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Submultiplicative properties of the wy-distortion function
by
S-L. QIU (Hangzhou) and M. VUORINEN (Helsinki)

Abstract. Some inequalities related to the submultiplicative properties of the distor-
tion function wx () are derived.

1. Introduction. The pg-distortion function defined for 0 < K < 0,
0<r<landr =+1~r2hby

pr(r) = iU /E), ) = G- 5,

. dx
)— f \/ 2)(1_,’.23:2)

plays a very important role in the theory of quasiconformal and quasireg-
ular mappings {cf. [LV, Vul], for example). During the past several years
many properties of this and related functions were proved in' [AVVI-AVVS5],
[P1-P2], [Z]. Very recently it was observed in [Vu2] that for small prime
numbers p Ramanujan’s work on modular equations yields several elegant
algebraic identities for the function ¢, (r}. Some number theoretic aspects
of the theory of modular equations are studied in [B] and [BB].

In [AVV1, VV] the following submultiplicative properties of ¢ K‘(r) were
proved for K > 1 and r,t € (0,1):

(11) wr(r)ex(t) < 4" VX o (rt)
and
(1.2) ex(rt) < er(r)ex(t) < pxa(rt).

Some function—theoretic applications of the éubmultiplicative property (1.2)
were given in [AVV5, QVV1]. For related results sée [Z] where it is' shown
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for instance that for all r,¢ € (0,1) and K > 1,

K—-1\*!
K1+ —r for 1 < K <K,
ex(r)ex(t) < ex(rt), K’={ ( +log4%) or 1 < K < Ko,
2K for K > Ky,

with Ko = 1+ logg %

The main purpose of this paper is to sharpen and generalize the exist-
ing inequalities concerning the submultiplicative property of ¢k (r), such as
(1.1) and (1.2), and to derive some monctonicity results for some functions
defined in terms of g (r), from which new functional inequalities follow.

We now state some of our main results.

1.3. THEOREM. For allr,t € (0,1) and K € [1,00),

(1.4) er(rer(t) < wx-(rt)
and | _
(1.5) w1/ (r)e1 K (t) > 1k (rt),

where ¢ = 2/m € (1,4/3) and
m= inf (14 YK () K (72 /{K(r) X' (r)} ~ 1.5324.
In each of (1.4) and (1.5), equality holds if and only if K = 1.

We were originally led to Theorem 1.3 by computer experiments which
provided some evidence of the validity of (1.4) with ¢ = 1.5.

In applications, we sometimes need that the upper bound in (1.4) and
the lower bound in (1.5) involve the function ¢x with the same su.bmdex

K as the left sides. For this, we establish the following two theorems which
improve (1.1). :

'1.6. THEOREM. Let a(r,t) = 27"+ with v/ — TZ72. Then the
function
Fr,t K) = ok (r)ox (8)a(r, )/ fox(rt)
is strictly decreasing in r and t from (0,1] onto
[+ )Y, ox@)(a(0,0)/0%)  and  [(1+7)X, p(r)lalr, 0)/r]/),

respectively, and strictly decreasing in K from [1,00) onto (1,a(r,t)]. In
particular, for K € [1,00) and r,t € (0,1),

| er(r)ex(t) < alr, ) =YX pr(r),
with equality if and only if K = 1.
1.7. THEOREM, Fo'r fized .t € (0,1), define the function g on (1, 00) by
9(K) = 01/ r(r)e1x (D(r, )% /o1 (rt),
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where
2(1+ V) (L+ VI Fr)A 1)
(14 P/ L+ Va1 + )
= 2exp(arth V¢’ + arthv# — arth ¥z'), =z =rt.

Then g(K) is strictly increasing on [1,00). In particular, for K € [1,00)
and r,t € (0,1),

erx(r)eru(t) 2 b(r,t
with equalities if and only if K = 1.

b(r,t) =

)I—K

p1/x(rt) 2 47 F oy pe(rt),

2. Preliminary results. We often use the notation X'(r) = X(r'),

' =+/1-—7r? and

L 1—rig - , ,
(2.1) 8(T)=Of4'/ﬁdt and &'(r) = &(r")

for complete elliptic integrals of the first and second kinds, respectively,
and refer the reader to the standard references [BB], [Bo], [C], [WW]. for
the basic properties of ell1pt1c mtegra.ls Two such properties, useful for the
sequel, are:

4
(2.2) X'(r) = log - +O(r*log ™)
as r tends to 0 [Bo} and the formula ([He], [AVV2, Lemma 2.1])
2 .
, m 1
=T - <1
(23) lu' (T) 4 T?"Qx('r‘)z’ 0 < ’r-

2.4. LEMMA. The function fi(r) = (1 +r2)X (r?) — 2K'(r) is strictly
increasing from (0,1) onte (—log4,0).

Proof. By differentiation,
"2

I () = PG = K )]+ ) - €6,

which is positive for » € (0, 1), since X'(k) and £'(k) are strictly decreasing
and increasing on (0, 1), respectively.
Next, fi1(1) =0, and

. . 4 | s 4 4 2
f(0) = }];I%fl(f) =31_%{10gr—2 +r 10g;—5+0(r log r*)
+ O(r8log r?) — 2log % —0O(r?log r)} = —log4

by (2.2). m
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2.5. COROLLARY. For each r € (0,1),
(L+7r)X'(?)
X'(r)

2
{2.6) 2——log4 < <2
w

The upper bound is sharp.

Proof. By Lemma 2.4, we have
log 4 < (1+7r3)XK'(r?)
X' (r) X'(r)
for r € (0, 1), from which the result follows since the left side of the above
double inequality is strictly decreasing from (0, 1) onto ( - %1og 4,2). =

 2.7. LEMMA. The function fa(r) = u(r?)/u(r) is strictly decreasing from

(0,1) onto (1,2).

Proof. By logarithmic differentiation and simplification,
(28)  2r(1—rYK(22K PP F () = (L + KK () — 2K

w

Here, we have used (2.3).

Since X (r*) < K(r), it follows from (2.8) that

2H{L~ PRI A () < Kl (),

where fi(r) is as in Lemma 2.4. This yields the monotonicity of fo by
Lemma 2.4.

Finally, by I’Hospital’s Rule, one can obtain the limiting values: fo(0) = 2
and fa(1)=1. m

2.9. COROLLARY. The function p(r)u(l —r2) is sirictly increasing from
(0,1) onto (m?/4,77/2).

Proof. Since p{r)u(') =
Lemma 2.7. =

2- <2

(MK (r).

72 /4 [LV, p. 60}, the result follows from

In the proof of the next results we use the following self-evident propo-
sition.

- 2.10. PROPOSITION. Let 2o = 0,25 < Zis1 for all bk =0,1,...,m -1,
Tm =1, and let £ :[0,1] — (0,00) be increasing, and g : [0,1] — (0, c0) be
decreasing. Then for all x € [0,1],

f(z)g(z) 2 C,  C=min{f(ze)g(res1): 0 <k <m~1}
2.11. PROPOSITION. -For each r € (0,1),
(1 + r2)XK(r?) K (r2)
X(r)X'(r)

(2.12) 1.5008765 < < 2.

The upper bound is sharp.
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Proof. The upper bound and its sharpness follow from Corollary 2.5
since K(r*) < X(r) and lim,_; K(r?)/K(r) = 1. Next, let

_ @+ )X ()
fa(r) = K] , O0<r<l
Clearly,
(A +KEE u(r?)
fg(?") - 3{(,{,)2 ’ M(’F) - gl(r)fQ(T)a

where g1(r) = (1 + r3)X(r?)?
is strictly increasing from (0,
decreasing,

(2.13)

/XK(r)? and f; is as in Lemma 2.7. Since g1
1) onto (1,2) [QV, Theorem 1.5, and f5 is

fa(r) > g1(a) f2(b) = Cas

for each 7 € [a, b] (or [a,b), (a,b)), an arbitrary subinterval of [0, 1].
By computation, we can use (2.13) to get the following estimates of Cyp
in some subintervals [a, b] or [a,b) of [0, 1]:

lower bounds lower bounds
[a,b] (or {a,B)) of Ugp [a,8] (or [a b)) of Gy
[¢in 85°, 1] 15687525 | [sin20°,sin30°) 15044843
[5in70°,s5in85°)  1.6124875 | [sin28°,sin20°) 15059447
[sin 60°,5in 70%) 1.5583325 [sin27°,5in 28°)  1.5083703
[sin BD°, 5in 60°) 1.523167 [sin 25° sm27°) 1.5091234
[sin45°,sin 50°) 1.552789 ' | [sin24°,sin25°) 1.5165843 -
[sin 40°,sin 45°) 1.5276828 | [sin 23° sin24°).  1.5169183
[5in37°,5in40°)  1.5146115 | [sin22°,sin23°)  1.5124104
[8in 35°, 5in 37°) 1.5101042 [sin 210,5511 22°) 1.5034801
[5in33°,sin35°)  1.5008765 | Isin20°,sin21°) 15207334
[in32°,5in33°)  1.5057146 | [sinl0°sin20°)  1.6600081
[3in31°,8in.32°) 1.5041397 [0,8in10°) 1.515003
[$in30°,5in31%)  1.503706 '

From this table and Proposition 2.10, we see that fg(r) > 1.5008765 for
D<r<l o m

214. Remark. In getting estima.tes for C,s in the above table we have
used the following estimate (K], [Q2], [QV Theorem 1.9]):
K(r)> g3

log 7 for r € (0,1),

$0 as to improve the precision of the estimates. Numerical computation gives
an improved lower bound in (2.12) (see Theorem 1.3). In Figure 1 we have
graphed the function X(r) — %g log f"r to illuminate the sharpness of the
above inequality. '
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2.15. LEMMA. For r,t € (0,1), let s = px(r), z = vt and y = pk ().
Then the function fo(K) = §*X{(s)?/[y"*K(y)?] is strictly decressing on
(1, 00).

Proof. Making use of the formula ([He], [AVV3, Lemma 2.1])

ds 2

(216) 5}{— = W—K_Ssrzﬂc(S).'K’(S),
we get, by logarithmic differentiation,

K
(2.17) mﬁ(f{) = h{y) — h(s),

?vhe_re h(k) = K'(k)[K(k) — &(k)]. The function h(k) is strictly increas-
ing from (0,1) onto (0, 00) by [AVV3, Theorem 2.2(3)] and [AVV4, Theo-
rem 2.1(6)]. Hence it follows from (2.17) that
fi(K)Y <0 forall K (1, 00),
since y < s, and the result follows. -
- 218.LEMMA. Forr,t € (0,1}, let v =y (r), @ = rt and u = @y x(z).

[Then) the function f5(K) = v?X(v)?/[u>X(u)?] is strictly increasing on
1, 00}.
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Proof. Note that by (2.16) we have the formula.

R
F T i K(v) X' (v),

By logarithmic differentiation,

(2.19) K>1,0<r<lL

K
mfs(f{) = h(v) — h(u) > 0,

where h(k) is as in the proof of Lemma 2.15, since v > u, and hence the
result follows, m

2.20. LEMMA. For K € (1,00) and a,m,t € (0,1), define the function
fo on (0,1) x (0,1} by fo(r,t) = @xa(r)egrea(t)/wre(rt). Then f,,,(r,t)ae's
strictly decreasing in v from (0,1) onto (pgi-a(£)/@xa (), prer-e (t) /E/E).
Moreover, we have:

(1) For alla € (0,1/2), fa(r,t) is strictly decreasing in £ from (0, 1) onto
(1,0¢). In particular, for oll K € [1,00), r,t € (0,1) and a € (0,1/2),
(2.21) Yra(regi-a(t) > pra(rt), |
with equality if and only if K = 1. The inequality is reversed if K & (0,1).

(2) For a = 1/2, f, is strictly decreasing in t from (0,1) onto
(1, rn(r)/rXE), where L = VK. In particular, for all L € [1,00) and
rt € (0,1), S
(222)  pu(rt) < @r(r)pr(t) < min{a A=VE) PO o (1),
with equalities if and only if K = 1. :

(8) For a € (1/2,1], r,t € (0,1) and K € [1, 00),

(223)  pra(Mpra-a(t) S 47O IO N o (rt),
with equality if and only if K = 1. However, for each a € (1/2,1), K > 1,
pxa(r)gri-a(t) and pxa(rt) are not comparable. ' '

Proof. Let s = @ge(r), 4 = pg1-a(t), ¢ = rt and y = @xe(x). Then
fa(r,t) = su/y. By logarithmic differentiation,

(224) "f:"('%";; ' %i‘a = ﬁb(ﬂ Ka) - ‘ﬁ’(«%Kﬂ)a
2.2 A= LK) — 9, K7

where 1(k, L) = o2K(v)X'(v)/k*K (k)X (k)] with v = @r(k). Now the
monotonicity of f, in r follows from (2.24), since 1 (k, L) is strictly decreasing
in k on (0,1) by [AVV1, Theorem 3.27] and [Q1, Lemma 1]. The limiting
values are clear. _ : S
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(1) I a € (0,1/2), then K'~% > K% and 8f,/8t < 0 by (2.25) since
Y(k, L) is also strictly decreasing in L on [1,c0) by [AVV3, Theorem 2.2(3)]
and t > z. Hence f, is strictly decreasing in . The limiting values and (2.21)
are clear. '

If K € (0,1), then, by (2.21),

1/ (Pre(M)@r-2(8)) S 017K (PR (1)) PRa-1 (PR1-a(t)) = 1t
and hence (2.21) is reversed.
(2) For @ = 1/2, K'=% = K® and then 8f,/8% < 0 by (2.25) since ¢ > z.
The limiting values are clear. Hence
e1(rt) < pr(rpr(t) < 470 P (rt)
by the inequality [QVV2, Theorem 1.12 (1)]

(2<26) QOK(T) S 4?'4/3(1—1/K)7-1/K
for all » € (0,1) and all K € [1,00). Similarly,

(;UL(T)CPL(t) S 4t’4/3(1—1/L)(PL('rt)
and hence the second inequality in (2.22) follows.
{3) If @ € (1/2,1], then, by the monotonicity of f, in r,

C erme(/ere(t) S falnt) S prame (t) /85
and (2.23) follows from (2.26).

For the last conclusion, we consider the function Fy(t) = £.(0,t) =

u/tYE" From its derivative
K F ()

Fi(t)
which is strictly decreasing in t from (0,1) onto (~1, K29~ — 1), we see
that there exists a tg € (0,1) such that Fi(t) is increasing on (0,%) and
decreasing on (2o, 1). Since Fi(1) = 1, F1(t) > 1 for all ¢t € (¢, 1). Therefore

if r is sufficiently close to 0 and ¢ € (%q, 1), then f,(r, t) > 1, and hence it is
not true that

- K2a—1,¢(t’ Kl.wa.) _ 1’

pxe(r)pri-a(t) < pralrt)

for all K € (1,00) and 7, ¢ € (0,1).

On the other hand, since

lim fa(1,1) = lim fa(0,1) = 0,

we also see that the inequality

.' | - era(T)pri-a () 2 pxa(rt)
cannot hold for all values of » and t. Therefore, for each a & (1/2,1)} and
K €(1,00), 7t € (0,1), pxe (r)pgi-a (t) and pxe (rt) are not comparable. m

Submultiplicative propertics 233

2.27. Remark. The monotonicity of f,(r,t) in r and the first inequality
in (2.22) have been proved in [AVV1, Theorem 3.13]. The second inequality
in (2.22), however, improves some inequalities known to us, such as (1.1)
and

erc(r)? < 4-DA-YVE), . (ppy
for each positive integer p [AVV1, Lemma 3.19], and (1.1).

To end this section, we recall the following inequalities [QVV?2, Theo-
rem 1.9(4)]:

2
(2.28) 0< ;7"23((7")36’(7‘) +logr < /% log4
for all r € (0, 1), which will be frequently employed in the proof of the main
theorems.

3. Proofs. In this section, we prove the theorems stated in Section 1.

3.1. Proof of Theorem 1.3. To prove the inequality (1.4), it suffices
to prove that .

(3.2) er(T)er(t) £ Prote(rt)

for any £ > 0. For this purpose, we define the function F on D = (0,1) x
(0,1) x (1,00) by

ex(r)ex(t)
Flr,t, k) = ZEDPED
( ) pxs(rt)
where b = ¢ 4+ £. We shall show that
(3.3) ‘ _ sup Fr,t,K)< 1.

(rt,K)ED

Set s = g (r), T = pg(t), z =rt and y = s (z). Then

8 T $1/Kb K _Kl--h
FntE) = 5o e U EA=K?)

from which we get

/!

0,4, K)=F(r,0,K) =0,
1:t’K) T/@Kb(t) <1,
rlK)=s/pp(r) < 1,
F(r,t,1) = F(r,t,00) = 1,
since 1 + ¢ < b < 2/1.5008765 + ¢ by Lemma 2.11.
Next, by (2.16) and the formula [He]

ds ssPXK(s)?
ar ~ Krr2X(r)?’

F(
(3.4) ?E

(3.3)
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we have
a
=8 =y 5 (y)*/Ire"K(2)’K"],
&
5 = WKW/t K(2) K",
dy 2,
- x .
B T oW KX ()

Employing these formulas for partial derivatives and logarithmic differenti-
ation, we get

’I"

(3.7 —(#K)" %t w(t, K) — T/)(fc,Kb)
and
8 S g = DK () T D) - KK ),

where t(k, L) is as in the proof of Lemma 2.20.
Letting 0F/0r = OF /0t = 8F /0K =0, from (3.6)—(3.
L+ r)KEOK (D) _ 2
X(r)X'(r) b’

8) we obtain

(3.9) r=t and

by the monotonicity of .

Since 2/b = 2m/(2 + me) < m, the second equality in (3.9) contradicts
the definition of m. This shows that F(r,t, K') has no extreme points in D,
and hence (3.3) holds by (3.4) and so does (3.2).

By the above discussion, the condition for equality in (1.4) is clear.

Finally, since by (1.4),

(P17 (r)erjx(8) Z ox (P76 (r) ek (o1& (1) =
(1.5) follows from the relation

(3.10) c,o}}l (r}=

and completes the proof. n

01/K(r)

3.11. COROLLARY. For eachr € (0,1) and K € [1,00),
(3:12) ex(r)? < pxe(r?),

where ¢ is as in Theorem 1.3. Equality holds if and only if K =
tneguality is reversed if K € (0,1).

1. The

This corollary is the special case of Theorem 1.3 when » = ¢. However,

we can prove that Theorem 1.3 is equivalent to Corollary 3.11 without using
Lemma 2.11.
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3.13. COROLLARY . The following two conditions are equivalent:
(1) For any r,t € (0,1) and K € [1,0),
er(r)ex () < pxe-(rt).
(2) For any r € (0,1) and K € [1, 00},
ex(r)? < pxo(r?).
Proof. It is enough to show that (1) is true if (2) holds. For this purpose,
define the function G on D = (0,1) x (0,1) x (1,00) by
G(r,t,K) = sT/y,
where 8 = @i (r),T = px(t), y = pxe(z) and z = ri. Then one can show
that
Glap(rt, K} <1,
similarly to the proof of Theorem 1.3, and that if G(r,t, K) has an extreme
point {rg, to, Kg) € D, then ry =ty and
G(ro, to, Ko) = @i (ro)? [0k (r5),

which is less than or equal to 1 by assumption. Hence G(n,t, K) <1 for all
(r,t,K) € D, that is, (1) is true. m

3.14. COROLLARY. For each K € [22/(~1), o0), where ¢ is as in The-
orem 1.3, the function f(r) = or(r)?/wk<(r?) is strictly increasing from
(0,1) onto itself.

Proof. Since K > 24/(c-1),

(815)  pxe(r®) = pxlpger(r®) > er(rK ) > wx(r)
by the well-known estimate ([LV], [He])

(3.16) orlr)>r

for all K € (1,00} and v € (0,1), and by the monotonicity of ¢x(r). Set
s=pg(r), z=r? and y = g-(z). Then similarly to (3.6), we have
T df
— == ’K —_ xT, Ke s
T = () — (o, K |
where 1(k, L) is as in the proof of Lemma 2.20. Since i > s by (3.15), it
follows that

/K

LY Y(r, K) , ) — o2 Yy
mf (r) > m{m K (2)X () X(r)X'(r)} >0,

by [AVV3, Theorem 2.2(3)]. The limiting values are clear. w

3.17. Proof of Theorem 1.6. From[AVV1, Proof of Theorem 3.13],
we see immediately that f(r,t,K) is strictly decreasing in.r and. £ on-(0,1).
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Next, let s = px(r), v = px (1), £ = rt and y = px(z). By logarithmic
differentiation,

K2 af

@18 ARG K) 9K
X' (r) X'(t) K'(z)] loga(r)
{Fl(K) ) T R x(x)} PR

where Fi(K) = s?XK(s)?/[y"*K(y)*] and Fp(K) = w*K(w)?/[y"K(y)?]. By
Lemma 2.15, F1(K) and F3(K) are both strictly decreasing on [1, 00). Now,
it follows from (3.18) and (2.28) that

K225 () af
v K (Y2 f(r,t,K) 8K

< 2 () + 2400 1)

- %m’zx(m)xl(x) ~loga(n )
= { 25 () K (r) —!-log'r} { ~t" 2K () (t) + logt}
- {;w:;c(m):}c'(m) + loga:} _loga(r,£)
< 9r) +9(8) - 549(r) = g(t)} ~ loga(r,)
- 1{[g(T) — /3 log 4] + [g(£) — /2 log 4]} < 0,
where g(k) = 2k™X (k)X (k)+log k, since g(k) is strictly decreasing on (0, 1)

([W], [AVV3, Lemma 4. 2]) and z < 7, = < t. This ylelds the monotonicity
of f in K.

Clearly, f(r,1,1) = a(r,t) and f(r,t,00) = 1 for r,t & (0,1). The last
conclusion is trivial. w

Taking ¢ = r in Theorem 1.6, we get the following result.

3.19. COROLLARY. For eachr € (0, 1), f(K)wgaK( V24l 1K e (r2)

is strictly decreasing from [1,c0) onto (1, 4 ] In particular, for sl K €
[1,00) and r € (0,1),

px (1) fpxc(r?) < 47 am1i),

with’ equalzty if and only if K = 1.
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3.20. Remark. It was conjectured in [AVVS] that, for X > 1 and

re(0,1),
or (VT)? [ (r) < (1+¢")20-HE),
Corollary 3.19 gives a stronger inequality.

3.21. Proof of Theorem 1.7. Set v = pr(r), T = o1k (t),
z =1t and y = /g (). Then, by logarithmic differentiation,

JK) K'(r) yXW) _ X'(a)
B2 Ry &)~ ;{ g0y T e 5y (w)}
+ 1253( E 5 log b(r, ),

where g1 (K) = vX(v)?/[y"*X(y)?] and ga2(K) = TK(T)? /[y K (y)?].

By Lemma 2.18, g1 (K) and g2(K) are both strictly increasing on [1, o0).
On the other hand, 4*X(y)? is increasing in K on [1, oo) by [AVV3, The-
orem 2.2}, and 1 < b(r,¢) < 4 for 0 < r,t < 1. Hence it follows from (3.22)

that
71_291 (K)

TRy~ W)+ ult) — ) — logb(r, 1)}

[ (147 /2T + ) u(r)}
+[1 1+\/“)\/ 14t u(t)]

# [ute) 1o %)‘/(1: ) >0

by the inequalities ([AQV, Theorem 3.1], [AVV, Theorem 4.9])
: 1 )4/ 2(1 + &
(3.23) arth(VE') < u(k) < log (1+ ‘-ﬁ‘;)k (L+ ),

0 <k < 1. This yields the monotonicity of g.
The remaining conclusions are clear. m

Taking ¢ = r in Theorern 1.12, we got
3.24. COROLLARY. For each r € (0,1) and z = 72,

B(r) = 2(1 + VP21 + 1)/[(1 + Vo) (1 + V&) (L + )]
the function ga(K)} = @1k (r}?b(r)* /e, /_}{(rz) is strictly increasing on
[L,00). In particular, for K € [1,00) and r € (0, 1),
‘Pl/K(T)Z 2 b(T’)l_KFPl/K(Tz) > 417K

with equalities if and only if K = 1.

C‘OI/K('I"Z),
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4. Generalizations. In this section, we generalize some results in the
theorems proved in the previous section, and (1.1}, (1.2) to the case of
different parameters K. First, we have

41. THeoREM. For r,t € (0,1), K1, K, € [1,00), let a{r) = 2
5= i, (1), ¥ = K, (t), ¢ = rt and y = pk(x), where K = max{Ky, Ks}.
Then the function F(K1, K3) = sua(r)/¥2a(t)*/ K2 [y is strictly decreasing
in Ky and Ks on [Ka,00) and (K, 00), respectively. In particular, for all
Ky, K5 € [1,00) and r,t € (0, 1),

Py (T)px (8) < a(r)' " Fa(t) M Koy (ry),
=K, =1.

Proof. Firstly, we may assume K; > Ky. Then K = K. By logarithmic
differentiation,

KX (z)? oF

pRETE]

with equality if and only if K

U PR Ky ok )
= —f4(K1) lzﬂf(ﬁfx’((:))
mfzfx(m 2

~ ;m’zx(m)ﬂC'(m) - Fj—c—(;)}—z— loga(r),

where f4 is defined in Lemma 2.15. By Lemma 2.15, A(K,) is strictly de-
creasing on [1, 00). Hence

A(K1) < A(Ks) < AL} = loga(r)

2
21K () r) - %m’zﬂc(m)%'(m) -
< —loga(r) <0

since r > x and k2K(k)X'(k) is decreasing on (0,1). This yields that
OF /0K, < 0by (4.2), showing that F is strictly decreasing in K7 on [K3, 0c).

Similarly, F is strictly decreasing in K5 en [K71, 00).

Next, by the monotonicity of F', we have

F(Kla K3} £ F(K0> KO) = tpKu(T)QDKD(t)‘[a(T)a’(t)]llKo/wKO (Tt)r
where Ky = min{K,, K3}, which is strictly decreasing in Ky from [1,00)
onto (1, a(r)a(t)] by Theorem 1.6, and hence F(K71, K2) < a{r)a(t), or equiv-
alently,
01 (N)pxea (1) < a(r) = Fra(t) =20 (r).

The condition for the equality is clear, m
4.3. TREOREM. (1) For K, K, € [1,00) and r,t € (0,1),

(4'4) YK ("")WKz (t) < Qr Ky (’rt):
and
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(4.5) D175 (T)pr ks (8} 2 0170k 12 (71),
with equalities if and only if K} = Ky = 1,
(2) Let K1, K3 € [1,00), 7,1 € (0,1),a € (0,1] and K = K; Ky. Then we
have the following results:
1IfK; <K j=1,2, then a € [1/2,1] and for all r,t € (0, 1),
(4'6) YKy (T)(pxz (t) < min{(PK“ (’rt)’ BI—I/KQ(PK“ ('rt)}a

where ¢ is as in Theorem 1.3, and B = min{4™""* 4t"*/® 2"+ Boal-
ity holds if and only if Ky = Ky = 1.

2°IfK; =2 K% j=1,2, then ¢ € (0,1/2] and for ail r,t € (0,1),
0x, (T)PK, () 2 prce(rt), 01/0, (M) @17k, (B) < 17100 (r8),
with equalities if ond only if Ky = Ko = 1.

3 If Ky > K° and Ky < K* (or Ky < K° and Ky > K%), with
a € (0,1), then px, (T)pK,(t) and @x-(rt) are not comparable.

Proof. Let s = ¢, (r), 4 = @i, (), = 7t and y = @xa(x), for
convenience, where K = K K5 and ¢ > 0 is a constant. Define the function
Hon D =(0,1) x (0,1) x (1,00) x (1,00) by

H(rt, K1, K3) = sufy.
Then, by logarithmic differentiation,

(4.7) m‘%—ﬂ =%(r, K1) — ¢(z,K"),
1s) T B o o u(tK) bz, K°),
(4.9) 2H(T,:§1,K2) : grg = Hi(s) — aHy(y),
(410) s 2 By - (),

2H(r,t, Ky, Ka) 0K
grhel;: ¥(k, K) is as in the proof of Lemma 2.20 and Hy (k) = k"X (k)X'(k),
<Let§iig OH/0r = 80H /0t = 6H /0K, = 8H/OK, = 0, we get
(4.11) r=t, Ki=Ky and fi(r)=1/q,
by the monotonicity of 4y and H;, where f5 is as in the proof of Lemma 2.11.
On the other hand, we have

(4.12) H{r,t, Ky, K>)
-5 .U .wlm;,ﬂ(l/xx)tl—m/K“')f(l/‘xz)(l—xn/f_c“)
PR /Ry 5 S BUNSE
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and hence, noting that Ky = K* (resp. K2 = K°) implies that K, = K1~
(resp. K; = K179%),

0 if Ky < K2,

(4.13) H(0,t, K1, Ky) = { wri-a(t)VESif K) = KO,
. 00 it Ky > K@,

0 if Ky < Ke,
(414) H(r, O,Kl,Kz) = {(,DKl—n('l")’f'_l/Ka if K2 EKG',

o0 if Ko > K?,
(4.15) H(L,t, K1, K2) = 0k, (t) /0 xeo (),
(416) H(T: 1, Ky, KZ) = YK, (T)/LPKQ (T)i
(4'17) H(Ta i1, Kz) =T¥K, (t)/‘PK; (EL‘) < Tl_l/Kz(pKz(w)/gng (m):
(418) H(T: i, K, 1) = ttpKl (T)/(pKi' (:1:) < tl_llecPfQ (m)/(PKf (m)7
(4.19) H(r,t, 00, K3) = px, (1),
(420) H(T: t, Kl: DO) = Pr, (T)

The inequalities in (4.17) and (4.18) hold since [AVV1, Lemma 3.24]
T 0w (t) < px(rt). _
For part (1), take ¢ = 1. Then (4.11) implies that H has no extreme
points in I) by Lemma 2.11, K; < K, j=1,2, and

H(?‘,t,Kl,Kz) < sup H(’!“,t,K]_,Kz) <1
(T,f,K]_,Kﬂ)E@D

by (4.13)~(4.20). Hence, (4.4} follows.
Since by (4.4),

wr(p1/x(r) o175, (1) 2 0x, (015, (7)) 2R, (11, (1)) = T8,

(4.5) follows from (3:10). :

The condition for equalities in (4.4) and (4.5) is clear.

For part (2), we investigate three cases.

Case (i). If K; < K7, j = 1,2, then Ki™® < K% and K}™* < K§,
yvielding K22~ > 1, and hence, a € [1/2,1]. Moreover,

i (1)01, (8) < pxca(rprea (t)

and the upper bound in (4.6) follows from . Theorems 1.3 and 1.6 and
Lemma 2,20(2). :

Case (ii). If K; > K®, j=1,2, then a € (0, 1/2] similarly to Case (i),
and

L 9&: M)k, () 2 pre (r)oxca(t) 2 pre(rt)

by (1.2). The other result is trivial.
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Case (iii). Without loss of generality, we may assume that K, >
K® and Ky < K® with @ € (0,1). Thus, by (4.13) and (4.14), neither
H(r,t,K1,K3) < 1 nor H(T,t,Kl,Kg) = 1 holds for all points in D, and
hence the result follows. m
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Sur la conorme essentielle
par

MOSTAFA MBEKHTA ¢ RODOLPHE PAUL (Lille)

Résumé. Pour un opérateur T' borné sur un espace de Hilbert dans lui-méme, nous
montrons que ¥(n(T}) = sup{~v(T + K) : Kopérateur compact}, olt 7 est la conorme (the
reduced minimum modulus) et w(7T) est la classe de T" dans 'algébre de Calkin. Nous
montrons aussi que ce supremurm est atteint.

D’autre paxt, nous montrons que les opérateurs semi-Fredholm caractérisent les points
de continuité de I'application T — ~(x(T)).

Dans ce travail X denotera un espace de Banach et B{X) l’algébre des
opérateurs bornés de X dans lui-méme. 8i T € B(X), on notera respective-
ment N(T'), R(T') et o(T") le noyau, l'image et le spectre de T".

Notons par y(T') la conorme de T, définie par

T =inf{||Tz| : d(z, N(T)) =1}  (v(T) =00 5 T = 0).
Alors (cf. [4], 9] ‘
(0.1) Y(T) >0 siet seulement si - R(T) fermé;

(0.2) ¥(T) = ~+(T7).
Li est facile de voir que si V' € B(X) est une isométrie alors
03) AT) =4(VT).

D’autre part, la conorme joue un réle important dans la théorie des
perturbations des opérateurs semi-Fredholm. Rappelons qu'un opérateur- T
est dit semi-Fredholm (resp. Fredholm) si R(T) est fermé et min{dim N(T),
codim R(T"}} < oo (resp. si R(T) est fermé et max{dim N (T'), codim R(T")}
< o). Dans ce cas, on définit 'indice de T par '

ind(T") = dim N(T") — codim R(T).
Rappelons le résultat suivant ([4, Théoréme V.1.6]) :
1991 Mathematics Subject Classification: 47AB3, 4TAS55.

Key words and phrases: Calkin algebra, reduced minimum modulus, semi-Fredholm
operators. ]



