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Duality on vector-valued weighted harmonic Bergman spaces
by
SALVADOR PEREZ-ESTEVA (México)

Abstract. We study the duals of the spaces AP*(X) of harmonic functions in the
unit ball of R™ with values in & Banach space X, belonging to the Bochner L apace
with weight (1 - |¢])%, denoted by LP*(X). For 0 < e < p — 1 we construct continuous
projections onto AP*(X) providing a decomposition LP*(X) == AP*(X) + MP*(X). We
discuss the conditions on p, « and X for which AP*(X)* = A*(X*) and MP*(X)* =
M9(X™*), 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodjm property
of X™.

1. Introduction. The duality of Banach spaces of harmonic functions
on bounded domains of R™ belonging to LP, 0 < p £ oo, with respect to a
weighted Lebesgue measure has been extensively studied (see for example
[1~3, 7-9]). The purpose of this paper is to study the duality of the spaces
AP*(X) of harmonic functions on B™ (the unit ball in R™) with values in a
Banach space X, belonging to L? with the weight (1 — |z|)*. We follow the
approach of Coifman and Rochberg in [3] and the idea is to extend to all
o > 0 their family of kernels b, (z,y) defined for nonnegative integers o and
satisfying the reproducing formula

9@ = [ oW)balm.y)(1 - ly))*dy
B" . .

for any bounded harmonic function on B™, Then each b (zy) defines a
continuous projection Py onto AP¥(X) for 0 < o < p — 1, that can be used
to prove the identity AP*(X)* = A9%(X™) for any X, and can be extended
t0 0 < @ < max{p~1, g~ 1}, provided X™* has the Radon-Nikodjm property
(in particular when X = C); ¢ always denotes the conjugate exponent of p,
1/p+1/g = L. As in [3], we obtain a good representation for ba(m,y) and
consequently estimates of |ba (z,y)| allowing us to extend the corresponding
integral operators to Banach-valned functions.
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We denote by P(z,v) the Poisson kernel in B",

1~ (rR)? N FV—
e S
kg

P(ﬂ:,y) =

where {Y}}; is the real orthonormal basis on §"~! = 8B™ for spherical
harmonics of degree k, and @ = Rz', y = ry’, with R = [z| and r = |y|,

X will always denote a Banach space and LP*(X) (LP* if X = C) the
space of Bochner measurable functions (clagses) in B™ with values on X

satisfying
11l = { [ 17(2)

We say that a function f: B" — X is harmonic if Af =37 | 82 /022
= 0, in the topology defined by the norm of X. Notice that for a continuous

function f: B® — X = Y™, the following statements are equivalent:

?(1—fz))*d }/p»(oo.

(a) f is harmonic,

(b) f is weak® harmonic, that is, for every y € ¥, {y, F(:)) is a scalar
harmonic function.

That (a) implies (b) is obvious. If (b) holds and f is continuous on B#
then

(1) (z f@) = [ (2 f@W)P(z,y)dy
. Sn—l
for every z € V. Hence
(2) = [ )Pz, dy,
Sn -1

where (2) is understood as a Bochner integral. Then one can prove as in the
scalar case that f is harmonic, The restriction on f to be continuous on B®
can be easily removed considering an appropriate dilation of B™.

From (2) it follows that every X-valued harmonic function # on B™ has

a representation
=3 a¥f(z) =Y anlalt v},
k,j kyj

with ax; € X, and with uniform convergence on compact subsets of B™,

DEFINITION 1.1, Let 0 < p < 0o and @ > 0. Define AP%(X) to be the

intersection of LP*(X) with the space of all X-valued harmonic functions
on B™
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Recall that for a» Banach space X with dual X* having the Radon-
Nikodjm. property (sce [4]) we have for 1 <p < co and 1/p+1/g = 1,
(3) Lpa(x)* = chx(X*)
with the duality

()= [ {f(=), 9@))(1 - |2))* da
B
where g € LT%(X*) and f € L¥¥(X). Actually, (3) holding for any p and o

as above characterizes thig property on X™.

2. Projections and continuity. In this section we define continuous
projections onto the spaces A**(X), for & > 0. For o > 0, we let

I'2k+n+a+1)

4) < I+ DI(2k + n)

(RT)kY:jk (ml)ij(yl).

The convergence of ’che sories follows from the estimate

S 1Y) < OS,
J

where S, is the dimension of the linear span of {Y}}; and S, = O(k" %)
(see [11]). The kernel b, has the following reproducing property:

Prorosrrion 2.1, If g(z) s @ bounded harmonic functz’on in B™ then

g(z) = fg (@, 9)(1 — [y)* dy.

Proof. It is enough to prove it for g(z) = V()
[ a(w)balz, ) dy
B'n
T(2k+n+o+1)
k() 22 (1 —
=Yf (@ J LAl =1 F D@k + ) Y

where y = ry/, and the orthogonality of the {YJ’“} was used. The last ex-
pression equals

I'(2k-+n+a+l)
Tlo+ 1)I'(2k + 1)

Yi(e) J ) = YE(e). m
0 |

Now we need a representation for the kernel be (2, y) that can be handled
easier than the series (4). For functions ¢ : (0,00) = Rand 0 < a < 1, we
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define Abel’s operator by

f 4% ds.

DL

PROPOSITION 2.2. Let o = m + @, with m a nonnegative integer and
0<a <1 Then

bm(may) =

D%(t) =

1 [ 1-—an1 aE-{-m
Tla+l(l-a) |° 2

Proof Let k € N. Then, using the identity

PR, 0*y) -
=T

e “1g = -1 FEL)
(5) RO SaeEmt

we have

2+
& e n4-o4-2k _

D praet: =(n+a+2k). .. (n+a+ 2%k ~1)DFgrtatk-2
Tk +nt o+ DIl —a) ok
= T(2k + n) ¢ '
Thus
rrm F2k+n+a+1)I'1-a) ,
1—n né& n+ct P2 — k
[ D 50 oy P(Rm,gy)Lﬁﬁ— TOh+m) .

We complete the proof by integrating the series defining P(z,y). w
To estimate b, (2, y) define § = |y| "2y and &(y) = 1 — |y|. Then (see [3])
(6) |2 =3l ~ & -y + e(y)
LemMA 2.3. For any o > 0, there exists C > 0 auch that
ba(@, )| £ C(L+ [z —F]7"""),

as |y| — 1.

Proof. By Proposition 2.2, we have to estimate g ~"D% f’z"km

P(Rz', 0*y'). We follow [3] and set by, (z,y) = (8/0r) m"“lP(}?a" ). Fix

0<e<1.If g <& then P(Re/, p®y') and each bm(RJ ,0%y") are bounded,
hence

Qﬂ' o,

32+m

G o"TP(Rz, o%y')| £ Cog™ 2,
Then again by (5),

1—n né& 5\2+m Thrie e P2t

o "D PR P(Ra',0%y')| < Ch.
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Let o > €. Then

e H2tm
892+m

+m

-n+oeP Ra' Q J n+aP(Rﬂ’:’,S2y’)|(g-—s)—a ds

i

2
< im
0
g/2 s ¢
f f f =TI+ + 15,
0 £/2 T

where 7 will be chosen later. As before, I < C5. Since ‘we have Em(m,y) <
Cslz— =", for y = ¢*y’ (see [3]), after expanding the partial derivative
in the integrands and using (6), we obtain

.
ds

bSO | g
05 24 —n—m
i ]."I~ g—y|+1- ’
~(e—T)® z {1+ o=yl S
Ce : g ds
< .
I3 = (‘m - y,ll o 1 - 92)n+m+1 ! (Q“ 5)0‘

Cr j
Sl e e e

1-&

If we choose + such that

|z —¢'| +1-— g
e-T=o——%—);

we have /2 < 7 < g and
Cy < Cy
(lz =y + 1~ A)PHe = | — g2yl jnte

I I3 £

This completes the proof. m

Now we study the continuity of the integral operator with kernel bo(z, y).
First we extend Lemma 3.3 of [3]: :

LEMMA 24. [F0<p<oo, >0, ~1<B<p—1 and
Ef@) = [ lba{zy)i( - l)*f ) dy,
Bﬂ
then K is o bounded linear operator on LP8,

Proof. We reproduce the proof of the corresponding lemma in [3]: Let
K = Ky + Kj, where :

Kif =K(xpf), Kaof=K(xamnf)
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and D = {z : |z| < 1/2}. By Hélder’s inequality, K is bounded on L8,
Since also
|z —Fi~ |z ~—yl+ely) aslyi—1,
Lemma 2.3 implies
Ko f(z} < CSf(z),
where

- Ty 0

B"I,
is the adjoint of the operator

S*f(y) = E(;’)”B[ (ra;(;)m +1) _.  glw)ds,

considering L9~P4/? ag the dual space of L¥4.

To see that 5* is continuous first observe that |S* f(y)| is bounded by
a constant multiple of M f(y), the Hardy-Littlewood maximal function (cf.
[6, p. 154]). Then a calculation shows that (1 — |2|)~#%/P satisfies the 4,

condition on B™ (see [6]) provided ~8g/p > —1, that is, B < p — 1. Hence
M is bounded on L%=F/P u

THEOREM 2.5. If 1<p<oo,0<a, -1 <B<p~1 and
P, f(z) = f ba(z, y)(1 — |y|)* f(y) dy,
B'n
then P, is a continuous projection of LF# (X) onto APP(X).

Proof By Lemma 2.3, P, is a continuous operator on LP?(X). Let K
be a compact subset of B” Since 8 < p -1, we have g(a — 8) + 8 > -1,
thus 27 € L95(X). Hence for z € K,

(") [ Paf(@)llx < CENS racxy-

Now we are ready to prove that P, f(z) is harmonic for every f & LPP(X):
any such f is the limit in LP?(X) of a sequence {f, },, of hounded functions.
Examining the series defining b, (, y), we see that each P, f,, (z) is harmonic,

By (7) the convergence of { Py fr}e is also uniform on compact sets, hence
Pof € AP*(X). w

We define Q@ = I ~ Py and for 0 < e < p = 1, MP*(X) = Q,LP*(X).
Then we can write

LPH(X) = APH(X) + MP(X).

In the next section we describe the spaces M?*(X) based on Weyl's lemma
(cf. [2]) and we calculate their duals in some situations.
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3. The dual of AP¥(X). We notice that every g € A‘I"‘(X *) defines a
bounded linear functional on AP*{X), namely

(8) W)= [ (#(x), g{z)){1 — |e[)* da

Bn
THECREM 3.1. For 0 < a<p—1, everyl € AP"‘{X)* can be unigquely
represented as in (8).
Proof Let g: B™ ~+ X* be defined by ‘
(2,9(z)) = (ba(z,)2,0), z€B" z€X.

The uniform convergence on compact subsets of B™ x B™ of the series defin-
ing by (z,y) can be used to prove that g is continuous. If we let

T2k +n+a+1)
() = Z e+ )T@k+m) 7 O

we see that (z,g(-)} is the uniform limit on compact subsets in B" of the
sequence of harmonic functions {hg(-)z,1}. Thus g is weak® harmonic and
hence harmonic. Let ¢ &€ C®(B™, X) (the space of compactly supperted
O functions on B™ with values in X'} and K be its support. Then

Pty = ( ] o o)1~ [31)* dy, )

= [ {($)bal-y)(1 ~ ly))*. 1) dy

X

= [ (6(y),9(y))(1 - ly))* dy.

an

Notice that the insertion of ! in the integral sign is legitimate since the
mapping y — ¢(y)ba (-, ¥} is bounded in K with values in AP*(X). Since Py
is continuous, { o P, € LP*(X)* is represented by g and g € 49%(X*} (use
[5, Th. 12.6] and the density of C°(B™, X) in LF*(X)). Finally, g is the
limit in A9%(X*) of g.(z) = g(rz) as ¢ —» 1—. Since each g, is bounded it
follows that P,g, = g, hence by Fubini’s Theorem,

(Padil) = [ (Pudly), a(u))(1 — )" dy
Bn
for ¢ as before. That g represents ! follows again from the density of
P,C=(B", X) in AP*(X). The uniqueness is due to the fact that the rep-
resentation. of [ o P, in LP*(X)" is unique. w :
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Remark The expression for gz} in the previous proof can be given
more precisely as

(7.0(0)) = [ (alz,y)®2)duy), ze€B", z€X,
A"
where 1 is a Borel measure on B™ of bounded g-variation with values in X*
(see [51).

For 1 < p < 2, Theorem 3.1 can be improved when X™ has the Radon-
Nikodym, property:

THEOREM 3.2. Let X be a Banach space such that X* has the Rodon-
Nikodym property. Then

(APH(X))* = AT (X™)
forp>1 and 0 < a < max{p—1,q— 1}. The equality above is in the sense
of (8).

Proof By Theorem 3.1, the only case we have to consider is when
l<p<2andp—1<a<g—1 Letle (AP*(X))* By (3), if we consider
a continuous extension of I to LP*(X), there exists g € LI%(X™) such that
for f € A¥*(X),

f)= [ (f(z),g(e))(L - fz|)* de
Bn
Since a < g — 1, it follows that for any such f,

[ (#(@), 921 = |2))>dz = [ {f(a), Pagl@))(1 ~ |2])* da
B™ B"
(assume first that f is bounded, use Lemma 2.4 and Fubini’s Theorem, then
for arbitrary f € AP*(X) take the limit as r — 1 of this expression using f,
as in the proof of Theorem 3.1), Thus ! is represented by P,g € A% (X*).
To prove the uniqueness of the representation, we let g € A7*(X™) be such
that for every f € AP¥(X),

J @) gl -
B'ﬂ
Wiite g(z) = 3y ; |3/*YF (2 )ak;, ary € X*, with nniform convergence on
compact sets. Given 0 < r < 1 and ¢ € X, let f(z) = |x/"Y}(z')e. Then

)% dw = 0.

[ (=lF ¥ (@)e, g(@)) (1 ~ )™ dz = (ax;, €) f@”*"”" Y1 0)* deo.
rB" 0

By letting r —+ 1, we see that {e, ax;) = 0, and since e was arbitrarily chosen
we get g=10. u
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Remark. In [7-9], ngocka proved the continuity of the family of op-
erators L, : Harm? -- W; for nonnegative integers r and every 0 < 5 <
7, originally defined by Bell [1], where Harm? is the intersection of the
space of harmonic functions on B™ with the Sobolev space W2(B"), and
Iff/'; is the closure in W7 (B™) of CZ°(B™). Using L, she proved that the
dual of APP¢(C) can be identified with Harmg. This suggests the possibil-
ity of exploring the continuity of L, in the Banach-valued versions of the

gpaces above to give conditions on X for which APP(X)" & Harmg(X™*)
holds. :

THEOREM 3.3. The following are equivalent:

(a) X* has the Radon—Nikodgm property.

(b) MPH(X)* = MI%(X*) for every 0 < a < min{p —1,q — 1}.

(¢) There exists 0 < o < min{p — 1,q — 1} such that MP2(X)* =
MaE(x).

Proof. (a)=-(b). To prove that every [ € MP*(X)* can be represented
by a function in A ?*(X™*) we have to modify slightly the proof of Theo-
rem 3.2, extending ! to LFY(X) by [ o Q, and noticing that the continuity
of Qo implies that for any f € LF¥(X) and g € L9%(X*),

[ (Qaf(a),g(@) (1 - la)dz = [ {(z), Qug(@))(1 - |a])* da.

- The uniqueness follows as in the proof of Theorem 3.1.

(b)={a). It is enough to prove that (3) holds. Let [ &€ LP*(X)* and g1,
g2 be the functions in A?%(X*) and M9%(X*) representing [ o P, and {0 Q,
respectively (they exist by hypothesis and Theorem 3.1). Then g = g1 + g2
represents [ m '

Finally, we give a description of the spaces Mre (X). .

TI-IEORBM 34. If0< < p—1 then MP*(X) is the closu're in LPe(X)
(1= |z])-*ACE(B") & X.

Proof If X = C and ¢ = (1~ |2)7*Ay with ¢ € ACL(B"), then
gince b, (z, y) is harmonic in each variable we have

Pad(z) = [ ba(z,y)A¢(y)dy =0,

Bﬂ

that is, ¢ € M¥*(C). Conversely, if we assume that there exists a function
f & MPQ\(L — |z])~*AC®(B™) then by Hahn-Banach's theorem, we
can find g € L9* such that :
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©) [ ha)gE)(1-|a)*de=0 forhe (1~|z))"*ACE(B™)
Bﬂ
and

(10) f flz

By Weyl’s lemma. (see [10]), (9) implies that g € A%*(C). By the continuity
of @, we can approximate f in MPY(C) by a sequence of functions f, ¢
Q,C(B™) each of them bounded due to the estimate in Lemma 2.3. Also,
g is the limit in A9%(C) of a sequence of bounded harmonic functions g, ,
where r, — L. Since g,, = Pagr,, we can use (9) to show that

[ fa(@)gr (@)1~ Ja))*
g

Yyg(z) (1~ |z|)* de = 1.

and hence

ff 2)(1 - ) dz = 0,

contradicting (10). To complete the proof just notice that the continuity of
P, and Q, implies that A7*(C)®@ X and MP*(C) ® X are dense in AP*(X)
and MP?*(X) respectively. m
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