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Therefore 0 < f(g) < 1. We assume that pAp = {Ap : A complex} for each
minimal idempotent p. To p there corresponds a linear functional ¢(z) on
A with pzp = ¢(z)p for all z € A. It is known that ¢(z) is a state on 4
(see [10, p. 358]). Consider any f € Ps. We have f(pzr*zp) = ¢(z*z)f ().
Inasmuch as 0 < f(p) < 1 we see that

sup{f(pz*zp) : f € Py} < d(2"x).
Therefore zp € D(P) for all ¢ € A and so0, by Lemma 2.1, D(P) D L. Let
|z| be the C*-seminorm induced by P via Lemma 2.1, If || = 0 then, by
the same lemma, ¢(z*z) = 0 as ¢ is a state. Therefore pa™xp = 0 or zp = 0.
This holds for every minimal idempotent p and therefore 2X = (0). As A is
semiprime we see that z = 0 if z € X, Thus ] is a C*-norm on Z.
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Toeplitz flows with pure point spectrum
by

A, IWANIK (Wroctaw)

Abstract. We construct strictly ergodic 0-1 Toeplitz flows with pure point spectrum
and irrational eigenvalues. It is also shown that the property of being regular is not a
measure-theoretic invariant for strictly ergodic Toeplitz flows. :

Introduction. Toeplitz flows introduced in [J-K] have been exploited
to construct dynamical systems with various ergodic properties [W, D-I,
D, B-K, D-K-I, I-L]. On the other hand, some basic questions concerning
possible dynamic properties of Toeplitz flows—such as spectral invariants in
the strictly ergodic case-—remain unresolved. Although the existence of non-
regular Toeplitz sequences with pure point spectrum has long been known
[D-1], the proof, relying on a result of Wiener and Wintner, gave us no insight
into a possible structure of the spectrum. In the present note we propose an
explicit construction of Toeplitz flows that have pure point spectrum with-
out being regular. The new eigenvalues that do not belong to the maxirnal
equicontinuous factor can be made either rational or irrational, which settles
the questions posed in [I-L]. : _ -

In Section 2 we construct a Toeplitz flow which has a pure point spectrum
with an irrational eigenvalue. The construction uses William’s “Toeplitz
sequences constructed from subshifts” with some modifications (cf. [I-L])
allowing us to apply methods of group extensions. In Section 3 we adapt
this construction to obtain a strictly ergodic non-regular Toeplitz flow with
rational pure point spectrum. In particular, we can cohstruct two strictly
ergodic Toeplitz flows which are measure-theoretically isomorphic and one
is regular while the other is not—showing that the property ‘of being regu-
lar is not measure-theoretically invariant. This complernents an observation
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28 A. Iwanik

-in [I-L} where it was proved that the numerical value of regularity is not
topologically invariant.

It should be remarked that there exist strictly ergodic 0-1 subshifts with
any given pure point spectrum. Such examples, called Sturm-Toeplitz se-
quences, were constructed by C. Grillenberger [G]. Our aim is to construct
pure point spectra with irrational eigenvalues within the ¢lass of 0~1 Toeplitz
flows.

1. Definitions and notation. According to [J-K] a noo-periodic se-
quence n € {0, 1}% is called Toeplitz if for every n € Z there exists a positive
integer p such that 1| n+pZ = const. The (minimal) subshift O(n) defined as
the orbit closure of 5 in ({0,1}%,8), where Sw(j) = w(j + 1), is called the
Toeplitz flow. For basic properties of Toeplitz flows the reader is referred
to [W]. We recall that there always exists a sequence 1 < py < pg < ...
with p; | pj11 such that every integer n belongs to the p,-periodic part of
n, called the p;-skeleton, for some j. If the sequence (p;) is chosen in such
a way that no pj-skeleton is periodic with a smaller period then (p;) is
called a period structure for 5. The p;-skeleton has density d,; in Z; the
sequence (d;) is increasing and its limit is called the regularity d(n) of #.
If d(n) = 1 then the Toeplitz flow is called regular. It is then strictly er-
godic and measure-theoretically isomorphic to the rotation ¢ — x 4+ 1 of
the monothetic group A,y of (p;)-adic integers. In general, the group rota-
tion {Ap,), 1) can be identified as the maximal equicontinuous factor of the
Toeplitz flow (O(7), ). Here the canonical factor projection  is the con-
tinuous extension of the natural embedding §"(n} ~ n, where n is viewed
as a (p;)-adic integer. :

One way of constructing Toeplitz flows is the method of “Toeplitz se-
quences constructed from subshifts” developed by S. Williams. The idea is
to construct inductively a Toeplitz sequence using finite words of a given
subghift ¥ as building blocks. As this method will play an essential role in
our construction, we refer the reader to [W], Section 4, for more details. In
our case the method will be slightly modified and specislized to subshifts
¥ which represent ergodic group rotations. As a result we obtain Toeplita
flows isomorphic to certain group extension type skew products (cf. [I-L],
Section 3, where a similar approach led to rank-1 Toeplitz flows with a con-
tinuous component in the spectrum). We also remark that, by construction,
all our flows satisfy the condition (x) of [B-K], so they have trivial topological
centralizers (see [B-K] or [D-K-L]). '

In the sequel we deal with group extensions of the form

Ty : AxG— AxG,

where (4, 1) is an exgodic group rotation, @ is a metrizable compact abelian
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group, ¢ : A — G is a Borel measurable function called a cocyele, and
Tylw,y) = (z+ 1,y + ¢(z)).

(In our construction the group G will be equal to either the circle group
T = R/Z or a finite cyclic group Z/sZ.) We recall that two cocycles @,
are called cohomologons, ¢ ~ 2, if there exists another cocycle g such that
the equality

$(z) =(z) + g(z + 1) — g(x)
holds a.e. in A. It is then easy to see that Ty and Ty are measure-thecretic-

ally isomorphic with respect to the product Haar measure, and if one is
uniquely ergodic then so is the other.

2. Irrational eigenvalue. Fix an irrational number o and a sequence
of integers 1 < p1 < pa < ... such that p;|p;+1. Choose a uniquely ergodic
0-1 subshift Y which is Borel isomorphic to the rotation ¢ — = 4 e of T,
e.g. a Sturmian sequence (see [H]). We construct a family of 0-1 Toeplitz
se'quences 7' indexed by the infinite sequences ¢ == tyi5 . .. taking values in
{1,2}. - o

Step 1. Choose a positive integer I' and let ny be such that p,, >
21', Define {2 = 21* and for ¢y = 1,2 fix a 0-1 word W* of length [*.
Use this word to fill out the initial segment of each interval of the form
[kpnys (k + 1)pn,) in Z. This produces a part of n*; more precisely,

n'(J + kpn,) =W (7)
forj =0,1,...,I* =1 and k € Z. Note that in each interval ey s (k+1)Pn,)
the number of remaining “holes” is equal to p** = p,, — [**. Some of these

intervals will be completed in the next step by p**-words from V™. Let b** be
a pogitive integer such that

6" p el < |1 all/4,

where || || denotes the distance from the nearest integer. We also require
that bt be greater than or equal to the total number of p**-words in Y. We
write
[rres = {b”'pb.ll 1f g =1,
abrpt if ug = 2,

Step 2. Find ng > ny such that p_ﬁ_,Q/SZ2 > 2b* py, and
2/Pna < %0l /Py =12

Now fill out the last b (if 1, = 1) or 2b“ (if 12 '=_ 2) intervals [kpn;
(k4 1)pn,) in [0, pn,) using all the possible p“_-word-.s in Y (words may be
repeated). Repeat the pattern periodically with period pn, to obtain the
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Pny-periodic part of 5*. Note that none of the newly inscribed symbols ap-
pears with period py,. This property will be maintained throughout further
steps of the construction, ensuring that the pp,-skeleton of 7* will coincide
with the p,,-periodic part constructed in Step I (the same will be true of
any pn,). The number of unfilled positions in each pn,-segment is equal to

p'r‘lf‘s =pn2 — (&E‘l“’ ’l" lLng)z L1y Lg € {112}‘

ny

Let b*1'% be such that
B < [1%al /4
and no less than the number of all p*1*2-words in ¥'. We write

ltlbzha _ b‘-l‘«ﬂpblbz
- L1632 b1l
P

ifbg = 1,
i‘ft,g, = 2,

It is clear how to continue the construction. After Step j we obtain the
Pn;-skeleton of n°. Exactly %24 holes of the interval [0, p,;) have been
cormpleted in this step; they have all been situated in the at most 2h*143-+-t3-1
initial (j odd) or terminal (j even) py,_,-segments of the interval and, by
periodicity, of each interval [kpn,,(k + L)pn,). It is easy to see that for
any ¢ thf_e resulting sequence 7* is Toeplitz with period structure (p.nj). The
regularity d is expressed by the formula

: 20
i)=&
FEN
where & == [**!24 [p, .. By construction we have

pnj/jQ > 2bL1‘2"'*j”1pnj_l, 2/pnj < ||ZL]‘L2"‘UH1CY”/PW_1,

and
HZLILZ-nLja“ < Hluf,g...t,j_lau/z,
80

> et < oc
i

For the rest of the construction it will be convenient to parametrize the
circle group T as the interval [—1/2,1/2), Now every v € K can be treated
mod 1 as an element of T, so the fraction /p has a definite meaning in T
for every p > 1. According to this convention we define

o0

. £L1L2...LJ
Br==3" —2em

Fe=1 p“a‘
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Tt is essential that 8° # 8 whenever & # . Indeed, if 43t2...t51 =
Wty ..ty and, say, o = 1, U =2 then

. , Jertzet oy oc 1
gopp el N L
pnj k=j+1p'n._rc

since the last series is bounded by 2/pn,, ., . We deduce that the family 5*, ¢ €
{1,2}N, has cardinality continuum in T. In particular, there are uncountably
many 4%’ for which o+ " is irrational. From now on we fix one such ¢ and
write

JBL =3, N =7,

pl-ll-zmbj :-ij, pritaccbi — bJ
Since the monothetic groups Ay, Ap,;) are isomorphic, we will simply
write p; for pn, and A for A(pnj).

lbll.g...uj — lj‘,

For the rest of this section we show that the Toeplitz flow O(n) is strictly
ergodic and measure-theoretically isomorphic to the ergodic rotation of the
monothetic group A x T by its topological generator (1,a+ ).

By construction, it follows as in [W] and [I-L] that (4, 1) is the maximal
equicontinuous factor of O(n) and from the measure-theoretic point of view
(for all invariant meagures) the subshift O(n) can be identified with the
group extension

Ty Ax T AxT, -
where Ts(z,y) = (3 + 1,y + ¢(z)) for some measurable function $. As in
[-L] we identify ¢ as the function g, where C is the “regular” part of A.
More precisely, we let A; = p; A and denote by F; the set of the I positions
in [0, p;) that were filled out in Step j. Now the union of cosets

6= U (45 +#
ke Fy
is an open subset of A whose inverse image by the canonical projection
71 O(n) — A consists of those elements w which contain 0 in their p;-
skeleton but not in the p;-y-skeleton. Note that & is the Haar measure of
C;. The set C is defined as the disjoint union

o0 .
c={J0
and corresponds to those w € O(n) which have the 0-th coordinate in the
periodic part of the sequence. The Haar measure of C is equal to d{(n).
Roughly speaking, the a-rotation ¢(z) of y intervenes in the skew product
whenever the symbol at the 0-th coordinate does not appear periodica.lly in
z (cf. [W], where the set C' is denbted by m{G)). , -
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We define v(z) = é(z) — @ = —alg(®). Our aim is to show 1 ~ 3, ie.
Y(z) = B+g(z+1)—g(z) a.e. in T for some measurable function g : A — T,
We note that 9 = 3.7, ¥, where ¢y = —alg,. Define g;(z) = 0 on 4,
and

k
gi{z) = Y sz —7)
r=1

forx € A;+k, k= 1,...,p; — 1. Recall that the set F; is contained
in either an initial or a terminal subinterval of [0,p;) of length at most
269" 1p,;_1 < pi/4* (§ > 1). By definition, this implies that g; is constant
on the remaining A;-cosets. Since the sum of the values of ; over all the
Aj-cosets is equal to — e, we deduce that ||g;(z)]| < |[I?a| except for a set
of measure less than 1/7%. This sequence is summable and so is || o], hence
the series

g(zy =Y g;{a)
=1

converges a.e. to a function g : A — T. We also have g;(z+1)~g; () = 9;(z)
except for z € Aj +p; — 1, in which case gj(@+ 1) — g;(z) = —g;(z) = Va.
In other words,

95( +1) — g;(z) = ¥;(2) + hy(x),

where h;(z) = Vala,4p,-1(x). Since g;(z) and 4;(z) are summable a.e.,
the series

h(z) = hy(z)
=1
converges a.e. First we are going to show h; ~ —f;, where 8; = ~Ua/ p; € T

To do so we may consider h,; as a real-valued function assuming two possible
values: 0 and & all, Now write h;(z) = hy(z) ~ { hy. We have [h;(z)] =

¥ efl/p; except for 5 € Aj + p; — 1, where hy(z) = £{|Fa|[(1 ~ 1/p;). Let
fi(z) =00n A; and

.
filx) = Z hy(z—r)
r=]
if € Aj+k k=1,...,p;. The function f; : 4 — R is well defined because
iy hy(z —r) = 0. We obtain ‘
L S - i) = hyle) = hi(e) +
and |f;(z)| € |[Fe. This implies that the series f(a) = 37, fj(x) con-
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verges everywhere and

o0
fla+1) = f(z) = h(z) + ) B = h(z) + 5.
=1
Consequently, h ~ —fF and % ~ B, implying ¢ ~ o + 8. Since o + 3 is
irrational, this implies that the skew product is uniquely ergodic, from which
the strict ergodicity of the Toeplitz flow O(n) follows.
We have obtained the following result;

THEOREM 1. For every sequence of integers 1 < py < pa2 < ..., pj|Pj+1,
there exists a strictly ergodic 0-1 Toeplilz sequence n such that the Toeplitz
flow O(n) has A,y as its mazimaol eguicontinuous factor and is measure-
theoretically isomorphic to the rotation of the monothetic group A,y X T by
a topological generator. In particular, O(n) has a pure point spectrum with
an trrationol eigenvalue.

3. Regular and non-regular Toeplitz flows can be isomorphic.
We will adapt the construction of Section 2 to obtain a non-regular Toeplitz
flow which is measure-theoretically isomorphic to an ergodic rotation of
A x %/ sZ, where Z/sZ is the cyclic group of s elements and A denctes the
maximal equicontinuous factor of the flow,

THEOREM 2. Let s > 2 be an integer. For every sequence of integers
1< py < po < ... such that py|pj+1 end (8,p;) = 1, 7 2> 1, there ez
ists @ strictly ergodic 0-1 Toeplitz sequence n such that A(pj.) i3 the mazi-
mal equicontinuous factor of the Toeplitz flow O(n) and O(n) is measure-
theoretically tsomorphic to the rotation of the monothetic group Ay X L/ 8L
by its topological generator (1,1).

Proof. Fix a 0-1 subshift ¥ isomorphic to the cyclic rotation of Z/sZ,
e.g. Y equal to the orbit of the s-periodic sequence (0. ..01)*°, We will use
words in Y to construct n (now the number of words of any fixed length is
bounded by 8). By pasging to a subsequence we may agsume 22 Pi—1/p5 <
oo, Ay in Section 2, at Step j of the construction we fill out the holes in
each interval [kp;, (k -~ 1)p;) by completing B=Yinitial (odd 7} or terminal
(even j) pyq-intervals with all possible words of length p!~1. We may clearly
assurae s |1, go i = pipi~t = 0 (mods). The functions ¢, ¥, g; are
defined as before with o replaced by the generator 1 of Z/sZ. Now

gy{z + 1) — gy(z) = ¥;(z)
and the functions g; vanish off the sets supp(g;) of summable measures, so
the series g{z) = Z;:d,ﬂ;‘ (z) converges a.e.and
g(z + 1) — glo) =p(x). -
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This implies ¢ ~ 1, so the skew product T is isomorphic to the rotation by
(1,1) of the product group. The rotation is ergodic since s, p; are relatively
prime. Now the strict ergodicity follows as in Section 2.

COROLLARY. There exist a non-regulor strictly ergodic 0-1 Toeplitz se-
quence ) and a reqular 0-1 Toeplitz sequence w such that the subshifts O(n)
and O(w) are measure-theoretically isomorphic,

Proof. Let 5 be the sequence constructed in Theorem 2. Next use (sp;)
to construct a regular 0-1 Toeplitz sequence w with maximal equicontinuous
factor A¢sy,)- By [W], the flow O(w) is measure-theoretically isomorphic to
the ergodic rotation of A,y y = Agy,) ¥ Z/sZ by the topological generator
1~ (1,1). Now the assertion follows from Theorem 2.

It should be noted that if a Toeplitz flow O(n) is measure-theoretically
isomorphic to its maximal equicontinuous factor {for some invariant mea-
sure) then it is necessarily regular. Indeed, it is easy to see that if w € O(n)
is not a Toeplitz sequence then |~ n(w)| > 1; on the other hand, if n is
non-regular then almost every w is not Toeplitz ((W], Prop. 2.5). It fol-
lows that if a Toeplitz flow with pure point spectrum is non-regular then
there exists an eigenfunction which is orthogonal to all the functions of
the form f(r(z)). By ergodicity, the corresponding eigenvalue does not oc-
cur in the maximal equicontinuous factor, so the two systems cannot be
isomorphic.

References

[B-K] W.BulatekandJ. Kwiatkowski, Strietly ergodic Toeplitz flows with positive
entropies and trivial centralizers, Studia Math, 103 (1992), 133-142.
[D] T. Downarowicz, The Choguet simplex of invariant measures for minimal
flows, Israel J. Math. 74 (1991), 241256,
[D-I] T. Downarowicz and A. Iwanik, Quasi-uniform convergence wn. compact
dynamical aystems, Studia Math. 89 {1988), 11-25,

[D-K-L] T.Downarowice,J Kwiatkowskiand Y. Lacrolx, 4 criterion for Toapliz
Flows to be topelogicaily isomorphic and applications, Collog, Math. 68 (1995),
219-228.

[G] Q. Grillenberger, Zwei kombinatorische Konstruktionen fiir strift ergodische
Folgen, thesis, Univ. Erlangen-Niirnberg, 1970,
(B G. A. Hedlund, Sturmian minimal sets, Amer. J. Math, 66 {(1944), 605-620.
-1} A.Iwanikand Y. Lacroix, Some construstions of sirietly ergodic non-regular
Toeplitz flows, Studia Math: 110 (1994), 191-203.

[J-K] K. Jacobs and M. Keane, 0-1 sequences of Taeplztz type, Z. Wahrach., Verw.
‘Gebiete 13 (1969), 123-131.

icm

Toeplitz flows with pure point spectrum 35

[W] 8. Williama, Toeplitz minimal flows which are not uniquely ergodic, ibid. 67
(1984), 95-107.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCLAW
WYBRZEZE WYSPIANSKIEGO 27

50-370 WROCLAW, POLAND

Bomeili IWANIK@IM . PWR. WROC.PL

Received October 28, 1994 (3367)
Revised version November 16, 1995




