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Compact AC-operators
by

IAN DOUST and BYRON L. WALDEN (Sydney, NEW)

Abstract. We prove that compact AC-operators have a representation as a combi-
nation of digjoint projections which mirrors that for compact normal operators. We also
show that unlike arbitrary AC-operators, compact AC-operators admit a unique splitting
into real and imaginary parts, and that these parts must necessarily be compact.

1. Introduction. One of the first major results that students of operator
theory meet is the spectral theorem for compact self-adjoint or compact
normal operators on a Hilbert space. This says that if T is such an operator,
then there exist a sequence of disjoint orthogonal projections P; on the
Hilbert space H such that

o
() T=3 )P

j=1
Here {A;} are the non-zero eigenvalues of I'. The sum converges in the norm
topology of B(*). This theorem has a direct analogue for compact scalar-
type spectral operators acting on a Banach space X. Unfortunately, many
of the important operators in analysis, whilst being normal on L?, fail to be
scalar-type spectral on the other IP gpaces. What often causes the problem
here is that, although the operator still admits eigenfunction expansions,
these expansions only converge conditionally. To provide a theory which
covers such operators, Smart [Sm]| and Ringrose [R] introduced the class of
well-bounded operators. A restriction with well-bounded operators is that
their spectra must be real. It was not until Berkson and Gillespie introduced
AC-operators [BG] that a suitable analogue of normal operators existed in
this context. These are the operators which can be written in the form A+iB
where A and B are commuting well-bounded operators.

In [CD], Cheng and Doust showed that compact well-bounded opera-
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276 I. Doust and B. L. Walden

tors have a spectral representation theory similar to that for compact self-
adjoint operators given in (*). The main difference is that the sum need
only converge conditionally in the norm topology of B (X). The aim of the
present paper is to prove that a similar representation holds for compact
AC-operators.

The main complication here is in fixing an order in which to take the
sum (*). As will be shown in Section 4, the most natural order turns out
to be difficult to work with because of the special nature of the norm on
the Banach algebra of absolutely continuous functions on a rectangle in the
plane.

A consequence of this work is that if 7 = A 4 ¢B is a compact AC-
operator, then A and B must also be compact. Furthermore, there does not
exist a different pair of commuting well-bounded operators C' and I such
that T = C + D), a situation which may occur for general AC-operators,

2. Background and notation. In this section we shall give some of
the basic definitions regarding well-bounded and AC-operators. The theory
of well-bounded operators is given in more detail in [Dow| or [DQ].

Throughout, X will denote a complex Banach space with dual space X*.
The Banach algebra of all bounded linear operators on X will be denoted
by B(X).

An operator T € B(X) is said to be well-bounded if there exists a com-
pact interval (g, b] C R and a constant K such that

le(@ll < K {lg(a)| + ftg (t)ldt} = Kglav,

for all polynomials g. Since the polynomlals are dense in the Banach algebra
of absolutely continuous functions on [a, b], this is equivalent to the state-
ment that there is a unital Banach algebra homomorphism & : AC[a, b —
B(X) such that if e,(2) = a™, then &(e,) = T" (n = 0,1,...). The spec-
tral theorem for well-bounded operators states that there exists a family of
projections {E(A)}aer & B(X*), known as a decomposition of the identity,
guch that
b
(Tz,z*) =blz,z*) — [ (2, B(\)z*)d),

o

zeX, o*e X"

We shall not need the properties of decompositions of the identity, so we
shall refer the reader to [Dow] or [DQ) for the details of the spectral theorem.

One of the major complications one encounters when trying to extend
this theory to operators with complex spectra is deciding upon the correct
concept of absolutely continuous functions of two variables to use. In the
discussion that follows we shall identify subsets of R? with subsets of C in
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the usual way. Let J = [a,}] and K = [¢,d] be two compact intervals in R.
Let P be a rectangular partition of J x K

a=38)<8 <...<8,=h, c=ty<li < ... <ty =d.
For a function f: J x K — C, define
7 b
Vo= 3% 1F(sity) = Flsi tyo1) = Floimn,t) + Fsi1,t5-1)).

fasl el
The variation of f is defined to be
P J = sup{Vp : P is a rectangular partition of J x K 1.

We shall say that the function f is of bounded wariation if varsyx f,
vary f(,d), and varg f(b,-) are all finite. The set BV (J x K) of all functions
F:JxK —=Cof bounded variation is a Banach algebra under the norm

[ fllav = | f(b,d)| 'I"V?If(',d) -I—VIa%rf(b, 3+ yar f.

As with functions of one variable, there is the concept of an absolutely
continuous function. Let m denote Lebesgue measure on R2. A flll’lCthl’l
f:J x K - Cis said to be absolutely continuous if

(1) for all £ > 0, there exists § > 0 such that

zvgrf<£

ReR

whenever R is a finite collection of non-overlapping subrectangles of J x K
with 3 pen m{R) < 6;

(2) the marginal functions f(-,d) and f(b,-) are absolutely continuous

The set AC(J x K) of all absolutely continuous functions f : J x K — C
is & Banach subalgebra of BV (J x K), and is the closure in BV (J x K)
of the polynomials in two real variables on J x K. Equivalently, one can
consider AC{J x K) to be the closure of the polynomial functions p(z, ) on
JxKcC '

Define the functions u,v,e € AC(J x K} by u(z,y) = z, v(z,y) = v
and e = u + dv. An operator ' &€ B(X) is said to be an AC-operator if
there exists a Banach algebra homomorphism 6 : A0(J x K) — B(X) for
which #(e) = T. Berkson and Gillespie [BG] proved that. this is equivalent
to the condition that 7' can be written as T = A + iB, where A and B are
commuting well-bounded operators on X. In what follows we shall assume
that T' = A -- 4B is a compact AC-operator, and that we have fixed the
algebra homomorphism 8 to be the one consistent with the given splitting.
That is, we shall assume that 8(u) = A and #(v) = B. (We shall see in
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Section 5 that it would not in fact be possible to choose 8 so that this is not
the case!)

3. Eigenspaces. The first step is to look at the restriction of T' to an
eigenspace.

LEMMA 3.1. Suppose that T is as above, and that A € o(T) \ {0}. Let
E, denote the Riesz projection corresponding to the spectral set {A}, and let
X, = E,X. Then X, is an invariant subspace for T, A, and B.

Remark. In general this does not hold. Example 3.1 of [BDG] provides
an AC-operator T == A -+ iB and a reducing subspace ¥ C X of T which
is not even an invariant subspace of A. It should be noted, however, that
this operator did have a different splitting into real and imaginary parts
T = A’ 4 iB' such that every invariant subspace for 7' was also one for A’
and B'.

Proof of Lemma 3.1. That X, is invariant under 7' is standard.
Since T is compact, X is a generalized eigenspace for T'. That is, z € X,
if and only if (T' — AI)"z = 0 for some n € N. Suppose then that z € X.
Since A cornmutes with T,

(T'— A" Az = A(T — M)z = Q,
and so Az € X,. Similarly, X is an invariant subspace for B.

LEMMA 3.2. Suppose that T, A, and X are as in the previous lemma,
Let A = a +iB where o, f € R, Then Th = T1X\ = M, Ay = A|Xh =l
and By = B|X, =8I

Proof. Again, general spectral theory shows that o(Th} = {A}. Note
that since the restriction of a well-bounded operator to an invariant subspace
is again well-bounded, both A, and B, are well-bounded. Thus 1) — Al =
(Ax—al) +i{B) — BI) is a quasinilpotent AC-operator. Since T — Al and
Ay — ol commute,

a(Ax — al) =c((Ay — o) — (T — AD)) = a(—i(By — 8I)).
Clearly then o(Ay — o) = g(By — BI) = {0}. But the only quasinilpotent
well-bounded operator is 0, so Ay = ol and By, = A1I.

Lemma 3.3. Let T, A, By and X be as in the previous lemmas, Then
Ey commutes with T, A, and B.

Proof. By the previous lemmas we infer that with respect to the split-
ting X mX}_\ &b (I-*'E)JX,

- A 0 _ [« A12 | - ﬁ 'iA12
'T.—-'(O ng)’ A_(O Agz)’ B-—(O Bzz)'
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The condition that A and B commute allows one to deduce that
iocdig + A12Boz — A1z ~ 1412420 = i A (M — Tp) = 0.
Now A & o(Ts2), so this implies that Az = 0. The result clearly follows.

Lemma 3.4, Let T, A and By be as in the previous lemmas. If f €
AC(J x K) then Ey commutes with §(f).

Proof Suppose. t.hafs p(s,t) is a polynomial in two variables. Then
0(p) = p(A, B}, s0 it is clear by the previous lemma that #(p) commutes
with Ej. The result follows from the usual density arguments.

COROLLARY 3:5. T|X) is an AC-operator on X with (unigque) splitting
T\Xy = A|X») +iB| X Similarly, if X, = (I ~ B))X, then T|X} is an
AC-operator with splitting T| X} = A|X} + iB|X}.

To save notational inconvenience later, we shall dispose at this point of
the case where o(T) is a finite set {A;}%.; U {0}.

THEOREM 3.6. Suppose that T' is a compact AC-operator with o(T) =
{As}a1 U {0}, Then there exist disjoint projections {P;}}., such that

T
T=3")\P.
J=1
Proof. Forj = 1,...,n let Pj = E);, Let P= P+ ...+ P, Then
I=30 1P+ {I~P)so

7"
T=Y TPj+T(-P)
i=l
By Lemma 3.2, TF; = AjFj. The only remaining thing to check is that
T.l(I — P)X = 0. It is, however, easily seen that T|(I — P)X is both quasi-
nilpotent and an AC-operator. As in the proof of Lemma 3.2, this implies
that T|(] — P)X = 0 and so we are done. '

4. The spectral theorem for compact AC-operators. As before,
we shall assume that ' € B(X) is compact. From now on we shall also
assume that o(T') = {A;}32; U {0} is infinite. In proving a representation
of the form () the order in which the points {)\;} are taken.is of course
vital. The order which we take is perhaps not the most obvious, We shall
remark after Theorem 4.5 about the problems one encounters if one chooses
a different order. ' _ o

For a complex number A = z + iy with 2,y € R, let || = max{z,y}.
We shall now define an order < on C by setting A < p if '

() Afoo < |plos, or
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(ii) if |Aoc = |ptlec = @ and p lies on the part of the square |zl = o
between —or +ic and A going from —o + i in a clockwise direction.

Assume now that {\;} has been ordered so that
(4-1) A=A
The most technical part of the proof of the spectral theorem is contained

in Lemma 4.4. The analogous result for when {};} C R is much simpler.
Before proceeding it is convenient to introduce some terminology.

DEFINITION 4.1. A polygon is called Cartesian if each of its sides is
parallel to one of the axes. A region I' C C is said to be L-shaped if I' = R\@,
where @ and R are the interiors of two Cartesian rectangles which share a
vertex and satisfy Q C R. For such a region we shall let s(I") denote the

length of the shortest side.

DEFINITION 4.2. Let I' ¢ C and let & > 0. The e-dilation of I, written
I, is the set {z € C: |z — w|co < € for some w € I'}.

LEMMA 4.3. Define ¢ :10,2] x [0,2] — R by

sy +ay? — 2%y fe<l, y<l,

, 1 ifmslry>1a
flz,y) = y fz>1 y£1,
1 ife>1, y>1L

Then ¢ € AC([0,2] % [0,2]) and ||¢| v = 4.

Proof. One can prove this directly from the definition, but it is perhaps
gasier to note that ¢(z,y) = fo’z foy F(u,v) dvdu, where F is the function

: _[2x4+2y—4day fzx<l y<l,
Pla,y)= {0 otherwise.

Since F' € L1([0,2] x [0,2]) it now follows from [BG, Theorem 4] that ¢ €
AC([0,2] x [0,2]). We shall leave it to the reader to verify that
HQS“BV - ‘¢(2,2)| —!—v?r qb( :2) +V§1‘¢(2, ) + [O,ZY&%‘O,Z} ¢ =1+ 1 + 1 + 1=4.

The main point to be noted from this lemma is that it is possible to
define AC functions by gluing together AC functions defined on smaller
gubrectangles. :

Suppose now that we are given an L-shaped region I" and that £ <
s(I")/2. Our aim is to explain how to define an absolutely continuous func-
tion 4 (with reasonable norm) which takes the value 0 on I" and the value 1
outside of I'®. Referring to Figure 1, we take ¥{(z,y) to be dist((z, ), 6T)/c
on the lightly shaded regions. Note that 1 will thus be linear there.
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Region 1

Region 2

e e

(%2, v2)

Fig. 1

At the corners (i.e. the darkly shaded regions in Figure 1), we want
to make "'P .behave like the function ¢ from the previous lemma. Tet 5 be
the restriction of ¢ to [0,1] x [0,1]. At the “bend” of I (e.g., Region 1 in

—~

Figure 1), we shall define 4 by rescaling and translati
‘ slat .
for Region 1, we would take g ating ¢. Lo the example,

W(@,y) = 6((z — z1)/e, (y - 11)/e).

On the other corners, set 4 to be a rescaling and translation of 1 — a For
example, for Region 2 in Figure 1, we would take

B(@,y) =1~ ¢((2 ~ 20) /6, (y — ya) J&).

It is Aclea‘r that any translation or rescaling of ¢ or 1— ¢ remains an absolutely
contu'luous function on the appropriate domain, as does a rotation of {the
domain of ) ¢ by a multiple of /2, What is important here is that the norm
of ¥ does not depend on the steepness of the slide from the region where
3b = ‘1 to the one where 1 = 0; i.e. it does not depend on the size of ¢.
It ¥ is defined in this way, the analogue of the calculation in the proof of
L;amma 4.3 shows that if I'* ¢ J x K then varyyx ¢ < 6. (The norm will
of course be smaller than 6 if I" is & rectangle, because there are then fewer
corners.) Consequently, |4/ syv < 7. R

]?‘or technical reasons we shall henceforth assime that each: of the pc?:iﬁt:s
_)\j lies in the interior of J x K. This does not affect our final result since
if J' and K* are intervals containing J and K respectivelj?, and T hag an
CAa?({ % K') functional caleulus, then T also has an AC(J’ x K') functional

culus, ‘ ' L
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LEMMA 4.4. Suppose that {);} C Jx K is a sequence of complex numbers
which converge to 0 and which satisfy (4-1). Then there exists a constant M
and a sequence of functions fn, € AC(J x K} such that

Dfall M foraline N

2) fn — € in AC(J x K);

3) fu(Ak) = Ak for allk <m;

(4) falz) =0 in a neighbourhood of Ay for all k> n.

Proof. Given the ordering of {);} it is clear that given n, there exists
g, > 0 and an L-shaped region I, such that

(i) for all k > n, Ay € I, and
(i) forall k < m, Ap & I5™.
For reasons later in the proof, we shall assume that |e,| < |A,! for all n.

The choice of I, and &, is perhaps best illustrated by a diagram like that
in Figure 2, which shows Iy and I'j* for a particular sequence of A;:

y-axis
3 -
M)\!E __________ LBV
: IDAI? |
|
| | =As 1 |
I . |
E * T } 1
T T T avig -
-3 -1 * e 1 : 3 Taxs
! _ |
| -1 |
o A !
: . 5 el ——— -~ o)
_______ |
-3 -
Fig. 2

For each n define the function 4, : C — R as in the discussion preceding
the lemma. Let f,(2) = 29w (z). It is clear then that f, € AC(J x K) and
that ' '

() Ifull < Tiella forall n € N
(1) falAr) = A for all k < mn; :
(1) fu(z) =0 in a neighbourhood of Ay for all £ > n.
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It now just remains to show that f, — e in AC(J x K). Let o, =

Anloo + €n and let Jn = Ky, = [~ay, ap]. Then, as fn — e = 0 outside of
Jn % K, we have _

1 7n ~ ellpy = Jar(fn—e) = srar (eyn —e)
= |levn — ¢l v (s, xx0)
< Nellov (rax o) l%n = Ll sv(s, xx..)
<8(V2+4)an =0  asn — oo,

THEOREM 4.5. Suppose that T is a compact AC-0 '
~operator with spectrum
{07 U{M132y and that {)\;} satisfies 4-1. Then there emists a uniformly
bounded sequence of disjoint projections E; € B(X ) such that

I'= i Ai By,
j= ]

where the sum converges in the norm topology of B(X )

Proof. The proof mimics that for compact well-bounded operators.
Without loss of generality, o(T) ¢ J x K. Choose a éequence ‘of fune-
tions {fn} satisfying (1)~(4) of Lemma 4.4. Let E; denote the Riesz pro-
jection associated with the spectral set {)\;}, and let X; = E;X. Let
on = o(T)\ {M1,.., An}. We shall let E, denote the Riesz projection
assoclated with the spectral set o, and let KXo, = By X. '

We claim that '

B(fa) = _ M E;.
4=1"

We know that X = X1 @...9X,® X,,,, and that each of these subspaces is
invariant under 8(f) for all f € AC(J x K). Let 6, denote the AC-functional
caleulus for T'|X;, and 6,, the AC-functional calculus for T|X,, . Then, for
all f € AC(J x K),

0(f)=01(F)@...80u(f) & 6, (f).

By Lemma 8.2, T|.X; = A;1 and s0 8;(f,) = fu(A) = AT (on Xy). Also,
Jo =0 on an open neighbourhood of o(71X,, ). Thus 8, (£,) = 0. Hence

T
B(fa) =D 3By,
=1 ‘
Now tl‘le projections J7y are clearly disjoint. Showing that these projections
are uniformly bounded is similar to the proof for well-bourided operators.
Simple rearrangement shows that : '

B, = -}’:e(fn — Fam):
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A calculation similar to that at the end of the proof of Lemma 4.4 then
shows that

Anloo +E
Ja] < R 2145 4 g0
T
which is bounded independently of n. The fact that f,, - e shows that

n—+0Q

T =6(e) = lim 8(f) :JH%OZAJ-EJ-.
J=1

5. Orderings of the eigenvalues. A direct analogue of the spectral
theorem for compact well-bounded operators would allow us to take the
eigenvalues of T' ordered so that

(5-1) Al = [A2] =

We have been unable to show that one can use this ordering in Theorem 4.5
rather than the ordering given by (4-1). We might note here that (5-1)
potentially allows a large number of rearrangements whilst (4-1) dictates
the order uniquely. The problem with using an order which satisfies (5-1)
relates to the nature of the AC norm. One would like to construct AC
functions which are zero inside a circular region {2, and equal to e outside
12%. It does not appear to be possible to do this in a way which does not
depend on &.

In certain circumstances you can of course use an ordering which satisfles
{5-1). In what follows, E; will, as usual, denote the Riesz projection asso-
ciated with the eigenvalue A; of T If there exists a permutation m: N — N
such that |w(n) — n| is uniformly bounded (by M say) and {A,(;)} satisfies

(4-1), then T = 3722, X; E; as before. To see this note that for NV large,

N N-M
YoNBi= Y Ao Be + D MEi,
g=1 F=1 J€IN
where Iy = {j € {1,...,N} : =(4) & {1,...,N — M}}. The first sum on
the right hand side converges to T' by Theorem 4.5, whereas the second sum
(which contains only M terms) converges to 0.
If{);} € £! then the uniform bounds on F; show that 322, A; E; conver-
ges absolutely (and hence unconditionally) in the norm topology of B(X).
If o(T') lies on a finite number of lines through the origin, we can drop
the above conditions on {};}. In particular, this allows orderings which are
“unhounded” permutations of (4-1).

THEOREM 5.1. Suppose that T is a compect AC-operator with spec-
trum {0} U {A;}52,. Suppose also that o(T) lies on a finite number of lines
through the origin and that {)\;} satisfies (5-1). Then there exists a uni-
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formly bounded sequence of disjoint projections E; € B(X) such that

T= f:)\jEju
j=1

where the sum converges in the norm topology of B(X 3

Proof The proof requires that we find an analegue for Lemina 4.4.
Suppose that ¢(T) can be covered by N lines through the origin. It is clear

that for all n one can find a Cartesian polygon, say P, C Jx K, and g. > 0
such that T "

(1) for all k > n, At is in the interior of B,, and
(i) for all k < n, Ay is in the exterior of Pn.

A little more work will show that there exists a constant C{N) so that we
can always choose Py, in such a way that it has C(N) or fewer corners. (It is
easy to see that C(N) < 8N, for example.) One can then follow the method
of the proof of Lemma 4.4 to form functions f,, & AC(J x K) so that

(1) fa(A&) = g for all b < m;
(i1} fn(2) = 0 in a neighbourhood of A, for all & > n;
(ili) fn — ein AC(J x K).

Each corner carries a cost of 1 in the norm of f,, so we also deduce that the
functions ,f" are uniformly bounded by (8N + 1)|le] sy The remainder of
the proof is more or less identical to the proof of Theorem 4.5.

6. Properties of the splitting T = A-+iB. In general it is possible to
construct examples of compact operators T of the form T = A + 4B where
A and B are commuting operators with real spectrum, but where 4 and
B are not compact. Looking just at AC-operators one can find examples
where T has two distinct splittings into “real and imaginary parts”, i.e. as
& combination of commuting well-bounded operators. Our present setting
rules out hoth of these undesirable behaviours.

TI—IEO'REM 6.1 Let T' = A - iB € B(X) be an AC-operator. Then T is
compacfﬁ 7f and only if A and B are both compact. If this is the case then
the splitting of T into real and imaeginary parts is unique. '

Proof. It is clear thet if A and B are compact, then so is 7" Suppose
then that 7' is cornpact. Consider the set § = {Re(A) : A € o(T)}. Then S is
at most countable, and has no accurulation point apart from 0. Enumerate
S a8 {0}I{ 3192, , where || 2 2| 2> ... If By denotes the Riesz projection
corresponding to A € (1), then for j > 1 let

Pi= 3 B

Re{Ajs=py
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Since no p; is zero, all guch sums contain only fnitely many terms. Thus
P; is a finite rank projection for each 5. Working exactly as in [CD, Proof
of Theorem 3.4], one can find AC functions fn (depending only on 2) such
that f, — v in AC(J x K) and 6(f) = 3i—; 4 Py It follows that

n
Blu)=A= nling_oguij.

That is, A is the limit of finite rank operators and hence A4 is compact. The
proof for B is similar, The fact that the splitting into real and imaginary
parts is unique follows immediately from this formula for A.

7. An example. The following example is useful in clarifying some of
the above tesults. Suppose that A = Y22, ;Q; and B = 3 72, B;R; are
commuting compact well-bounded operators with representations given as
in [CD]; that is, |e3| > |as| > ... and {f1] 2 B} 2 - Let T’ = A+
iB = 3772, Ay F; be the corresponding AC-operator with representation
given according to Theorem 4.5. As is shown below, the ordering of the
eigenvalues may differ markedly in these representations. This shows, in
particular, that it is not straightforward to go from the representations of
A and B to a representation of T'.

ExAMPLE 7.1. Let X = bv, the Banach algebra of sequences of bounded
variation under the norm

@)l = 23] + Y o1 =24l

For k= 1,2,..., let t;, = Z?ﬂj = k(k + 1)/2. Define elements a = (an)
and b = (b,) in bv by

T S A

twt+i = k k2(k’+ 1), te+i — k’

where § =0,1,..., k. Noting that both ¢ and b are decreasing sequences, it
is easy to see that ||a]jsy = ||blly = 2. It follows that the operators defined
by A((zn)) = (anz,) and B((z,)) = (baz,) are commuting well-bounded
operators on X {for more details, see the proof of Theorem 4.4 in [DdL]).
Indeed, since they are limits of finite rank operators, both A and B are
compact and so T = A + 4B is a compact AC-operator on X. Clearly
T{(xn)) = ((@n + ibn)zn). That is, '

T="> (an+iby) Py,
n=1

where P, is the nth coordinate projection. Let A, = an +ib,. This ordering
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of the eigenva'dues of T' does not satisfy (4-1) (although it does satisty (5-1}).
Indeed, if 7 is the permutation of N such that {Ar(n} does satisfy (4-1)
then 7 is an unbounded permutation since 7{ty.1 — 1) = ¢, ’
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