)

Abstract. The irreducible Hilbert space representations of a #-algebra, the graded
analogue of the Lie algebra of the group of plane motions, are classified up to unitary
equivalence.

1. Introduction. In this article we will study representations, by self-
adjoint operators in a Hilbert space, of & certain generalized Lie algebra, the
graded analogue of the Lie algebra of the group of plane mations.

For the past twenty years, generalized (coloured) Lie algebras have been
an object of constant interest in both mathematics and physics (see for ex-
ample [2-5, 8-10] and references there), When such an algebra is endowed
with an involution. #, we get a *-algebra, and it is an important and inter-
esting problem to describe x-representations of this x-algebra.

It is well kmown that representations of three-dimensional Lie algebras
play an important role in the representation theory of general Lie alge-
bras and groups. Similarly, one would expect the same to be true for three-
dimensional coloured Lie algebras with respect to general coloured Lie alge-
bras.

The representations of non-isomorphic algebras have different structure.
It is a simple and attractive idea to start by classifying, up to isomorphism,
all coloured Tie algebras and then to describe representations of one rep-
resentative from each isomorphism class. Unfortunately, the clagsification,
up to isomorphism, of all coloured Lie algebras turns out to be a hopelessly
difficult tagk, in the same way as it is already for Lie algebras, Thus, the
idea does not work in the general case.

1991 Mathernatics Subject Classification: Primary 47D40; Secondary 47D25, 16W55,
17A45. . :

This research was partially supported by J. C. Kempes Minnes Fond,

The results of this paper were presented hy the author at the International Congress
of Mathematicians, Ziirich, 1994, )



icm

196 8. D. Silvestrov

However, if we restrict ourselves to three-dimensional coloured Lie alge-
bras the classification can be accomplished and the program just described
beging to look more realizable.

In [11, 12] three-dimensional coloured Lie algebras are classified up to
isomorphism in terms of their structure constants, that is, in terms of com-
mutation relations between generators. In [7] Hilbert space *-representations
of the real forms of the graded analogue of the Lie algebra sl(2; C), one of the
non-trivial algebras from the classification, are described. The graded ana-
logue of the Lie algebra of the group of plane motions ig another non-trivial
algebra in the clagsification.

2, Formulation of the problem. The main aim of this paper is to
classify, up to unitary equivalence, all irreducible triples of hoth bounded and
unbounded Hilbert space self-adjoint operators which satisfy the relations
(1) aiaz + 0303 = a3, aG1Gs + @301 = a3,  ax03 + azas = 0.
A complex associative algebra L with penerators ay, ag, as and relations
(1) is called the graded analogue of the Lie algebra of the group of plane
motions. When anticommutators in (1) are changed into commutators, we
indeed get the relations between generators in the Lie algebra of the group
of plane motions or, to be more precise, in its complexification. The above-
mentioned triples can be viewed as representations of generators in an asso-
ciative »-algebra L with three generators satisfying (1) and an involution x
defined by o} = a4, 1 = 1,2,3. At the same time, L can be considered as the
universal enveloping algebra of a three-dimensional Z3-graded generalized
Lie algebra [10].

Recall that a Z3-graded {coloured) generalized Lie algebra is a Z-graded

linear space
X= P x,
vELT

with a bilinear multiplication (bracket) {-;-) : X x X — X satisfying:
GRADING AXIOM. {Xo; X5} © Xops.
GRADED SKEW-SYMMETRY. (a;b) = —(—1)Faat8 (b; o),
(GENERALIZED JACOBI IDENTITY
(—1) ¥ a; (b; ¢)) o+ (= 1) P25 (g5 {a; b))
+{= 1P (1)) = 0,

for all & = (C\fl, . -)an)’ 1@ = (/317 v :;Bn'): T = ('Yl: e 17%) in Zg: and
a € Xa, b€ Xp, c€ X, (see for example {10, 9]).

Here 3 means addition in Zz. The elements of Uyezy Xo are called
homogeneous, ’
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Any ZZ-graded (coloured) generalized Lie algebra X can be embedded in
its universal enveloping algebra U(X) in such & way that, for homogeneous
o € X, and b € Xpg, the bracket (- ;) becomes a commutator, [a; b = ab—ba,
when 3.0, o3 is even, or an anticommutator, {a;0} = b + ba, when
S @5 18 odd [10].

Now take X to be a Z§-graded linear space

X =Xn1,0 @ Xa,01 @ X1,

with homogeneous basis ay € X1,1,0), 22 € X1,0,1), as € X(p,1,1)- The ho-
mogeneous components graded by the elements of Z§ different from (1,1,0),
(1,0,1) and (0,1,1) are zero and so are omitted. If the Z3-graded bilinear
multiplication (-;-) turns X into a Z§-graded generalized Lie algebra, then
lag;0:) = 0,1 =1,2,3, and
(a1;a2) = cipag,  (ap;as) = casar,  {a3;e1) = caias.

Also, (a;b) = (b;a) when a and b are in different homogeneous subspaces,
and {a;b) = —{(b;a) when a and b are in the same one. Moreover, the gen-
eralized Jacobi identity is valid. Now put c12 = 1, ¢g1 = 1 and ¢3 == 0. The
algebra X so defined has L ag its universal enveloping algebra. '

Let us change generators to transform the relations (1) to a more conve-
nient form. Specifically, put vy = ay, v2 = az + as, vs = a2 — a3. Then the
new generators vy, vy and vs are also self-adjoint and satisfy the relations

2 2
(2) (ARZD) -+ Vo = Ug, My + Va1 = —V3, Yy — Ug = 0,

which follow immediately from {1).

3. Definition of representations. Since the operators required are
not necessarily bounded, we need a precise definition of the relations (1) for
unbounded operators. This means that we must choose a class of represen-
tations to study. Analogously to the Lie algebras case, the representations
of this class will be called integrable.

DEFINITION 1. An integrable representation of the -algebra L in a
Hilbert space H is a triple of self-adjoint operators A1, Ag, Ag such that the
operators Vi = Ay, Vo = Ag + 43, V3 = Ay — Ag satisly the relations (2) on
a dense linear subset @ in H, invariant relative to V3, Va, Vi, and consisting
of entire vectors (see [9]) for V1, Va, Vi.

Henceforth only integrable representations will be ‘considered.
Remark 1. All bounded representations, if such: exist, are integrable.

Let By (6) dendte the spectral measure (the resolution of the identity)
of a self-adjoint operator V. This is a projection-valued probability measure
defined for any Borel set § € B(R). : - o
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For more general commutation relations AB = BF(A), corresponding to
an arbitrary continaous function F' : R — R, it can be proved (see [9], p. 202)
that the definition of unbounded representations on a dense invariant linear
subset, of entire vectors for A, F(A) and B can be equivalently reformulated
in terms of the commutation relations involving only bounded functions of
the operators of representation. The first two of the relations (2) are of this
type. The above-mentioned continuous function is Fy(A) = 1 - A for the first
relation, and Fy(A) = —1 — A for the second, and Definition 1 yields

By, (6)Vag = VaBy, (1 = §)8, By, (8)Vad = V3Ev, (—1 - 6)¢
for any ¢ € &, which is equivalent to
(3) By (6)Veor = Vo, By (1 —6), Ev{§)Var=Vy,rBv(~1—0)
for any § € B(R), r =1,2,... and V;, = By, ([-r,r])Vi, i = 2,8

4. Classification of the irreducible representations. Let us proceed
to classify the irreducible representations.

DEFINITION 2. A representation of the algebra L is called srreducible if
any bounded operator which commutes with all operators of the represen-
tation (j.e. with all their spectral projections) is a multiple of the identity
operator.

Consider a self-adjoint operator D = Vi == V.2, As shown in the following
lemma, D commutes with Vi, Va, V3 in the sense of resolution of the identity.

Levma 1. The spectral measure of the operator D commutes with the
spectral measures of V1, Va, Va.

Proof. First, observe that V3 commutes with V32 and so with D. Next,
from the functional calculus for one self-adjoint operator one has

for any bounded measurable functions f and g. Finally, to complete the
proof, take f and g to be the indicator functions of some Borel sets. w .

Let F be an iterated function system (see [1]) on R' generated by two
functions Fy(A) =1 — X, Fy(A) = =1~ A,

Remark 2. An iterated function system is a generalization of discrete
time dynamical systems to the situation where more than one function is
iterated (see for example [1]).

The relations (2) yield ker(V3) = ker(V4) and the invariance of the sub-
space ker(Va) under V). Therefore, if V = (Vi, V4, V3) is an irreducible rep-
resentation, then either dim(H) = 1 or ker(V2) = ker(V3) = 0.
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The following two lemmas are concerned with the non-trivial second
possibility.
The next lemma is crucial.

LEMMA 2. In an irreducible representation Vi, Va, Vs of the algebra L,
the spectrum o (V1) of the operator Vi is discrete, simple and based on an
orbit of the iterated function system F.

Proof. If 6 € B(R) is invariant with respect to F then, in view of (3),
the projection Ey, (6) commutes with V1,V and V3. Therefore it is either 0
or 1, which means that the spectral measure of V; is ergodic with respect
to F. The iterated function system F has a measurable section, a Borel
subset of R' which meets each orbit just once. For instance, § = [~1/2,1/2]
would serve as such. This property implies that any ergodic measure must
be supported on an orbit of F. Now only the simplicity of o(V1) remains
unproved.

Note that since V; commutes with Vi and V#, any eigenspace of Vi is
invariant with respect to Vi# and V. Let H) be the eigenspace of V1 as-
sociated with an eigenvalue A. Suppose that dim{Hy) # 1. Lemma 1 and
the irreducibility of (V,V2,V3) imply that there exists a proper subspace
H{ C H) invariant with respect to V# and V&. If A = 1/2, then the sub-
space spanned by HY and by the subspaces obtained by application to HY of
the sequence of operators { V3, VoV, V3Va V3, Va3 WLV, .. .} is invariant with
respect to Vi, Vi and Vi, The relations (2) imply that the latter subspace is
orthogonal to Hj © HY. Hence it is different from H. This contradicts irre-
ducibility. If A = —1/2, then the subspace obtained by application to H{ of
the sequence of operators {Va, VaVe, VaVaVa, ViVa VsV, . . .} is invariant with
respect to V1, Vo and Vi, and it is orthogonal to H), & HE. Hence it is diffexr-
ent from H. This again contradicts irreducibility. Finally, if A = |-1/2, 1/2],
then the subspace obtained by application to HY of the sequences of opera-
tors {Va, Va3Va, VaVa Ve, VsVo Vs Vs, . . .} and {Vy, VaVs, VaVa Vs, V2 Va Vo Vs, ..}
is invariant with respect to Vi, ¥ and V4, and it is orthogonal to Hy & HY.
Hence it is different from H, and we get a contradiction with irreducibility
which completes the proof. m

In the sequel, M, and ¢, will denote, respectively, the eigenspace of V1
and an eigenvector of Vi associated with an eigenvalue u.
The following lemima is a corollary to Lemma 2 and the relations (2)

LemMmA 3. If e ¢ H)y, then Vae € Hy.) and Vae € Ho1x,
Now we are ready to classify the irreducible representaticns.
THEOREM 1. To each point of the set

= (~1/2,1/2] 0, 00]) U (B x {0})
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there corresponds an irreducible triple Ay, Ay, Ay of self-adjoint operators
satisfying (1). The dimension of any irreducible triple is either 1 or oco.

(i) dim(H) = 1: Each point (A,0) € R x {0} parametrizes one triple:
(5) Arey = Aey,  Aa=0, Az=0,
where H is spanned by the vector ey.

(il) dim{H) = co: Bach point (X, c) of M_12,1/90 = |=1/2,1/2[x]0, c0[
parametrizes one triple:

Are® = (=1)F(A ~ K)o
(5) Age(k) = \/E(G(AH—(ul)“) + e(k_(_l)h))/Z,
Ageli) = E(lHI _ olb=(=DM)

where {e® = e_1yu_y | B € Z} is an orthonormal basis consisting of
eigenvectors of the operator Ay.

(ili) dim(H) = oo: Each point (A, ¢) of M_y0U My = {-1/2,1/2} x
10, 00| parametrizes two unitarily inequivalent triples which are given by the
formulas (7) and (8).

The triples corresponding to points of M_i, = {(-1/2,¢) | c €]0,00[}
are

Ai‘e = (- 1)( —1/2)6““)

AkoH) {ﬁ(e"“““”’“*l) + e 0 2 i k2 2,

(n 2 L ve(el® +e))/2 if k=1,
A = {\/E(e"“ﬂ-”"“) ~ et )2 i k2,

? Ve(e® F 6l))2 if k=1,

where {e*) = e(—y)k(k—1/2) | & € N} is an orthonormal basis consisting of
eigenvectors of the operator Ay,
The triples corresponding to points of My, = {(1/2,¢) | ¢ € ]0,00[} are

Afelt) = (—1)H+1(g — 1/2)e(’“)
AZelb) = {\/5(8““*(“ + BBy i k>,
Eelk) =

(8) Ve(e® £e)/2 if k=1,
AZo) { Je(elH=1") bt =1 19 g >0,
? ~/e(e® F e /2 if k=1,

where {e*) = e(-1)h+i(h~1/2) | £ € N} is an orthonormal basis consisting of
eigenvectors of the operator A,.

(iv) The-irreducible triples of operators defined by (5)~(8) are pairwise
undtarily inequivalent. Any non-trivial integrable irreducible triple of self-
adjoint operators satisfying (1) is unitarily equivalent to one of these.
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Proof. Earlier in this section we found that if (Vi,Vh,V3) is an irre-
ducible triple, then either dim(H) = 1 or ker(V3) = ker(V3) == 0. The former
case is described in the item (i) of the theorem. Let us consider the latter
case.

First, from Lemmas 2 and 3, the spectrum ¢(V;) of the operator V;
is discrete and based on some orbit of the iterated function system F.
Moreover, o(Vy) is simple, which means that the eigensubspaces H, are
one-dimensional.

Let ey be an orthonormal basis in H consisting of eigenvectors of the
operator V) = Ay. Our aim is to find the eigenvalues of V; and to describe
the action of V5 and Vi in the basis e,

As was mentioned in the proof of Lemma 2, the iterated function system
F has a measurable section & = [~1/2,1/2]. The points 1/2 and ~1/2 are
fixed by Fy and Fj respectively. Let A be that point where the orbit Orb A(F)
meets S. Then

{(~1)F (A —k) | ke Z} if A& ]-1/2,1/2],
Orhy(F) = § {(~1)*(k—1/2) |ke N}  ifr=—1/2,
{(-1)* k- 1/2) |k € N} i =1/2,

By Lemma 2, the spectrum o (V}) coincides with one of these orbits.

Next, since Vp and V3 are self-adjoint, from Lemma 1, for some complex
numbers bz(A), b3(A) we have Vaey = ba(A)er—y and Viey = bs(Aye—1-2,
and 80 Viex = [ba(X)|%en, Vifer = |bg(A)[%ex. A representation unitarily
equivalent to {V;} can be chosen so that

bi(A) 20 if Fj_1(\) # A,
b;i{A) eRY i F;_1(\) =X, j=2,8.

According to Lemma 1, D commutes with the irreducible triple Vi, Vo,
Vz and hence D = ¢f for some ¢ € R, Thus, we see from Lemma 3 that

bj()\)zc’i)\ = er), = Dey =cex, F=23,

and hence that by(A)? = ¢ and b3(A)? =c. ‘

It now follows that any irreducible triple satisfying (2) is unitarily equiv-
alent to one of those in the statement of the theorem.

Finally, triples which correspond to different points (A, ¢} € M are uni-
tarily inequivalent since they have different o(D) = {¢} or ¢(V1). Inequiv-
alence of the two triples corresponding to a point in M.y U M5 can be
checked directly.

The change back from the operators V; to A; completes the proof. w

)

Remark 3. One can write down the matrices of the operators defined
by formulas (6)-(8). They are three-diagonal.
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Remark 4. It might be of interest to remark that Theorem 1 shows
that in any irreducible representation of the relations (1), the operator 4,
is either one-dimensional or unbounded.

Remark 5. It is possible to prove a kind of spectral theorem which
gives a decomposition, with respect to some projection-valued measure, of
an arbitrary representation as a direct integral of irreducible representations.
As in the case of the classical spectral theorem for one self-adjoint opera-
tor, such a theorem, reformulated in multiplication operator form, provides
the complete list of unitary invariants in terms of the spectral families of
measures.

One can conclude from Theorem 1 and Remarks 4 and 5 that there
are no triples of non-zero bounded self-adjoint operators satisfying the
relations (1).

The same must be true for some broad class of coloured Lie algebras,
and an interesting question is: for which?
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