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On subspaces of Banach spaces where every functional
has a unique norm-preserving extension

by

EVE OJA and MART POLDVERE (Tarta)

Abstract. Let X be a Banach space and Y a closed subspace. We obtain simple ge-
ometric characterizations of Phelps’ property U for ¥ in X (that every continuous linear
functional g € Y™ has & unique norm-preserving extension § € X*), which do not use the
dual space X. This enables us to give an intrinsic geometric characterization of predu-
als of strictly convex spsces close to the Beauzamy-Maurey-Lima—Utterstud criterion of
smoothness, This also enables ug to prove that the U-property of the subspace K (E,F) of
compact operators from a Banach spate ¥ to a Banach space F' in the corresponding space
L(B, F) of all operatora implies the U-property for F in F** whenever F is isomorphic
to a quotient space of E,

Introduction. Let X be a (real or complex) Banach space, and let ¥V
be a closed subspace of X. By the Hahn-Banach theorem, every continuous
linear functional g € Y™ has a norm-preserving extension f € X*. In general,
such an extension is highly non-unique. Following R. R. Phelps [22], we say
that Y has property U in X if every g € ¥™* has a unique norm-preserving
extension f € X*. (Subspaces with property U have also been called Hahn—
Banach smooth subspaces, e.g. in [15], [26].) . .

Property U was introduced by Phelps [22] in 1960. But already before,
A, E. Taylor [27] and 8. R. Foguel [6] had shown that every subspace of X
has property U if and only if X* is strictly convex. This classical result is
quite typical of most of the results on property U in X (cf. e.g. [22], [24]) in
the sense that thess results are formulated in terros of the dual space X*. For
exanple, one well-known criterion of property U7 due to Phelps [22] asserts
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that ¥ has property U if and only if its annihilator Y+ is a Chebyshey

subspace of X*.
In 1983 A. Lima [15] established the following result.

TuroREM. Let ¥ be a closed subspace of a Banach space X. The fol-
lowing assertions are equivalent.

(a) Y has property U in X, _
(b) For everye > 0, every € X, and every sequence (Un)mey 0 Y such
that

sl 146, llynss —onl S 14+6/277 neEN,

there arey € Y and ng € N satisfying
& — ¥ % Ynol| < mo + 26 — /27,

Condition (b) of Lima’s theorem seems to be until now the only known
equivalent condition for ¥ to have property U in X, which avoids mentioning
the dual space X*. In Section 1, we give some other geometric characteri-
zations of property U in X which do not use X*. An example of them is:
Y has property U in X if and only if for everyz € X and every sequence
B, C By C ... of open balls in X with centers inY and infinitely increasing
radii such that 0 € By, there isy € Y such that

+(z+y) € | ] Bn-
ne=l

These characterizations enable us to prove in Section 2 that the strict
convexity of the dual space X™ is equivalent to the fact that the union
|US2., Br of certain open balls in X is always an open half-space. This is
related to a smoothness criterion of X by B. Beauzamy and B. Maurey (cf.
[3, p. 126]) and A. Lima and U. Uttersrud (cf. 15, p. 101]), and also to a
criterion of strict convexity of X* obtained by L. P, Vlasov (cf. {29, p. 37]).

Qection 3 is devoted to the study of Banach spaces having property U in
their biduals. We show that this property is separably determined: a Banach
space X has property U in X** if and only if every closed separable subspace
Y of X has property U in Y™, '

For Banach spaces X and Z, we denote by L(Z, X) the Banach space of
all continnous linear operators from Z to X, and by K(Z, X) its subspace
of compact operators. In Section 4, we show that X has property U in its
bidual X** whenever K(Z, X) has property U in the linear span of K (Z, X)
and @, for some Banach space Z and a surjection @ € L(Z,X }. This is
an application of the geometric characterization of property U obtained in
Section 1. We also prove, basing our argument on Section 3, that X has
property U in X** whenever K (@1, X'} has property U in L(Zy, X) for some
equivalently renormed version ) 1 of £1.
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Let", us fix some more notation. In a Banach space X, we denote th
ball with center and radius r by B(z,r), the unit Sp},lere b g’e ec(1) PEII
c_los.ed 1:11111; ball by Byx. For aset A ¢ X , s norm closure 3i,s (fe, azl dtbe
A, its linear span by span 4, and its convex hull by conv A. Th D{:}de iy
operat‘or of X is d.enoted by Ix or simply by I. Let ix: X —»> Xe*"kl ;: g;lkz
;ﬂ?ﬁ;;ﬁgﬁﬁi?ﬁd let 7x denote the canonical projection on X***
There I8 a wgll—stlidied subclass of subspaces with property U
ly, the class of M-ideals (¢f. the recemt monograph [10] by Py Ha:rrxllr::llfl—
D. .Werlxnle.:r, and W. Werner). A subspace ¥ of X is called an.M ~ideal iri
X if Y+ is complemented in X* by a closed subspace G such that for each
f=g+heX" with g€ Gand h € YL, one has 01 = llgl + 1|2 M~id:cl
form a subclass in the clags of semi-M-ideals. A subspace ¥ of X is ca,llag
a semi-M-ideol in X (cf. [13, p. 47]) if for every ¢ > 0 every ¢ € B a,;id
every 1 € By, there is y € Y satisfying , *

o -yt <1+e.

Note that one of our characterizations of i i

: : : ; property U (in Section 1) is a;
immediate wealxkem.ng of the definition of a semi-M-ideal. (From thi)s it 1151
clear that semi-M-ideals have property U. This fact is known (cf. [13,’The-

orbems )6.15 and 5.6]), but it is not evident from Lima's theorem mentioned
above.

_1. Geometric characterizations of property U. Our first result is
an. 1mprovemen‘t of Lima’s theorem (cf. Introduction). It gives some criteria
of property U in a Banach space X which do not use the dual space X*,

Two of them ((c) and (d)) are simplified modificati it
Lo of them (( (d)) plified modifications of condition (b) of

THEOREM 1. Let Y be a closed subspace of a Banach space X, and let
Sx C A for o subset A of X. The Jollowing assertions are equivalent.
(a) ¥ has property U in X. |
(h‘) For every u G A and every sequence By, = B(yn, 1), n € N, of open
balls n X such that yn € Y foralin € N, r, — 0o, and 0 € By C By C ...
there isy € Y such that S :
o0
sz +y) € (J Ba
n=l

(¢) For every w € A and every sequence (yn)2, n Y such that

Il <1, (gmbr =yl <1, neN, .
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there are y € Y and ng € N satisfying
iz =y &= g || < 70-

(d) For everys > 0, every z € A, and every sequence (¥n)2%1 i Y such

that
ol €1, [lynsr = yull €1, neN,

there are y €Y ond no € N satisfying
1) | 2 =y % yno | < 70 + &

(e) There is a constant § > 0 so that for every € € (0,6), every z € 4,
and every sequence (Yn)mey 1 Y with

ol = lgntr —wll =1, fwnll2n—2 nel,

there are y € Y and ng € N satisfying condition (1),

Proof. The theorem is evident for ¥ = {0}. Suppose that ¥ % {0}.

(a)=(b). Assume that (b) fails for some x € A and By = B(yn,7s). To
construct an h € Y* with two different norm-preserving extensions to the
whole space X, we shall apply the Hahn-Banach separation theorem in the

space X M X.
Consider A = {(y, y):y €Y} and

o0
B = U B((x +Yn, & = Yn)yn)
n=1
in X ®e X. Since A and B are disjoint convex sets with B being open,
there exists a functional (f, g) € X™ &1 X* such that

mf Re(f, g){u,v) = sup Re(f, ¢)(y,y) = sup Re(f + g)(y) =0,
u,u)ER yEY

because Y is a subspace. Hence, h= f ly = w—g\yE Y™ has two extensions
feX* and —g € X~. Since

inf{Re(f,0)(v,v) : (v,v) € B{& + Yn, — Yn),"n)}
= Re(f, 9)(€ + yn, & — yn) — ral| £l + llg]) 2 0
we deduce that, for every n € N,
ralll£]l -+ lglD) — Re(f + g) () < 2Rehlyn) < 2[|h[rn,
because 0 € B,. This yields, as r, — oo, that
£l =+ Nlgll < 2[Rl = [Ifl¥ Il + Nglx |l

Consequently, the extensions f and —g are norm-preserving, They do not
coincide because

Re(f + g)(2) > ra(ll£]| + llgll) — 2|[Rr1 =0
(b)=>(c) is obvious by taking r, = n in (b).
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(c)=>(d). Assume € < 2 and let z € A. For () 1 given as in (d), we
can apply (¢) to the sequence

Zn=(1- —S N
n n + 1 JTH ne 1
because

Y SO VS
|21 nll ( n+2)|yn+l Yl + (n+1)(n+2) |y

N £ + En =1 e
n+2 (n+1l)(n+2) m
By (c), we have, for some y € ¥ and ng € N,

I <

< L

+1+ng<n0+e.

2= 9% tmall < == lomll 40 < -8

(d)=>(e) is more than obvious,

(e)=>(a). Assume that (a) fails and that an h € Y*, {|h| = 1, bas
two different norm-preserving extensions f,¢ € X*. We can suppose that
Re(f — g)(z) > 2¢ for some € A and ¢ € (0, 6).

Our following reagoning is inspired by Vlasov’s idea of using a sequence

(nC)5%as | = 1, in & two-dimensional non-smooth quotient space. (¢t [29,
pp. 37, 38]).

Put C={yeY h(y)=1land Z={yeV: h(y) = 0}. Observiilg
that C € X/Z, we shall consider the sequence
£

Cn = (n+n+2

in X/Z. One can immediately verify that ||| = 1. Hence
1C1l <1, {Cat1~Cnll<l, neN.

Using the continuity of the function ¢ ~ ||tz + wl|, ¢t € R (# and w being
elements in X)), we can pick y; € Cy with ||y1]| = 1, and since ||Ce ~ O} =
inf{Jly — y1|! : ¥ € C2}, we can also choose y2 € Cp s0 that Jys — w1]| = 1.
We continue in an obvious manner to obtain a sequence ()32, with y, €
Cn CY and ||ynsq ~ y,,,” =1, n € N. Moreover, we have

Tl >n—e/2, neN

By (e), there re y € Y a,ncl ng € N satisfying

[ =y & Yy || < Mo +€/2.

_”‘;_)Q ne N,

Hence,
iy - €/2 2 Re f(yn,) = Re f(z — y)

~ £ £ Re(f(z) - h(y)),

T -+ i
= ‘0—
no -+ 2
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and therefore

[Re #(s) ~ Reh(y)] < & = = 12 <e

Similarly, |Re g(z) — Re h(y)| < &. Hence, Re(f — g)(z) < 2¢, and we have
arrived at a contradiction. m

Remark 1. In general, & = 0 is not admissible in condition (1) (cf. (c)).
For example, ¥ = {(},0) : A € R} has property U in R?. But for z = (0,1)
and yp, = (n,0),

max{llz —y + yall, |2 ~ ¥ — gal|}* = n® + 20}A -+ X® +1 > n?
whenever y = (A,0) € Y and n € N.

Remark 2. Note that n > ||ys] in (e). The condition |[yn|| Z n —¢in
(e) cannot be replaced by [[ya]l = n (cf. Remark 2 after Theorem 2).

Remark 3. From the proof of Theorem 2.2 in [15], it is clear that the
weakening of (e) where yn = ngn, n € N, is equivalent to the condition that
every g € Y* which attains its norm on By has a unique NOIIM-Preserving
extension f € X*.

Remark 4. If A = By, then the special case of (d) with ng = 1 in
(1) is exactly the condition that ¥ is a semi-M-ideal in X. This special
case of (d) represents a natural weakening of the so-called (restricted) 3-ball
property (equivalent to Y being an M-ideal in X) on which many important
results of M-ideals theory are based (cf. [10}).

2. Intrinsic characterizations of preduals of strictly convex
spaces. Recall that a Banach space is said to be strictly conver whenever
its unit sphere contains no non-trivial line segments.

We shall use Theorem 1 to establish some intrinsic criteria for a Banach
space X equivalent to the strict convexity of its dual space X*, One of them,
criterion (b) below, is due to L. P. Vlasov (cf. [29, p. 37]), but our proof of its
necessity is much more elementary than the proof in [29], and ity sufficiency
follows easily through Theorem 1.

THEOREM 2. For o Banach space X the following assertions are equiva-
lent.

(a) X* s strictly convex.

(b) For every sequence By, = B(n,rn), n € N, of open balls in X such
that By C By C ... and v, — 00, the union | ro., By 18 the whole space X
or an open half-spoce. .

(c) For every sequence By, = B(xn,7n), n € N, of open balls in X such
that

|Znll 2 T —71/2, mneEN,

Unique norm-preserving extension 295

B C Bz C ..., and rn — 00, the union |2, B,, is an open half-space.
(d) For every sequence (x,)%., in X with '
2l = l2net = 2al =1, [@a] 2 n—1/2,

the union U°°_.1 B(zn,n) is an open half-space.

(e) There is a positive constant § < 1/2 so that for every seguence
(mn)3% in X with

n &N,

[#1]] = |Zns = @nll = 1, |enl = n -6
the union Une,y B(wn,n) is an open half-space.

Proof. (a)=>(b). Suppose that (b) fails for a sequence By, = B(zn,ry),

n €N, with B; C By C ... and v, — o0o. By a translation, we can assume
that 0 € By.

Since B = |J;, By is an open convex set different from X, there exist
f & 8%+ and o € R so that

o =gup{Re f(z) 1z € B} < o0

n e N,

and

Bc{ze X :Ref(z)<al
Since B is different from the above half-space, there are z € X, g € Sx+,
and 3 € R so that Re f(2) < o, Reg(z) = 4, and

Bc{ze X :Reg(z) < B}
Notice that f # g (in fact, if f = g, then 8 = Re f(2) < a = sup{Re ¢(z) :
r e B} <)

Setting yn = &n/rn, n € N, we have ||y,|| < 1 (because 0 € B,, n € N).
Since
Re f(#n) + 7o, = sup{Re f(z) 1z € B,}, mneN,

is a bounded sequence, it follows that Re f(y.) — —1. Similarly, Re g(y,)
~+ «1. And consequently, for every A € [0,1],

Re(Af + (1~ X)g){yn) — —1.
Thug Sx« containg the line segment [£, g], which is impossible.
(b)=>(c) because ~xy & [Upwy Bn (in fact,

2rp vy S 22| L o+ 2o+ |2n = 21l < |20 + 21 0 71
impli(*s n & “an + ‘Tl“)

{¢)=-(d) and {d)=>(e) are obvious.

(e)=>(a). Let ¥ be any closed subspace of X. By the Ta.ylor—Foguel
theorem, it is enough to prove that Y has property U.

Let £ € (0,6), g € Sx, and let (y,)32, be as in (e) of Theorem 1. Put

B =", B(yn,n). Then B = {z € X : Re f(z) < a} for some f & Sx-
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and @ > 0 (we have o > 0 because 0 € B). Note that ~y, & B because, for
every n € N and some 7 > 0, —y1 € X \ Byn,n + ) (in fact,

2n — 2 < 2llynf| € g+l +n—1

implies n ++4 £ ||yn + 31| for v = 1 — 22). Hence, Re f(~v1) > @, and we
can set
__ Re f(z0)
y= Ref('yl)yl

Since Re f(z0—y) = 0 < , we have (g ~y) € B. Consequently, for some
ng € N,

|l — ¥ % Yno || < g + €.

By the implication (e)=>(a) of Theorem 1, ¥ has property U, and the proof
is complete. m

Remark 1. It is well known that the strict convexity of X* implies the
smoothness of X (cf. e.g. [2, p. 184]). This implication becomes more than
evident if we compare the criterion (d) of strict convexity of X* with the
following criterion of smoothness: X is smooth if and only if Ure, B(nz,n)
is an open half-space for every z € Sx (i.e. for the sequences z,, = ne,n €N,
with [|zf| = 1). {The above criterion of smoothness follows immediately from
a result of B. Beauzamy and B. Maurey (cf. [3, p. 126]; see also (2, p. 183]).
Note that the same criterion was also observed by A. Lima and U, Uttersrud
in [17] {ef. [15, p. 101]).)

Remark 2. In general, § = 0 is not admissible in condition (e) of
Theorem 2 (i.e. one cannot replace |z, | = n— 8 by |lz.|| = n in (e)). To see
this, let us consider a strictly convex and smooth Banach space X whose
dual X™* is not strictly convex. [Examples of this phenomenon are: (a) the
Orlicz function space Ly on [0,1] with the Orlicz function '

M@E) ={(1+t)log(1+1)—t, £>0,

(this function seems to have first appeared in (1]) under its Orlicz norm
(this Lps has the required properties by (23, Corollary 7 (p. 275), Theorem 5
(p- 281), and Corollary 5 (p. 272)]); (b) Troyanski’s renorming of the space
£1 [28] whenever its defining function is differentiable on (—1,1).] In such a
space X, condition (e) with § = 0 is satisfied because the strict convexity
of X implies that 2z, = nzy, n € N, for any sequence (2n)35, with |z =
liZn41 — Tnll = 1, |znl| =n, n € N. And as X is smooth, | J77; B{zn,n) is
an open half-space. From the above, it is also clear that, in Theorem 1, one

cannot replace ||y,|| > n —€ by ||yn|| = n because this would imply § =0 in
condition (e) of Theorem 2. - .
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3. Banach spaces having property U in their biduals. Banach
spaces having property U in their biduals were studied e.g. in [4], [7}, [15],
[25]. It is known [7] (cf. also [10, p. 125}) that a Banach space X has property
U in X** if and only if the relative weak and weak* topologies on By
coincide on Sx«. It is also known [25] that if a Banach space X has property
Uin X**, then X* has the Radon-Nikodym property (equivalently, X is
an Asplund space), i.e. all separable subspaces of X have separable duals.
In this section, we shall prove that the property U/ in biduals is separably
determined: a Banach space X has property U in X™** if and only if every
closed separable subspace ¥ of X has property U in Y**.

We begin with establishing some geometric characterizations of property
U for a more general situation than Banach spaces in their biduals, namely,
in the cage of ideals in Banach spaces.

According to the terminology in [9], a closed subspace Y # {0} of a Ba-
nach space X is said to be an ideal in X if there exists a norm one projection
P on X* with ker P = Y1, Clearly, every Banach space is an ideal in its
bidual X™* with respect to the canonical projection wx on X***. If E and
F are two Banach spaces such that E* or F' has the metric approximation
property, then K(E, F) is an ideal in L{E, F) (cf. {12]). Occasionally, we
shall also need the notions of u- and h-ideals, introduced respectively in [5]
and [9] (see also [8]). Anideal YV in X is said to be a u-ideal if ||I - 2P| = L.
In the complex case, an ideal Y is called an h-ideal if |[I — (1 + a)P|| =1
whenever |a| = 1.

Let Y be an ideal in X. It is stralghtforward to verify that then, for
every f € X*, Pf € X* is a norm-preserving extension of the restriction
fly € Y*. Therefore, ran P is canonically isometric to ¥, and, in the sequel,
we shall identify them, identifying Pf and f|y for all f € X™*. This makes
it possible to consider the (generally non-Hausdorff) topology o(X,Y™).

Let Y be an ideal with property U in X. Then the projection P is
clearly unique. More precisely, P = sj*, where j : ¥ — X denotes the
canonical injection and s : Y* - X* is the (linear) map which assigns to
each g € Y™ its unique norm-preserving extension f € X*. Let us remark
also that V' is an ideal with property U in X if and only if ¥ has a strong
variant of property U in X (cf. [19]), called property SU in [19] and the
strong Hahn--Banach smoathness in [10, p. 44]. We say that ¥ has property
SU in X if there is a projection P € L(X* X*) with ker P = Y such
that for each f & X* with f # Pf, one has ||Pf]} < ||f||- Subspaces having
property ST have been studied e.g. in [15], [19]. They are natural weakenings
of HB-subspaces: we get the definition of an HB-subspace Y of X if we
add, to the previous definition, the requirement that ||f — Pf|| < || f|| for
all f ¢ X*. HB-subspaces were introduced in [11] as weakenings of M-
ideals. :
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The following theorem is inspired by comparison of gtatement (d) in our
Theorem 1 with the 3-ball property and the characterizations of M-ideals

in [30], and also by Lemma. 2.2 of [9].
THEOREM 3. Let ¥ be an ideal in o Banach space X, and let
U={)2n CY il €1 Iynar —¥nll £ 1, n e N
The following assertions are equivalent.

(a) Y has property U in X.
(b) Whenever e > 0, (yn)isy €U, K is o convex subset of Y, and z is
in the a{X,Y™*)-closure of K, then there are z € K and ng € N satisfying

|z = # 4+ Ynoll S no+e.

(c) For every (ya)32, € U ond every z € By, there is ¢ net zq in By
such that lim 2, = & for the o(X,Y*)-topology, and if € > 0, then there is
o such that for every a > op there is some Na € N satisfying

& — Zo + Ynal| < Ne t+ &

Proof. (a)=(b). If the conclusion is false, then

o0
Kn U B(z 4 yn,n+e) =0
na=l
By the Hahn~Banach theorem, there exists f =g+ h € Sx», g=PfeY™,
he Y+, such that

(2) inf {Ref(u):u € G B(a:—%—yn,n-%—s)} > Re f(z) = Reg(z), z€ K.
n=1

For a fixed z € K, we get (as in the proof of Theorem 1, (a)=+(b)}
n+e—Ref(z)+Reg(z) <Reglyn), neN,

and, as n — o0, 1 < ||g||. Consequently, |ig]l = 1 = ||f|, and we must have
k= 0. But (2) also yields that

1+e~—Reg(z—2) —Reh(z) SReg(pn) <1, z€ K.

Since  is in the o(X, Y*)~closure of K, this implies that Re h(xz) = &, which
is a contradiction.

(b)=>(c). Consider the set of all pairs a = (W,e), where W is a convex
o{X,Y*)-neighbourhood of ¢ and & > 0. This set is directed in the natural
way. Since By is o(X,Y*)-dense in By (this is immediate fror the bipolar
theorem) and = belongs to the o (X, Y™ )-closure of By NW, it is enough to
apply (b) to K = By NW.

(c)=>(a). Assume that (a) fails. Then there exists f = g +h € X%,
g= Pf € Y* h &Y’ such that |f|| = |lg]l = 1, but h % 0. We can
suppose that Reh(z) > ¢ for some z € By and ¢ > 0.
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We use the same idea as in the proof of (e)=(a) in Theorem 1. Observing
that C =.{y €Y :g(y) =1} € X/Z, where Z = ¥ €Y : gly) =0}, we
shall consider, once again, the sequence ’

n ( + S O, ne N,
in X/‘Z to obtain (y,)3%, € U with g, € C, © Y, n € N. Now, let (2a) be a
net given by (c). Then there is cip such that for any & > g, there is ny € N
satisfying .

£
T + '2‘ = ch—za-{—ynm” ZRef(m_za+ynq)

£ €

oo +2 27

and therefore Re h(z) < & -~ Reg(s ~ z,). This implies Re h(z) < &, which
is a contradiction. w

= Reg(® - z) + Re h{z) + ngy +

As we already mentioned, every Banach space is an ideal in its bidual. For
this special case of ideals, we have the following characterizations of property
U. They are inspired by James’ geometric characterization of reflexivity
(2, pp- 51-55], by [9, Proposition 2.3], and by criteria of M-ideals in their
biduals from. [16, Proposition 2.8].

THEOREM 4. Let X be o Banach space, and let
U= {(En)nza CX |21 €1, [ontr~aa] €1, neNL
The follewing assertions are equivalent.
(a) X has property U in its bidual X**.

' (b) Whenever € > 0, (z,)8%, € U, K 48 a conver subset of X, and &**
is in the weak™ closure of K, then there are z € K and ny € N satisfying

2™ = 2+ 2o || < g + &

(c) Wﬁer&e’uer £ > 0, ()32 € U, (2,)2, C Bx, and £* is g weak"
cluster point of (#n)5%y, then there are u € conv{z;,z,...} and ng € N
satisfying

| 5™ = | <0+

(d) Whenever & > 0, (2,)%, € U, and (2,)3, C By, then there are -

ng € N, u € conv{2y,..., 2}, and t € conv{zn,+1, Znot2, . - -} satisfying
It =k 2yl € ng +e.

(e) For every (2,)%%, € U and every o** € By, there is a net (z24) in
Bx weak* conwverging to x** such that if € > 0, then there is ag such that
Jor every o > ag there is some n, € N satisfying .

l2** = 2o + &ny || £ M + &
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Proof. The equivalence of the conditions (a), (b) and (e) is immediate
from Theorem 3.

(b)=-(c) is obvious by taking K = conv{zy, z2,...} in (b).

{c)=-(d). Let z** be an arbitrary weak™ cluster point of (z,)52, (such
a point exists because By« is weak* compact). By (c), there are u €
conv{zy, 22, ...} and ng € N satisfying

(3) |le** —u+ zp, || <ng+e/2.

We can suppose that u € conv{z1,. .., #n, } (because (3) holds if one replaces
ng by n > no). Put K = conv{zng+1, Zng42,- .-} If now

It — v+ znyll >n0+e  VEEK,
then K and B = B(u — #4,,n0 + €) can be separated. Hence, for some
z* € By,
sup{Rez"(v) :v € B} = Rex™(u — &n,) + 1m0+ < Rez™(f) Vte K.
Consequently,
g € < Re (2™ — w4 2p )(2*) £ |2 — u + @, || £ no +2/2,

a contradiction.

(d)}=>(e}). We argue by contradiction. Suppose that, for some (z,)3%, €
and ** € Bx«., there is no such net. Note that, for any weak™ neighbour-
hood V' of z**, the set Bx NV is non-empty (because £** belongs to its
weak™ closure}, and observe that there are € > 0 and a convex weak* neigh-
bourhood W of #** such that

(4) |&* —z+ 2| >n+e, Vze ByNW, neN.

(If this were false, then, for the set of all & = (W, &), where W is a convex
weak™ neighbourhood of #** and & > 0 (directed in the natural way), a net
(#a) satisfying (&) could be chosen.)

We shall follow the proof of (iii)=-(iv) of Proposition 2.8 in [16]. Pick
any z) € Bx NW and put

K]_ = (1 -+ e)B_X’w« 4 Zp — &q.

This is a weak™ compact set not containing z** (by (4)). Hence there is a

convex weak® neighbourhood Vi © W of g** such that Ky M Vy = @, which
means

lo—zi+ai] >14+e YveW.
Next pick any z; € Bx NVi, put '
Ky = (24 ¢&)Bx« + conv{zy, 22} — 2,
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and choose a convex weak® neighbourhood ¥V, ¢ Vi of £* such that
KNV, =0, which means

lv—w+zel| >2+¢  YoeVs, ué€conv{z,z}.

We continue in this manner and thus we inductively define a sequence
(Vn)52,; of convex sets (weak* neighbourhoods of 2**) such that V3 D V3 O
..., and a sequence (2,)5%) in By such that, for all n € N, 2,11 € V;, and

[v=u+an|| >n+e Vo€ Vo,ueconv{z,..., 2.}
This contradicts (d), since conv{zp41, Zn42,- . .} CVpforalln e N

Remark. In Theorem 4, the special cases of (b), (c) and (d)} with
ng = 1, and (e) with n, = 1 are all equivalent to the condition that X is an
M-ideal in X** (cf. [16, Proposition 2.8)).

It is known [16] that the property of being an M-ideal in the bidual is
separably determined. The same is true for property U,

COROLLARY B. A Banach space X has property U in X** if and only if
every aepureble closed subspace Y of X has property U in T,

Proof. This is obvious from the equivalence (a}<(d) of Theorem 4. m

The Godun set G{X) of a Banach space X is the set of all scalars A
such that || Ixw — Awx|| = 1. This notion was introduced and investigated
in [9]. The property of belonging to the Godun set is separably determined:
A€ G(X) if and only if X € G(Y) for every non-reflezive separable closed
subspace Y of X (cf. [9, Lemma 2.5)).

For given scalars A, one can associate classes of Banach spaces X having
property U in X** for which A € G(X). By the above, these classes are
separably determined. In particular, for 1 € G(X), 2 € G(X} and {1+ o
la| =1} € G(X) (in the complex case), this means the following.

ConroLLaRY 6. A Banach space X is an HB-subspace (resp. a u-ideal
with property U or an h-ideal with property U) in X** if and only if every
separable cloged subspace Y of X has the same property in Y™,

4. Banach spaces having property U in their biduals, and spaces
of compact operators. A. Lima [15] proved that X has property U in
X* whenever K(X,X) has property U in span(K (X, X) U {I}). Using
Theorem 1, we shall establish the following improvement of this result (cf.
also Corollary 8 below). '

Tueorem 7. Let X and Z be two Banach spoces such that there exists
a surjection Q € L(Z, X) (i.e. X is isomorphic to a quotient space of Z).
If K(2,X) has property U in span(K(Z, X) U {Q}), then X has property
U in X,
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Proof. To show that X has property U in X**, we use Theorem 1,
(c)=>(a). Put

A — {Q**z** . z** E Z** \{O}, Hz* & SZ*, z**(z*) o ||z**”}.

Since Q** is surjective, we have A = X** by the Bishop-Phelps theorem.
Let z** = @**2** € A with z** € Z*\ {0} and z* € Sz satisfying
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2**(z*) = [[z**||. Let (2,)2%, be a sequence in X such that ||z < 1 and

lZnts — Znl) <1, n € N. Put Sy = 2* ® %, n € N. Then S, € K(Z,X),
152l = [lz"[ - lzall <1, {1Sn42 = Salt = 27| - [lEnta ~ zall < 1,

and

S:L*Z** - z*w(z*)wn — ||Z**H93m n & N.
Applying Theorem 1, (a}=>(c), for K(Z, X) in span(K (Z, X)U{Q}), we can
find S € K{Z,X) and ng € N so that

[12"@ — § & Sy || < mo-
Put

1o “1—5**,2**.
2zl
Then xz € X (because S is compact) and
I 1
S**z** :t S**z**

llz=] [lz=={| "

S Q™ — 8% = S331 < no.
Hence, X has property U in X**. u

& — 2 % g, || =

Kk ok
e

COROLLARY 8. If o Banach space X can be equivalently renormed in
such a manner that, for its renormed version X, K(X,X) has property U
in span(K (X, X) U {I}), then X has property U in X**.

Using the well-known fact that every separable Banach space is a quo-
tient space of £1, we get the following result.

COROLLARY §. Let Z be a Banach space having o guotient space isomor-
phic to £1, and let X be o separable Banach space. If K(Z,X) has property
Uin L(Z, X), then X has property U in X**.

For a separable Banach space X, Corollary 9 gives immediately: if

’I‘{ (€1, X) has property U in L(£y, X} for an equivalently renormed version

£1 of £1, then X has property U in X**. We shall eventually prove in The-
orem 12 that this assertion is true without the assumption of separability.

- As we already mentioned, if X has property U in X**, then X* has the

Radon-Nikedym property. Therefore we get from Corollary 8 the following
result.
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CoRrOLLARY 10. Let the dual space X* of o Banach space X not have
the Radon~Nikodgm property. Let X and X be any equivalently renormed
versions of X. Then K(X,X) does not have property U in L(X, X).

By Corollary 10, e.g. K(X,X) does not have property U in L(X, X)
whenever X contains a subspace isomorphic to £;. This improves Theorem 10
of [14], where the above fact was established for the case of semi-M-ideals.

Let X and Z be Banach spaces, and let Y be a closed subspace of X.
If, in Theorem 7, K(Z, X) hag property U in L(Z, X}, and there exists a
surjection @ from Z onto ¥ (and not omto X), then, by the method of
its proof, we are not able to conclude that ¥ has property U in ¥™*. We
can do this, using another method, if we replace K(Z,X) by the (generally
smaller) subspace F(Z,X) = Z*® X of all operators that are uniformly
approximable by finite rank operators.

PROPOSITION 11. Let X and Z be Banach spaces, and suppose that
F(Z,X) has property U in L(Z, X). If a closed subspace Y of X is isomor-
phic to o quotient space of Z, then'Y has property U in Y+,

Proof. Denote by j : ¥ — X the inclusion mapping and by @ € L(Z, ¥)
a surjection. Consider y** = y* +y= € ¥Y**, where y* = 7r.yy**j—‘ and
yt =y —y* € YL, We have to show that [jy™**| = [y*| implies y~ = 0.

We can find *** = z* + o+ € X***, where 2* = mxz™* and z*- =
ot e X‘L, with j***ﬂ:*** — yw* and Hm***ﬂ — ”,y***” (beca.use j*** is
the adjoint of an isometric mapping). From the equality 7y G = j***'n"x,
it is obvious that * = 7**z* and y*~ = j***zL. For a given £ > 0 pick
y** & Sy satisfying [iy*]] € y*(y™) +&. Then find 2** 7 0 such that
Q™ z** = y**. Consider f = z** ® £*** € L(Z,X)", defined by fl( =
g (T*2*), T € L(Z,X). Then f = g+ h, where g = 2™ ®'x* and
h = 2** @ p+ are defined in the same manner as f. It can be easily seen
that

flzeax = glz-ex, gl = llglzvex|l = iz} - 271
Suppose now that [ly***| = [ly*||. Then
] < 2] e = e -l I < 121 fie®]

Hence || f|| = ||g|l, and consequently b = f — g = 0. Thexefore
0=h(jQ) = &~ (" Q" 2") = (Y™ = v ) 2 v —e
As £ > 0 was arbitrary, this implies y* =0. =

TuEOREM 12. Let X be o Bonach space. I]i K(fl,X) has property U in
L(El, X)) for an equivalently renormed version £y of £y, then X has property
U in X**. - :
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Proof. Since (@1)* has the approximation property, K(El, X):ﬁ(fl, X).
By Proposition 11, every separable closed subspace ¥ of X has property U
in ¥**. This means that X has property U in X** (cf. Corollary §). m

If X is a non-reflexive Banach space such that K (¢, X) has property U
in L{#, X) (recall that K(£1, X) is an ideal in L(£;, X)), then

{)“ ”IL(’51=X)* - ‘\PH = 1} - G(X)a
where P is the {unique) norm one projection on L(4y, X)* with ker P =

K(f1, X)L (cf. [21, Theorem 15]). This result together with Theorem 12
vields, in particular, the following.

CoOROLLARY 13. Let X be a Banach space. If K(41,X) is an HB-
subspace of L(£y,X), then X is an HB-subspace in X**. If K(£1,X) is
a u-ideal (resp. an h-ideal) with property U in L{¢y, X ), then X is a u-ideal
(resp. an h-ideal} with property U in X**,

In [21], Corollary 13 was proved for separable X.

We conclude with some observations concerning the proof of Proposition
11. In the case when ) : Z — Y is a quotient mapping, 2** can be chosen
to have norm one (because Q** is the adjoint of an isometric mapping), and
we also have ||h|| > ||ly~{| —e. If we now suppose that || f]| = |g|| +||k||, then

gl = N1l 2 L] = [zl + 1B 2 ™|+ v~

Hence [[y***|| = |*|| + lly*|l. The same reasoning shows that IIFIl = R
implies ||y***|| > |ly~]. Thus we have proved the following result.

PROPOSITION 14. Let X, Y and Z be'B_@nach spaces such that ¥ is a sub-
space of X and a quotient space of Z. If F(Z,X) is an M-ideal (resp. HB-
subspace) in L(Z,X), then Y is an M-ideal (resp. HB-subspace) in Y**.

As the property of being an M-ideal in the bidual is separably de-
termined, Proposition 14 irnplies that X 45 an M -ideal in X** whenever
K{t61,X) is an M-ideal in L(£y, X). This fact was proved in [16] in a dif-
ferent (less elementary) way. In [16], it is also proved that if K (€1, X) is
an M-ideal in L{{;, X) for an infinite-dimensional Banach space X, then X
is non-reflexive. Concerning property U, the similar result does not hold:
e.g. K(41,4p) has property U (is even an HB-subspace) in L(fy,£,) for
1 <p < oo (cf. [18] or [20]).
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