

STUDIA MATHEMATICA 118 (1) (1996)

Duality on vector-valued weighted harmonic Bergman spaces

by

SALVADOR PÉREZ-ESTEVA (México)

Abstract. We study the duals of the spaces $A^{p\alpha}(X)$ of harmonic functions in the unit ball of \mathbb{R}^n with values in a Banach space X, belonging to the Bochner L^p space with weight $(1-|x|)^{\alpha}$, denoted by $L^{p\alpha}(X)$. For $0<\alpha< p-1$ we construct continuous projections onto $A^{p\alpha}(X)$ providing a decomposition $L^{p\alpha}(X)=A^{p\alpha}(X)+M^{p\alpha}(X)$. We discuss the conditions on p, α and X for which $A^{p\alpha}(X)^*=A^{q\alpha}(X^*)$ and $M^{p\alpha}(X)^*=M^{q\alpha}(X^*)$, 1/p+1/q=1. The last equality is equivalent to the Radon-Nikodým property of X^* .

1. Introduction. The duality of Banach spaces of harmonic functions on bounded domains of \mathbb{R}^n belonging to L^p , 0 , with respect to a weighted Lebesgue measure has been extensively studied (see for example <math>[1-3, 7-9]). The purpose of this paper is to study the duality of the spaces $A^{p\alpha}(X)$ of harmonic functions on B^n (the unit ball in \mathbb{R}^n) with values in a Banach space X, belonging to L^p with the weight $(1-|x|)^{\alpha}$. We follow the approach of Coifman and Rochberg in [3] and the idea is to extend to all $\alpha > 0$ their family of kernels $b_{\alpha}(x, y)$ defined for nonnegative integers α and satisfying the reproducing formula

$$g(x) = \int_{B^n} g(y)b_{\alpha}(x,y)(1-|y|)^{\alpha} dy$$

for any bounded harmonic function on B^n . Then each $b_{\alpha}(x,y)$ defines a continuous projection P_{α} onto $A^{p\alpha}(X)$ for $0 < \alpha < p-1$, that can be used to prove the identity $A^{p\alpha}(X)^* = A^{q\alpha}(X^*)$ for any X, and can be extended to $0 < \alpha < \max\{p-1, q-1\}$, provided X^* has the Radon-Nikodým property (in particular when $X = \mathbb{C}$); q always denotes the conjugate exponent of p, 1/p + 1/q = 1. As in [3], we obtain a good representation for $b_{\alpha}(x,y)$ and consequently estimates of $|b_{\alpha}(x,y)|$ allowing us to extend the corresponding integral operators to Banach-valued functions.

¹⁹⁹¹ Mathematics Subject Classification: 46E15, 46E40.

We denote by P(x, y) the Poisson kernel in B^n ,

$$P(x,y) = \frac{1 - (rR)^2}{(1 - 2rRx' \cdot y' + r^2R^2)^{n/2}} = \sum_{k,j} (Rr)^k Y_j^k(x') Y_j^k(y'),$$

where $\{Y_j^k\}_j$ is the real orthonormal basis on $S^{n-1} = \partial B^n$ for spherical harmonics of degree k, and x = Rx', y = ry', with R = |x| and r = |y|.

X will always denote a Banach space and $L^{p\alpha}(X)$ ($L^{p\alpha}$ if $X=\mathbb{C}$) the space of Bochner measurable functions (classes) in B^n with values on X satisfying

$$||f||_p = \left\{ \int_{B^n} ||f(x)||_X^p (1-|x|)^{\alpha} dx \right\}^{1/p} < \infty.$$

We say that a function $f: B^n \to X$ is harmonic if $\Delta f = \sum_{i=1}^n \partial^2 f / \partial x_i^2 = 0$, in the topology defined by the norm of X. Notice that for a continuous function $f: B^n \to X = Y^*$, the following statements are equivalent:

- (a) f is harmonic,
- (b) f is weak* harmonic, that is, for every $y \in Y$, $\langle y, f(\cdot) \rangle$ is a scalar harmonic function.

That (a) implies (b) is obvious. If (b) holds and f is continuous on $\overline{B^n}$ then

(1)
$$\langle z, f(x) \rangle = \int_{S^{n-1}} \langle z, f(y') \rangle P(x, y') \, dy'$$

for every $z \in Y$. Hence

(2)
$$f(x) = \int_{S^{n-1}} f(y') P(x, y') \, dy',$$

where (2) is understood as a Bochner integral. Then one can prove as in the scalar case that f is harmonic. The restriction on f to be continuous on $\overline{B^n}$ can be easily removed considering an appropriate dilation of B^n .

From (2) it follows that every X-valued harmonic function f on \mathbb{B}^n has a representation

$$f(x) = \sum_{k,j} a_{kj} Y_j^k(x) = \sum_{k,j} a_{kj} |x|^k Y_j^k(x'),$$

with $a_{kj} \in X$, and with uniform convergence on compact subsets of B^n .

DEFINITION 1.1. Let $0 and <math>\alpha > 0$. Define $A^{p\alpha}(X)$ to be the intersection of $L^{p\alpha}(X)$ with the space of all X-valued harmonic functions on B^n .

Recall that for a Banach space X with dual X^* having the Radon-Nikodým property (see [4]) we have for $1 \le p < \infty$ and 1/p + 1/q = 1,

$$(3) L^{p\alpha}(X)^* = L^{q\alpha}(X^*)$$

with the duality

$$\langle f, g \rangle = \int_{\mathbb{R}^n} \langle f(x), g(x) \rangle (1 - |x|)^{\alpha} dx,$$

where $g \in L^{q\alpha}(X^*)$ and $f \in L^{p\alpha}(X)$. Actually, (3) holding for any p and α as above characterizes this property on X^* .

2. Projections and continuity. In this section we define continuous projections onto the spaces $A^{p\alpha}(X)$, for $\alpha > 0$. For $\alpha > 0$, we let

(4)
$$b_{\alpha}(x,y) = \sum_{k,j} \frac{\Gamma(2k+n+\alpha+1)}{\Gamma(\alpha+1)\Gamma(2k+n)} (Rr)^k Y_j^k(x') Y_j^k(y').$$

The convergence of the series follows from the estimate

$$\sum_{j} |Y_j^k(x')|^2 \le CS_k,$$

where S_k is the dimension of the linear span of $\{Y_j^k\}_j$ and $S_k = O(k^{n-2})$ (see [11]). The kernel b_{α} has the following reproducing property:

PROPOSITION 2.1. If g(x) is a bounded harmonic function in B^n then

$$g(x) = \int_{\mathcal{B}^n} g(y)b_{\alpha}(x,y)(1-|y|)^{\alpha} dy.$$

Proof. It is enough to prove it for $g(x) = Y_j^k(x)$:

$$\int\limits_{B^n} g(y)b_{\alpha}(x,y)(1-|y|)^{\alpha}\,dy$$

$$= Y_j^k(x) \int_{B^n} Y_j^k(y')^2 r^{2k} (1-r)^{\alpha} \frac{\Gamma(2k+n+\alpha+1)}{\Gamma(\alpha+1)\Gamma(2k+n)} \, dy,$$

where y = ry', and the orthogonality of the $\{Y_j^k\}$ was used. The last expression equals

$$Y_{j}^{k}(x) \frac{\Gamma(2k+n+\alpha+1)}{\Gamma(\alpha+1)\Gamma(2k+n)} \int_{0}^{1} r^{2k+n-1} (1-r)^{\alpha} dr = Y_{j}^{k}(x). \blacksquare$$

Now we need a representation for the kernel $b_{\alpha}(x, y)$ that can be handled easier than the series (4). For functions $\varphi : (0, \infty) \to \mathbb{R}$ and $0 \le \alpha < 1$, we

define Abel's operator by

$$D^{\alpha}\varphi(t) = \int_{0}^{t} \frac{\varphi(s)}{(t-s)^{\alpha}} ds.$$

PROPOSITION 2.2. Let $\alpha = m + \overline{\alpha}$, with m a nonnegative integer and $0 < \overline{\alpha} < 1$. Then

$$b_{\alpha}(x,y) = \frac{1}{\Gamma(\alpha+1)\Gamma(1-\overline{\alpha})} \left[\varrho^{1-n} D^{\overline{\alpha}} \frac{\partial^{2+m}}{\partial \varrho^{2+m}} \varrho^{n+\alpha} P(Rx', \varrho^{2}y') \right]_{\varrho=\sqrt{r}}.$$

Proof. Let $k \in \mathbb{N}$. Then, using the identity

(5)
$$\int_{0}^{\varrho} s^{x-1} (\varrho - s)^{y-1} ds = \varrho^{x+y-1} \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$

we have

$$D^{\bar{\alpha}} \frac{\partial^{2+m}}{\partial \varrho^{2+m}} \varrho^{n+\alpha+2k} = (n+\alpha+2k) \dots (n+\overline{\alpha}+2k-1) D^{\bar{\alpha}} \varrho^{n+\overline{\alpha}+2k-2}$$
$$= \frac{\Gamma(2k+n+\alpha+1)\Gamma(1-\overline{\alpha})}{\Gamma(2k+n)} \varrho^{n+2k-1}.$$

Thus

$$\left[\varrho^{1-n}D^{\bar{\alpha}}\frac{\partial^{2+m}}{\partial\varrho^{2+m}}\varrho^{n+\alpha}P(Rx',\varrho^2y')\right]_{\varrho=\sqrt{r}} = \frac{\Gamma(2k+n+\alpha+1)\Gamma(1-\overline{\alpha})}{\Gamma(2k+n)}r^k.$$

We complete the proof by integrating the series defining P(x, y).

To estimate $b_{\alpha}(x,y)$ define $\widetilde{y}=|y|^{-2}y$ and $\varepsilon(y)=1-|y|$. Then (see [3])

(6)
$$|x - \widetilde{y}| \sim |x - y'| + \varepsilon(y)$$
 as $|y| \to 1$.

LEMMA 2.3. For any $\alpha > 0$, there exists C > 0 such that

$$|b_{\alpha}(x,y)| \leq C(1+|x-\widetilde{y}|^{-n-\alpha}).$$

Proof. By Proposition 2.2, we have to estimate $\varrho^{1-n}D^{\alpha}\frac{\partial^{2+m}}{\partial \varrho^{2+m}}\varrho^{n+\alpha}$. $P(Rx',\varrho^2y')$. We follow [3] and set $\widetilde{b}_m(x,y)=(\partial/\partial r)^{m+1}P(Rx',ry')$. Fix $0<\varepsilon<1$. If $\varrho\leq\varepsilon$ then $P(Rx',\varrho^2y')$ and each $\widetilde{b}_m(Rx',\varrho^2y')$ are bounded, hence

$$\left| \frac{\partial^{2+m}}{\partial \varrho^{2+m}} \varrho^{n+\alpha} P(Rx', \varrho^2 y') \right| \le C_0 \varrho^{n+\alpha-2}.$$

Then again by (5),

$$\left|\varrho^{1-n}D^{\bar{\alpha}}\frac{\partial^{2+m}}{\partial\varrho^{2+m}}\varrho^{n+\alpha}P(Rx',\varrho^2y')\right|\leq C_1.$$

Let $\varrho > \varepsilon$. Then

$$\left| D^{\bar{\alpha}} \frac{\partial^{2+m}}{\partial \varrho^{2+m}} \varrho^{n+\alpha} P(Rx', \varrho^{2}y') \right| \leq \int_{0}^{\varrho} \left| \frac{\partial^{2+m}}{\partial s^{2+m}} s^{n+\alpha} P(Rx', s^{2}y') \right| (\varrho - s)^{-\bar{\alpha}} ds$$

$$= \int_{0}^{\varepsilon/2} + \int_{\varepsilon/2}^{\tau} + \int_{\varepsilon}^{\varrho} = I_{1} + I_{2} + I_{3},$$

where τ will be chosen later. As before, $I_1 \leq C_2$. Since we have $\widetilde{b}_m(x,y) \leq C_3|x-\widetilde{y}|^{-n-m}$, for $y=\varrho^2y'$ (see [3]), after expanding the partial derivative in the integrands and using (6), we obtain

$$\begin{split} I_{2} &\leq C_{4} \int\limits_{\varepsilon/2}^{\tau} \frac{ds}{(|x-y'|+1-s^{2})^{n+m+1}(\varrho-s)^{\bar{\alpha}}} \\ &\leq \frac{C_{5}}{(\varrho-\tau)^{\bar{\alpha}}} \{1+(|x-y'|+1-\varrho^{2})^{-n-m}\}, \\ I_{3} &\leq \frac{C_{6}}{(|x-y'|+1-\varrho^{2})^{n+m+1}} \int\limits_{\tau}^{\varrho} \frac{ds}{(\varrho-s)^{\bar{\alpha}}} \\ &\leq \frac{C_{7}}{(|x-y'|+1-\varrho^{2})^{n+m+1}} (\varrho-\tau)^{1-\bar{\alpha}}. \end{split}$$

If we choose τ such that

$$\varrho - \tau = \varrho \left(\frac{|x - y'| + 1 - \varrho^2}{6} \right),$$

we have $\varepsilon/2 \le \tau \le \varrho$ and

$$I_2, I_3 \leq \frac{C_8}{(|x-y'|+1-\varrho^2)^{n+lpha}} \leq \frac{C_9}{|x-\widetilde{
ho^2y'}|^{n+lpha}}$$

This completes the proof.

Now we study the continuity of the integral operator with kernel $b_{\alpha}(x, y)$. First we extend Lemma 3.3 of [3]:

LEMMA 2.4. If $0 , <math>\alpha > 0$, $-1 < \beta < p - 1$ and

$$Kf(x) = \int_{B^n} |b_{\alpha}(x,y)| (1-|y|)^{\alpha} f(y) dy,$$

then K is a bounded linear operator on $L^{p\beta}$.

Proof. We reproduce the proof of the corresponding lemma in [3]: Let $K = K_1 + K_2$, where

$$K_1f = K(\chi_D f), \quad K_2f = K(\chi_{B^n \setminus D} f),$$

and $D = \{x : |x| \le 1/2\}$. By Hölder's inequality, K_1 is bounded on $L^{p\beta}$. Since also

$$|x - \widetilde{y}| \sim |x - y| + \varepsilon(y)$$
 as $|y| \to 1$,

Lemma 2.3 implies

$$K_2 f(x) \le CSf(x),$$

where

$$Sf(x) = \int_{\mathbb{R}^n} \frac{\varepsilon(y)^{\alpha}}{(|x-y| + \varepsilon(y))^{n+\alpha}} f(y) \, dy$$

is the adjoint of the operator

$$S^*f(y) = \frac{1}{\varepsilon(y)^n} \int_{B^n} \left(\frac{|x-y|}{\varepsilon(y)} + 1 \right)^{-n-\alpha} g(x) \, dx,$$

considering $L^{q,-\beta q/p}$ as the dual space of $L^{p\beta}$.

To see that S^* is continuous first observe that $|S^*f(y)|$ is bounded by a constant multiple of Mf(y), the Hardy-Littlewood maximal function (cf. [6, p. 154]). Then a calculation shows that $(1-|x|)^{-\beta q/p}$ satisfies the A_q condition on B^n (see [6]) provided $-\beta q/p > -1$, that is, $\beta < p-1$. Hence M is bounded on $L^{q,-\beta q/p}$.

Theorem 2.5. If $1 , <math>0 < \alpha$, $-1 < \beta < p - 1$ and

$$P_{\alpha}f(x) = \int_{\mathcal{B}^n} b_{\alpha}(x,y)(1-|y|)^{\alpha}f(y)\,dy,$$

then P_{α} is a continuous projection of $L^{p\beta}(X)$ onto $A^{p\beta}(X)$.

Proof. By Lemma 2.3, P_{α} is a continuous operator on $L^{p\beta}(X)$. Let K be a compact subset of B^n . Since $\beta < p-1$, we have $q(\alpha - \beta) + \beta > -1$, thus $\varepsilon^{\alpha-\beta} \in L^{q\beta}(X)$. Hence for $x \in K$,

(7)
$$||P_{\alpha}f(x)||_{X} \leq C(K)||f||_{L^{p\beta}(X)}.$$

Now we are ready to prove that $P_{\alpha}f(x)$ is harmonic for every $f \in L^{p\beta}(X)$: any such f is the limit in $L^{p\beta}(X)$ of a sequence $\{f_n\}_n$ of bounded functions. Examining the series defining $b_{\alpha}(x,y)$, we see that each $P_{\alpha}f_n(x)$ is harmonic. By (7) the convergence of $\{P_{\alpha}f_n\}_{\alpha}$ is also uniform on compact sets, hence $P_{\alpha}f \in A^{p\alpha}(X)$.

We define $Q_{\alpha} = I - P_{\alpha}$ and for $0 < \alpha < p - 1$, $M^{p\alpha}(X) = Q_{\alpha}L^{p\alpha}(X)$. Then we can write

$$L^{p\alpha}(X) = A^{p\alpha}(X) + M^{p\alpha}(X).$$

In the next section we describe the spaces $M^{p\alpha}(X)$ based on Weyl's lemma (cf. [2]) and we calculate their duals in some situations.

3. The dual of $A^{p\alpha}(X)$. We notice that every $g \in A^{q\alpha}(X^*)$ defines a bounded linear functional on $A^{p\alpha}(X)$, namely

(8)
$$l(\phi) = \int_{B^n} \langle \phi(x), g(x) \rangle (1 - |x|)^{\alpha} dx.$$

THEOREM 3.1. For $0 < \alpha < p-1$, every $l \in A^{p\alpha}(X)^*$ can be uniquely represented as in (8).

Proof. Let $g: B^n \to X^*$ be defined by

$$\langle z, g(x) \rangle = \langle b_{\alpha}(x, \cdot)z, l \rangle, \quad x \in B^n, \ z \in X.$$

The uniform convergence on compact subsets of $B^n \times B^n$ of the series defining $b_{\alpha}(x,y)$ can be used to prove that g is continuous. If we let

$$h_k(x) = \sum_j rac{\Gamma(2k+n+lpha+1)}{\Gamma(lpha+1)\Gamma(2k+n)} Y_j^k(x) Y_j^k,$$

we see that $\langle z,g(\cdot)\rangle$ is the uniform limit on compact subsets in B^n of the sequence of harmonic functions $\langle h_k(\cdot)z,l\rangle$. Thus g is weak* harmonic and hence harmonic. Let $\phi\in C_{\rm c}^\infty(B^n,X)$ (the space of compactly supported C^∞ functions on B^n with values in X) and K be its support. Then

$$\langle P_{\alpha}\phi, l \rangle = \left\langle \int\limits_{K} \phi(y)b_{\alpha}(\cdot, y)(1 - |y|)^{\alpha} dy, l \right\rangle$$
$$= \int\limits_{K} \left\langle \phi(y)b_{\alpha}(\cdot, y)(1 - |y|)^{\alpha}, l \right\rangle dy$$
$$= \int\limits_{R^{n}} \left\langle \phi(y), g(y) \right\rangle (1 - |y|)^{\alpha} dy.$$

Notice that the insertion of l in the integral sign is legitimate since the mapping $y \to \phi(y)b_{\alpha}(\cdot,y)$ is bounded in K with values in $A^{p\alpha}(X)$. Since P_{α} is continuous, $l \circ P_a \in L^{p\alpha}(X)^*$ is represented by g and $g \in A^{q\alpha}(X^*)$ (use [5, Th. 12.6] and the density of $C_c^{\infty}(B^n, X)$ in $L^{p\alpha}(X)$). Finally, g is the limit in $A^{q\alpha}(X^*)$ of $g_r(x) = g(rx)$ as $r \to 1-$. Since each g_r is bounded it follows that $P_{\alpha}g_r = g_r$, hence by Fubini's Theorem,

$$\langle P_{\alpha}\phi, l \rangle = \int_{\mathcal{B}^n} \langle P_{\alpha}\phi(y), g(y) \rangle (1 - |y|)^{\alpha} dy.$$

for ϕ as before. That g represents l follows again from the density of $P_{\alpha}C_{\mathbf{c}}^{\infty}(B^n,X)$ in $A^{p\alpha}(X)$. The uniqueness is due to the fact that the representation of $l \circ P_{\alpha}$ in $L^{p\alpha}(X)^*$ is unique.

Remark. The expression for g(x) in the previous proof can be given more precisely as

$$\langle z, g(x) \rangle = \int_{B^n} (b_{\alpha}(x, y) \otimes z) d\mu(y), \quad x \in B^n, \ z \in X,$$

where μ is a Borel measure on B^n of bounded q-variation with values in X^* (see [5]).

For $1 , Theorem 3.1 can be improved when <math>X^*$ has the Radon-Nikodým property:

THEOREM 3.2. Let X be a Banach space such that X^* has the Radon-Nikodým property. Then

$$(A^{p\alpha}(X))^* = A^{q\alpha}(X^*)$$

for p > 1 and $0 < \alpha < \max\{p-1, q-1\}$. The equality above is in the sense of (8).

Proof. By Theorem 3.1, the only case we have to consider is when $1 and <math>p-1 \le \alpha < q-1$. Let $l \in (A^{p\alpha}(X))^*$. By (3), if we consider a continuous extension of l to $L^{p\alpha}(X)$, there exists $g \in L^{q\alpha}(X^*)$ such that for $f \in A^{p\alpha}(X)$,

$$l(f) = \int_{B^n} \langle f(x), g(x) \rangle (1 - |x|)^{\alpha} dx.$$

Since $\alpha < q-1$, it follows that for any such f,

$$\int_{B^n} \langle f(x), g(x) \rangle (1 - |x|)^{\alpha} dx = \int_{B^n} \langle f(x), P_{\alpha} g(x) \rangle (1 - |x|)^{\alpha} dx$$

(assume first that f is bounded, use Lemma 2.4 and Fubini's Theorem, then for arbitrary $f \in A^{p\alpha}(X)$ take the limit as $r \to 1$ of this expression using f_r as in the proof of Theorem 3.1). Thus l is represented by $P_{\alpha}g \in A^{q\alpha}(X^*)$. To prove the uniqueness of the representation, we let $g \in A^{q\alpha}(X^*)$ be such that for every $f \in A^{p\alpha}(X)$,

$$\int_{B^n} \langle f(x), g(x) \rangle (1 - |x|)^{\alpha} dx = 0.$$

Write $g(x) = \sum_{k,j} |x|^k Y_j^k(x') a_{kj}$, $a_{kj} \in X^*$, with uniform convergence on compact sets. Given 0 < r < 1 and $e \in X$, let $f(x) = |x|^k Y_j^k(x') e$. Then

$$\int_{rB^n} \langle |x|^k Y_j^k(x')e, g(x) \rangle (1-|x|)^{\alpha} dx = \langle a_{kj}, e \rangle \int_0^r \varrho^{n+2k-1} (1-\varrho)^{\alpha} d\varrho.$$

By letting $r \to 1$, we see that $\langle e, a_{kj} \rangle = 0$, and since e was arbitrarily chosen we get q = 0.

Remark. In [7-9], Ligocka proved the continuity of the family of operators $L_r: \operatorname{Harm}_p^s \to \mathring{W}_p^s$, for nonnegative integers r and every $0 \leq s \leq r$, originally defined by Bell [1], where Harm_p^s is the intersection of the space of harmonic functions on B^n with the Sobolev space $W_p^s(B^n)$, and \mathring{W}_p^s is the closure in $W_p^s(B^n)$ of $C_c^\infty(B^n)$. Using L_r she proved that the dual of $A^{p,ps}(\mathbb{C})$ can be identified with Harm_q^s . This suggests the possibility of exploring the continuity of L_r in the Banach-valued versions of the spaces above to give conditions on X for which $A^{p,ps}(X)^* \cong \operatorname{Harm}_q^s(X^*)$ holds.

Theorem 3.3. The following are equivalent:

- (a) X* has the Radon-Nikodým property.
- (b) $M^{p\alpha}(X)^* = M^{q\alpha}(X^*)$ for every $0 < \alpha < \min\{p-1, q-1\}$.
- (c) There exists $0 < \alpha < \min\{p-1, q-1\}$ such that $M^{p\alpha}(X)^* = M^{q\alpha}(X^*)$.

Proof. (a) \Rightarrow (b). To prove that every $l \in M^{p\alpha}(X)^*$ can be represented by a function in $M^{q\alpha}(X^*)$ we have to modify slightly the proof of Theorem 3.2, extending l to $L^{p\alpha}(X)$ by $l \circ Q_{\alpha}$ and noticing that the continuity of Q_{α} implies that for any $f \in L^{p\alpha}(X)$ and $g \in L^{q\alpha}(X^*)$,

$$\int \langle Q_{\alpha}f(x), g(x)\rangle (1-|x|)^{\alpha} dx = \int \langle f(x), Q_{\alpha}g(x)\rangle (1-|x|)^{\alpha} dx.$$

The uniqueness follows as in the proof of Theorem 3.1.

(b) \Rightarrow (a). It is enough to prove that (3) holds. Let $l \in L^{p\alpha}(X)^*$ and g_1 , g_2 be the functions in $A^{q\alpha}(X^*)$ and $M^{q\alpha}(X^*)$ representing $l \circ P_{\alpha}$ and $l \circ Q_{\alpha}$ respectively (they exist by hypothesis and Theorem 3.1). Then $g = g_1 + g_2$ represents l.

Finally, we give a description of the spaces $M^{p\alpha}(X)$

THEOREM 3.4. If $0 < \alpha < p-1$ then $M^{p\alpha}(X)$ is the closure in $L^{p\alpha}(X)$ of $((1-|x|)^{-\alpha}\Delta C_c^{\infty}(B^n)) \otimes X$.

Proof. If $X = \mathbb{C}$ and $\phi = (1 - |x|)^{-\alpha} \Delta \psi$ with $\psi \in \Delta C_c^{\infty}(B^n)$, then since $b_{\alpha}(x, y)$ is harmonic in each variable we have

$$P_{\alpha}\phi(x) = \int_{B^n} b_{\alpha}(x, y) \Delta \psi(y) dy = 0,$$

that is, $\phi \in M^{p\alpha}(\mathbb{C})$. Conversely, if we assume that there exists a function $f \in M^{p\alpha}(\mathbb{C}) \setminus (1-|x|)^{-\alpha} \Delta C_c^{\infty}(B^n)$ then by Hahn-Banach's theorem, we can find $g \in L^{q\alpha}$ such that

and

(10)
$$\int_{B^n} f(x)g(x)(1-|x|)^{\alpha} dx = 1.$$

By Weyl's lemma (see [10]), (9) implies that $g \in A^{q\alpha}(\mathbb{C})$. By the continuity of Q_{α} we can approximate f in $M^{p\alpha}(\mathbb{C})$ by a sequence of functions $f_n \in Q_{\alpha}C_{c}^{\infty}(B^n)$ each of them bounded due to the estimate in Lemma 2.3. Also, g is the limit in $A^{q\alpha}(\mathbb{C})$ of a sequence of bounded harmonic functions g_{r_n} , where $r_n \to 1$. Since $g_{r_n} = P_{\alpha}g_{r_n}$, we can use (9) to show that

$$\int_{B^n} f_n(x)g_{r_n}(x)(1-|x|)^{\alpha} dx = 0$$

and hence

$$\int_{B^n} f(x)g(x)(1-|x|)^{\alpha} dx = 0,$$

contradicting (10). To complete the proof just notice that the continuity of P_{α} and Q_{α} implies that $A^{p\alpha}(\mathbb{C}) \otimes X$ and $M^{p\alpha}(\mathbb{C}) \otimes X$ are dense in $A^{p\alpha}(X)$ and $M^{p\alpha}(X)$ respectively.

References

- S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128.
- [2] C. V. Coffman and J. Cohen, The duals of harmonic Bergman spaces, Proc. Amer. Math. Soc. 110 (1990), 697-704.
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L^p, Astérisque 77 (1980), 11-66.
- [4] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- [5] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Notas Mat. 116, North-Holland, Amsterdam, 1985.
- [7] E. Ligocka, The Hölder duality for harmonic functions, Studia Math. 84 (1986), 269-277.
- [8] —, Estimates in Sobolev norms || · ||^s_p for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, Studia Math. 86 (1987), 255-271.
- (9) —, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in Rⁿ, ibid. 87 (1987), 23-32.
- [10] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.

[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.

INSTITUTO DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO MÉXICO 04510 D.F., MÉXICO

> Received January 24, 1995 Revised version August 28, 1995

(3407)