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Algebras of holomorphic functions
with Hadamard multiplication

by

HERMANN RENDER and ANDREAS SAUER (Duisburg)

Abstract. A systematic investigation of algebras of holomorphic functions endowed
with the Hadamard procuet is given, For example we show that the set of all non-invertible
elements is dense and that each multiplicative functional is continuous, answering some
questions in the literature,

Introduction. Let f(z) = 3, an2™ and g(z) = 3200 b,2™ be power
series with radii of convergence ry and r, respectively. Then the Hadomard

product of f and ¢ is defined by

[+,8]
(1) Frglz) =3 anbnz™

nue)
Note that the radius of convergence of f* g is at least ry -rg'. Let now & be
an open domain of C ;= CU{oo} containing 0 and let H{G) be the set of all
holomorphic functions on & We call G admissible if for all f,g € H(G) the
Hadamard product f#g extends to a (unique) function of H(G), i.e. H(G) is
a commutative algebra. Examples of admissible domains are the open unit
disk D := {z € C: |2| < 1}, or more generally D, :={z ¢ C: |z < r} for
r>1, and also €\ {1} and so-called o~starlike regions like C_ := {zeC:
z & {1, 00)}; see [9] for details. A necessary condition for admissibility is that
G¢, the complement of &, 18 a multiplicative semigroup: if a,b € G° then
F(2) = 1/(a ~ z) and g{2) == 1/(b=- z) are functions in H(G} and f* g(z) =
1/(ab—z) has a pole at ab and therefore ab must be in G°. As a consequence G
always containg the open unit disk D, Conversely, if Gisa domain and Gisa
multiplicative semigroup then the famouns Hadamard multiplication theorem
states that fxyg is holomorphic on G (cf. [15]). Clearly H(G) is a completely
metrizable locally convex vector space (1.e. a Fréchet space) where the norms
are given by | f|x 1= sup,ex |f(2)| for an arbitrary compact subset X of G.
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It can be shown that the Hadamard muitiplication is continuous, henc
H(G) is a so-called By-algebra. Nonetheless, it is important to notice tha
the norms || x are not submultiplicative: indeed, using a result in [14] we car
show that H(G) is a Fréchet algebra if and only if 1 € G, or equivalently, i
and only if G contains the closed unit disk (cf. Theorem 2.8 and Proposition:
3.11 and 6.4).

The investigation of the algebra H (&) usually depends on the propertie
of the admissible domain G. But some results are generally true: In the firs
section it will be shown that the set of all non-invertible elements is dense i1
H(G), answering a question in [9] positively. In the following sections we wil
show that each multiplicative functional is continuous, answering a questio
in {10], and an explicit description is given. Let us now consider the (three
different types of admissible domains. As alrcady mentioned & containg th
open unit disk. Iirst assume that the number 1 is in the domain; then ¢
must contain the closed unit disk (otherwise G*N{z € C : |z| = 1} i
either a finite subgroup or a dense subset of the unit circle, contradictiny
the assumption 1 € &). This case will be discussed in Section 2 and it wil
be shown that H(G) is a so-called (Q-algebra with respect to the norm gives
by || fl|n = supnen, |an|. As a consequence one deduces that

co
2 2

g(Z) - 1 +na'r: &
nmU

is in H(G) provided that f(z) = ¥ pepan2™ is in H(G) and a,, # —1 for al
n € Ny (cf. Theorem 2.7).
Let us now assume that 1 is in G°. Then H(G) has a unit element give:

by

(2) y(z) = L iz” for all 2| < 1.

1—z

n=0

We have to consider two completely different cases. Firgt suppose that 1 i
not isolated in G°. By Lemuma 1 in [10], G is of a rather special form, namel;
a-starlike, and this case will be discussed in Section 3. For our purposes i
suffices to know that a-starlike domains are simply connected. This propert;
is the key to very simple proofs for characterizing the closed maximal ideal
of H(G). Moreover, the multiplicative functionals are given by considerin
the nth Taylor coeflicient, i.e., they are of the form 6, defined by 8,(f) = an
It remains to consider the case where 1 is an isolated point in G*. This cas
is more involved and completely different from the previous one. First, it i
clear that A:= G*N{z € C: 2| = 1} is a finite subgroup of the unit circl
and therefore 4 is the set of all kth roots of unity for a suitable k € N
Then G = G'U A'is an admissible domain containing the closed unit disk

Algebras of holomorphic Junetions 79

Identifying f & H(G) with £|G we can see H (G) as a subalgebra of & (@).
By separating the singularities one obtains a topalogical linear isomorphism

(3) T HG) ~ Hy@H(G), Tf=f+f

(cf. [10] for details), where H}, denotes the holomorphic functions f : \A
- C with f(oc) = 0 and ¢ 2 ¢ contains the closed unit disk. Hence the
study of H((} can be reduced to the algebra Ky and the already discussed
case where the domain containg the closed unit disk. Moreover, it is easy to
see that Iy and @?M 4y are lsomorphic topological vector spaces (see [10]).
Thus investigating A is the key to the general case, which will be done in
the fourth section. Clearly f is in the algebra Hy if and only if there exists
an entire function g with g(1/(1~2)) = f(z) and g(0) = 0, Tt is known that
the algebra H) is topologically and algebraically isomorphic to the algebra
By of all entire functions of zero exponential type with pointwise multipli-
cation and a suitable topology. The isomorphism is given by the theorem
of Wigert: for f € Hy therc exists a unique function 7 e B interpolating
the Taylor coefficients of f in the sense that f(n) = a, for all n € Np. As
worked out in [10] I;hci multiplicative functionals of Hy are given by point
evaluation, i.e., f s+ f(a) for o € C. We give a quite elementary method
for determining the multiplicative functionals. As a nice consequence it fol-
lows that the interpolating function f € Ep is just the Gelfand transform of
feH.

The fifth section is devoted to the study of the algebra Hy, which was
already started in [10]. One of our results states that every closed maximal
ideal of Hj, is the kernel of a multiplicative functional, answering a question
in [10] positively. Moreover, an element in Hy is invertible iff it is not in
the kernel of some multiplicative functional. This yields an elegant proof of
an invertibility criterion given in [8], In the sixth section an investigation
of H(G) is given for the third case, namely where 1 i3 isolated in G¢. As a
matter of fact, most results which arc valid for Hy carry over to this case.

Finally, lot uy fix some notations, The topological closure of a set M will
be denoted by M. Further, the kernel of a linear functional § is denoted by
ker ().

1. Density of non-invertible elements in H(G). In this section we
assume that ¢ is an admissible domain with 1 € G. If 1 is not isolated in
G° then by Lemma 1 in [10], G is simply connected. Since polynomials are
obviously non-invertible we infer that the set of non-invertible elements is
dense in H () for simply connected domains as polynomials are dense in
H(G) (this was already remarked in [9]). This is also-true in the isolated
case: : .
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1.1. THEOREM. Let G be an admissible domain with 1 € G. Then the
set of non-invertible elements is dense in H(G).

Proof By the above remarks we can assume that 1 is isolated in G©,
Let U ¢ C be an open set with 1 € U and (U \ {1}) C G. Consider the

sequence
0o

4) %(Z)_l——zmn'n—,'(l—-zﬁ—go nC

Then v, € H(G) and ~, — . Obviously v, is not invertible since the
coefficient of 2" in (4) is zero. We now show that every f € H(G) can
be approximated by a sequence of non-invertible elements. Clearly we can
assume that f is invertible. The sequence f,, = f*v, converges to f*~y = f
by the continuity of raultiplication. The functions f, are not invertible since

7n:.f~1*fn' n

2. The first case: G contains the closed unit disk. First we wil)
prove two easy lemmas which are true for all admissible domains and which
will be also used in other sections. We define the coefficient functionals
bn + H(G) = C by 6,(f) := an (where f(2) = 307 jan,2™ in |2| < 1), The
functionals 8, will play an important role throughout the paper. Note the
formula &, (f * 2™) = é,(f).

2.1. LEMMA. Let G be an admissible domain. Then &, is a confinuou
multiplicative functional and H(G) s semisimple.

Proof. For the continuity it suffices to show that fi, — 0 implies
6n(fx) — 0. But this is clear since f — 0 iraplies fi % 2™ = 6,(fi)2" — (
by continuity of multiplication. Let now f be in the radical of H{(G). Ther
8,(f) =0 for all n € Ny. The identity theorem yields f = 0. =

2.2. LEMMA. Let G be an admissible domain and let M be an ideal
Then, for each n € Ny, either M C ker(é,) or 2" € M. A prime idea
either contains all polynomials or it is equal to sorne ker(8y,).

Proof. If M is not contained in ker(,) then there exists f € M with
8 (f) 5% 0. Since fx 2™ € M and f = 2" = 8,(f)2™ it follows that 2" ¢ M
Now let M be a prime ideal. Suppose that M < ker(d,) for some n € Ny
Let f ¢ ker(8,). Then f*2" = §,(f)1z" =0 € M. Since M i prime we infe
that f € M (as 2" ¢ M). Hence M = ker(8,). Finally, it M s ker{8,) fm
aln e Ngthen z" € M foralln e Ny, w

Let now GG be an admissible domain which contains the closed unit disk

Hence each f € H(G), f(z) = Y .., anz", has a convergence radius » > |
and therefore (o, ), converges to zero. It follows that H(G) is a non-unita.
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normed algebra with respect to the submultiplicative norm || - |n defined by
(5) I1f llse s sup{l6n(f)] : € No} = sup |ay].
nglp

Let 7 be the compact-open topology on H(G). Since |a,| < max{|f (2)] :
2| = 1} it 1s clear that id : (H(G), m) ~ (H(G), || - ||x) is continuous.

It is well known that each algebra A can be embedded in a unital algebra
A in quite a formal way; see [18], For our purposes it is convenient to
adjoin the function v with 4(2) = (1 - 2)~! as a formal unit element. The
unitization H..(G) is the vector space yCx H(G) endowed with the product
Py Py (py+g) = Ay -+ Ag+pf+ fogfor A peCand f g€ H{G).
First we consider the simple case where G is a ball D, = {z € C : 2| <7}
for r € (1, 00].

2.3. THROREM. Let v > 1 and let f € H(D,) and f(z) = 350 0 anz"
for |2| < v Then v - f is invertible in H..(D.) iff an # 1 for all n € Ny.
The spectrum of fin H,.(D,) is the set {an : n € Ng} U {0}.

Proof. The neccessity is clear. For the converse note that (a,), con-
verges to gero. Hence |1 = a,| 2 1/2 for all n > ng for suitable ny. Then
lan/(1 = an)| < 2|an| for n 2 ng. It follows that

Bz o= 30 I
z)mz z

o 1—an

defines a holomorphic function on D,. But (y+ h)(z) = (v~ )~ =

In the sequel we want to show that

(i) Theorem 2.3 can be generalized to adwmissible domains containing
the closed unit disk, and that ‘

(ii) in this case each multiplicative functional on H(G) is equal to
some &,. ‘

Recall that an ideal I of a commutative algebra is modular if there exists
v € A such that uz ~ =z ¢ I for all x € 4. It is eagy to see that I is modular
I A/T hag a unit element, Let 4, be the unitization of 4. Then for each
(maximal) modular ideal I of A there exists o unique (maximal) ideal .. of
A.. such that I == I 1 4. Suppose now that A, iv a Q-algebra, Le. that Ay
18 & topological algebra such that the set of all invertible elements is open,
or equivalently, A; has a neighborhood of the unit element consisting of
invertible elements, Clearly a maximal ideal in a Q-algebra is closed and it
follows that each mocular maximal ideal of A is closed. Suppose now that
A is in addition a normed algebra. If I is a maximal modular ideal (hence
closed) then A/7 is a normed division algebra and is isomorphic to C by the
theorem of Gelfand -Mazur. Hence each maximal modular ideal is the kernel
of some multiplicative functional. Moreover, each multiplicative functional
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is continuous with respect to the norm. The following result implies tha
H,(G) is a Q-algebra with respect to || - [|n:

2.4, THEOREM. Let G be an admissible domain and f € H{G) be (
function with convergence radius v > 1. If || flln < 1 then v~ f is invertibl

Proof. Define fO := « and f* = f ... % f {k times), which ha
convergence radius r* for k¥ € N by the Cauchy-Hadamard convergence
radius formula. Let s, 5= Y p g f* be the nth partial sum of the geometri
series. It suffices to show that (sn)n is a Cauchy sequence: if & is the limi
then (y — f)* 8, = v — f**! — ~ and therefore (y — f) * s = 7. Let nov
K be an arbitrary compact subset of G and let B > 0 be so big that the
ball Dy with center 0 and radius R containg K. Choose kg € N such tha
R < r*e, Obviously f* is equal to 3 oo, akz™ for a neighborhood of 0, anc
for k > ko this identity even holds for all |z| < r*, In particular, we haw
C =307 o |ako|R™ < oco. This yields the estimate

(6) FE) AR D lakoll2™ < RIS
ne=0

for all z € K C Dg, k > ky. Hence |f*|x < C1|f|f for all k > ko and
suitable constant C1. m

2.5. COROLLARY. Let G be an admissible domain containing the close
unat disk. Then the clgebra H.(G) is a Q-algebra with respect to the norn
| - |n. In particular, each mazimal modular ideal of H(G) ond H,(G) i
closed and is the kernel of o multiplicative funciional. Bach wmultiplicativ
functional on H(G) and H..(G) is continuous with respect to ||« ||x and th
topology of compact convergence.

Proaof. Since each f € H(G) has convergence radius » > 1, Theorem 2.
yields the first statement. For the last statement note that id : (H{G), x) -
(H{G), || - [In} is continuous. m

Although (H(G), || - ln) is a Q-algebra the norm is not complete: oth
erwise the continuous map id : (H(G),7%) — (H(@), | « iln) would be .
topological isomorphism by the open mapping theorewn, which is impossibl
(consider for example f,.(2) = 2" /n, which converges to zero with respec
to || - ||y but not with respect to 7).

We are now able to characterize the spectrum of H(G).

2.6. THEOREM. Let G be an admissible domain containing the closed un
disk. Then each non-trivial multiplicative functional on H(G) ond H.(G
is equal to some &, with n ¢ Ny.
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Proof Let h be multiplicative. By Corollary 2.5, h is continuous. Sup-
pose that the kernel of A is not contained in some ker(6r,). Then by Lemma
2.2 we have h(z") = 0 for all n € No. Now let f ¢ H(G) with h(f) =1 and
define f™ as the nth power of f. Let r > 1 be the convergence radius of f. For
each n € N there exists a polynomia) p, such that | F"(z) -—pn(z)l. < 1/n? for
all {z| < r"/2. Then 3300 (5 ~pn) € H(G). Since h(f™) = L and h(p,) =0
we obtain A3 ("~ pa)) = o by continuity, a contradiction. w

‘ Siuc'e H () is a normed Q-algebra the spectrum of an element f coin-
cides with the set {h(f) : the functional h : H, (@) ~ C is multiplicative}.
This proves

2.7. THEOREM. Let G be an admissible domain containing the closed
unit disk and f(z) = 350 anz"™ in H(G). Then the spectrum of f in
Hi(G) ds the set {ay :n € Ng} U{0}. Hence v — f is invertible if and only
fan#lforallne Ny w

Simple examples already show that the norms ||k are in general not
submultiplicative. Even for the case of the unit disk D the algebra H(D) is
not a Fréchet algebra; cf. [7] or Proposition 3.11. Therefore it is surprising
that H(G) is indeed a Fréchet algebra for the case where G contains the
closed unit disk. Ingtead of constructing a suitable family of submultiplica-
tive seminorns we wge a general result proved in [14]. For the case G = D,
with r > 1 it is a consequence of the integral representation (see [15])

1
o) fro) =5 | s0a(5)%
[t /T
for 2| < rand f,9 € H(D,) that |f x g|p, < \flp 19l 5 forall 1 < s < r

'2.8‘. ‘THEOREM. Let G be an admissible domain containing the closed
unst disk. Then H(G) and Hy(G) are Fréchet algebras with respect to the
topology of compact convergence,

Proof. By Theorem 1 in [14] a complete unital By-algebra A is a Fréchet
algebra, iff for every entire function ¢(x) = ) sy buz™ and for every element
9 € A the serien ¢(g) = o bug™ 18 convergent. Let g == My f € Hi(Q@),
where f(z) = 350 an2™ € H(Q). Choose i > 0 such that |u)| < 1 and
Ilﬁatflm < 1. Let K be an arbitrary compact subset of G. For z € K we
obtain

T

S (3) el =41

maa() ke

. |
b2 Y (Y e
(] LES

gk

lp(g)(2)} <

[}z

=

i

L%

|
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By the proof of Theorem 2.4 we know that Yoo luFfR k< oo, and
o 0 |ba |26 converges since ¢ is an entire function. m

Tn Corollary 2.5 we characterized the maximal modular ideals of H{().
Tf G is bowrded we are able to give deeper insight into the ideal structure
of H(G). For this purpose we recall that for an ideal M in an algebra A the
radical of M is the ideal rad(M) := {a € A: o™ € M for some n & N}. Note
that rad(M) = M for a prime ideal M.

2.9. THEOREM. Let G be a bounded admissible domadn containing the
closed unit disk and M be an ideal. Then

(8) rad(M) = ﬂ ker{é,,).
ne&My, M Cker(én)

Further, a closed prime ideal is the kernel of some 6, and is thus mazimael.

Proof. Clearly M is contained in the intersection since §, is continuous.
The intersection of maximal ideals is a radical ideal and thus rad(3) i
contained in the set on the right hand side. For the other inclusion let
B:={neNy: M C ker(6,)}. Now let f € H(G) with 6,(f) = 0 for all
n € B. Since f(z) = }_, 45 anz™ has convergence radius v > 1 there exists
k & N such that the ball of radius r* contains G. Hence the kth power
fo(z) = Topqakz” converges in G. It follows that f* = 3 opakz™ € M
since z™ € M for all n & B by Lemma 2.2. If M is a closed prime ideal then
M = rad{M). So M must be contained in some ker(§,) (otherwise we have

M = H(G) by (8)). Lemma 2.2 completes the proof. w

We finish this section with an example which shows that the conclusior
of Theorem 2.9 does not necessarily hold for unbounded domains G. Indeed
we construct a closed prime ideal which is neither contained in some ker(6y,
nor maximal:

2.10. ExAMPLE. Let G = C\ {n € N : n 2 2} and consider the se
of all entire functions E = H(C) C H(G). Obviously F is a proper idea.
which is not contained in some ker(é,). Further, F is prime: Suppose there
exist f, g € H(G), both not entire, with f x g € F. Denote by o resp. 3 the
singularity of f resp. g with the least modulus. Then clearly a8 5 o3 fon
all other singularities o’ of f and 8’ of g. According to a theorem of Bore
(see [6]), f is a singularity of f * g, contradicting f % g € F. To see thal
E is closed we observe that, on E, the topology of wniform convergence or
compact subsets of (7 is the same as the topology of uniform convergenct
on compact subsets of C, by the maximura modulus principle. Since E i
complete in the latter topology, it is complete in the former and is therefor
closed in H(G). Moreover, F is not maximal since E is contained in the
ideal of all functions in H () which have residue O at z =2. »
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3. The second case: 1 € G° is non-isolated. In [7] Brooks showed
that the closed maximal] ideals of H(D) (D is the unit disk) are exactly
the kernels of the multiplicative functionals. This result was extended in
[10] to the case of an admissible domain with 1 € G¢ non-isolated (hence
G is simply connected) using non-trivial results of Arakelyan (3]. We give a
quite elernentary approach using ouly some simple properties of the algebra
H(G). It may be useful to formulate this in a more general setting:

Let A be a commutative topological (Hausdortf) algebra over a field K.
We assume that A contains an infinite family of distinet points 2 € A with
the following properties:

(a) zizy = 2y 5 0 for all 1 ¢ [.
(MWane K zlorallac A, i el
(¢) The linear span P of {z; 14 € I} is dense in A,

This concept generalizes the definition of a topological algebra with an
orthogonal basis which was discnssed by several authors ([2], [11], [121, [18]);
of, the end of this section. Note that by property (b) a linear functional
6+ A — K is induced via the formula az; = &(a)z. Further, the linecar
span P of the set {z : 4 € I} is a dense ideal. Hence A can never be a
Banach algebra (if A is unital). Of course, in the case of H(G) the elements
% correspond to the monomials 2! and if G is simply connected property
(¢) is satisfied.

First we need two lemmas which are similar to 2.1 and 2.2.

3.1. LEMMA. &; is a continuous multiplicative functional and zz; = 0
Jor all i 5 7.

Proof Let a) be a net converging to 0. By continuity of multiplication
opzi = §i{ak)z; ~— 0 and therefore §;(ag) — 0. Let us prove the multiplica-
tivity: we have az; = 6{a)z; and bz; = §;(b)z;. So 6;(ab)z; = abz; = az;hz =
bi(a)di(b)z;. For the last statement note that z;2; = 8;(2;)z = §;(z)%. It
bi(2;) = 0 we are veady. Suppose that 6;(z;) 7 0. Then §;(2) # 0 and
therefore z; == cuz; for some e 5 (. Hence azy = 2 = 22 = ofzy. So a = 1
and 2z = z;, a contradiction, w

3.2, LEMMA. Let M be an ideal, Then esther M C kex(8,) or 2, € M.

Proof. If M is not contained in ker(d;) then there exists a € M with
bi(a) 5 0. Since az; ¢ M and az; = §;{a)z; it follows that 2, € M. w

3.3, THrOREM. Let M be an ideal of A. Then the following statements
are equivalend:

(a) M 15 o prime ideal which is contained in o closed ideal.

(b} M is a closed prime ideal. :
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(¢} M is a closed magimel ideal.

(d) There exists 4 € I with M = ker(6;).

If A has o unit element e the closed mazimal ideals are generaled by th
elements e — 7, 1 € I

Proof. Tt suffices to prove (a)=>(d). Let J be a closed ideal containing
M. If J is not contained in some ker(f;) then z € J for all i & I Iy
Lemma 3.2. Since J is closed we obtain J = A, a contradiction. Assumn
now that J ¢ ker(6;) for some 7 € I. Let o € ker(é;). Now 6;(a) =
implies az, = 0 € M. Since M is a prime ideal either o € M or z; € M
But the latter is impossible since §;(z;) = 1. For the last statement assum.
that M = ker(§;) for some ¢ € I. Clearly (e — z;) € M. lf ¢ € M the
ale - z;) € M. But ale — 2) = o — di(a)z = a. =

The first three lines of the last proof also show the “if* part of th
following result (which was proved in [7, Theorem 4.2] in a more complicater
way for the algebra H(D)).

3.4. COROLLARY. If M is an ideal then M is a proper ideal if and onl
if M is contained in some ker(6;).

3.5. THROREM. Suppose thot A containg a unit element and let M b
a closed ideal and B := {i € I : 6;(a) = 0 for oll o € M}. Then M =
Niea ker(d;) = Mp.

Proof. The inclusion M C Mp is trivial. Now let o € Mp. By Lemm
3.2 we know that z; € M for all i € I'\ B. Let (py)rer be a net in P (th
linear span of z;, 4 € I) converging to the unit element e. Then apy, converge
to a by continuity of the multiplication. But apy is in M since §;(apk) =
for all 4 € B and therefore apy, is a finite sum of elements z; € M.

3.6. PrOPOSITION. If A contains o unit element then &;(a) = 0 for a
1 & I implies a = 0. In particular, A is semisimple.

Proof. Let (p;); be a net in P converging to the unit element e, ]
p; is of the form e1z; + ... + cn2, for some ¢, ...,¢, € K then ap, =
e1b1(a)z + ...+ cpbn(a)z, = 0. Hence a = lim ap; = 0. =

3.7. PROPOSITION. The unit element e is not an element of P and n
element of P i3 invertible.

Proof. Ife=cyzy + ...+ enzy then zpyy = 2pqye = 0, a contradictior
If a = e121 4 ... cpzy 18 invertible then there exists b € A such ths
e=ab=(c121+ ...+ cp2n)b € P, a contradiction. w

In the following we want to prove that each multiplicative functione

on H(G) (assuming 1 € G° non-isolated) is continuous. The next examp)
shows that this property cannot be expected in the general setting:
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3.8, EXAMPLE. Let A = {f : the function f : N — C bounded} be
endowed with the topology of pointwise convergence. Define 2 by zi(k) = 0
if k # ¢ and 2(f) = 1. Then A has properties (a)~(c). But each point in
AN\ N induces a discontinuous multiplicative functional (where 8N is the
Stone—Cech compactification of N). m

The next result i needed for proving the continuity of multiplicative
functionals; ¢f. Theorem 3,10 :

3.9. TUBOREM. Let ¢ be o simply connected domain containing the open
unit disk D, with 1 & G, Then

(a) Let f(2) = 300 ane™ € H(Q). If o is o complex number such that
naw 0 forall noe A(f) = {n € Ny : ap 5 0} then

hafg)= 3 Ehpn

neain "
defines a function in H(G).
(b) The series
I -2
(2) o= g% n+1

defines a function in H{G) and for cach o € C there exists o function
o € H(G) such that go » (1 cy)(2) = 3, 00 2", where Ao = {n € Ny
a1/(n+ 1) 5 0},

Proof. It is easy to see that ¢y 1= G\ [0, 1] is simply connected. Let
L be a logarithm on Gy and define 2% := exp(eli(2)) on Gy. Then Fi(2) =
2273 f(z) is a holomorphic function on Gy. Let Fy be a primitive of Fi, Le.
F} = Fy on Gy. Note that Fj(z) = zne/i(f) an2"te ! for all z € Gy N D.
Hence we can agsume that

Sy e
b g(z) = Z mz +
n&A(S)
for all z € Gy N D). Now put by, = 27 %Fy(z) and observe that he is holo-
morphic vn D and (7. '

For (b), put ay,, = 1 for all n & Ny and e = 1 in {a). It follows that { is in
H(G). Note that 1 is invertible since {1(2) = 3700 (n -+ 1)2™ = 4/(z) is in
H{G). This the aasertion is trae for o = 0, Let us consider !+ ary for o 2% 0.
Note that A, is cither Ny or Ny \ {ng} for some ng € Np. Hence g(z) =
Conea, (n A+ 12" s in H(G). Now (a) implies that ge(2) = Somed, b is
in H(G), where

N | : 1 n+1 1 -1
e iww oo p aud by = SRTET (n g, =+ a) .

It follows that Geo ® (14 y)(z) = Znenu 2" m
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3.10. TEEOREM. Let G be an admissible domain with 1 € G° no
isolated. Then each multiplicative functional on H(G) is continuous a
has the form &, for some n € Np.

Proof Let M be the kernel of a multiplicative functional and )
defined as above. Then [ + cry is in M for some o € C. IF A, = Ny then |
Theorem 3.9, [ + vy is invertible, a contradiction. Hence A, = N\ {ng} {
some ng € Np. By Theorem 3.9 there exists g, € H(G) sach that v - 2™
Yo, 2" = go * (I av) € M. It follows that M C ker(8p, ) w

We now show that H(QG) is not a Fréchet algebra.

3.11. PROPOSITION. Let G be an admissible domain with 1 € G* ne
isolated. Then H(() is not a Fréchet algebra.

Proof Let Ay be the set of all continuous multiplicative functionals
the algebra A. If A is a Fréchet algebra then the spectrum o(f) i8 equal
{R(f): h € A} Note that f(z) = exp(z) is not invertible, Hence 0 € o(;
On the other hand, Ag = {6, :n € No}, hence 0 ¢ {h(f): f € As}. m

Let A be a topological algebra. A sequence (oiy,)new is called a basis
for each x € A there exists a unique sequence of gcalars (o, Ingn such th
T = Yoo Gnn. A basis (Zn)nen is called orthogonal i mnsmy = O for
m # n and 22 = &, for all n € N. With Lemma 1.1 in [12] it is easy
see that a topological algebra with an orthogonal basis satisfies properts
(a)~(c) of the beginning of this section. Lemma 3.1 shows that an orthogor
basis in a topological algebra is actually a Schauder basis (Theorem 1.1
[11]) since = = ¥ oo | GnTy implies 6 (2)Zm = ZZm = QmTm, Le., th
8m(Z) = ap for all m. Moreover, it follows that a topological algebra wi
an orthogonal basis is semisimple (Corollary 1.5 in [12]): if @ is in the radic
then e, = 6,(x) = 0 for all n and hence z = 3 o ;| ey = 0. Recall th
a topological (Hausdorff} algebra is a LC-algebra if the induced topology
locally convex.

3.12. THEOREM. Let A be a unitel complete LC-algebra with an uncc
ditional orthogonal basis (wn)nem. Then cach multiplicotive functional
H(G) is continuous und has the form &, for some n & N,

Proof. Let v be the unit element. Then « = 3750 | ev,my, for suital
o, Sinee v, = 2, we infer that ey, == 1 for all n. By Lemuna 1 in 1
Y1 CnZn converges for any bounded sequence of scalars (o )pen. Hen

oo .
1 ~
= E T, €A and go = E S L N S— Y
oy T L e nen aln -+ 1+ 1/a) b

where dq :=={n € N:a+1/(n-+1) # 0} Since g (l+ay) =3, <4 @ 0
can now proceed as in the proof of Theorem 3.10. w
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Finally, we want to show that H(C..) does not have an orthogonal ba-
sis with respect to Hadamard multiplication. Suppose that (z,)ney is an
orthogonal basis. It is easy to see that the set {2, : n € N} is uniquely
determined by the properties (a)-(c). Hence {2, :n € N} = {z" :n € Ny},
S0 ¥ = P gy @n = 2000 2% for a bijective mapping ¢ : Ny — Ny. Hence
¥(=1) = S o (= 1)) converges, & contradiction.

4, The algebra ;. We now turn to the third cage: 1 € G° is isolated.
Then clearly H ((7) containg Hy = {f € H(C\ {1}) : f(cc) = 0} as a subal-
gebra (where f & Hy is identified by f|@). Roughly speaking, the structure
of H(G) can be derived from the ground model H, which has already been
discussed in [10]. It was shown that Hy is topologically and algebraically
isomorphic to the algebra Ey of all entire functions of zero exponential type.
By results of Rashevskil the multiplicative functionals can be completely
characterized. In the following we obtain. this characterization by more di-
rect and elementary methods which may be interesting in their own right.
An important ohservation is that the algebra £y is generated by the element
g2 '= (1=2)~? (cf. formula (9)), where g, (2) 1= (1~2)™" = 500 (F+771) 24
for n € N. It follows that a continuous multiplicative functional § is deter-
mined by the value a 1= 6(g;) (note that 6(gy) = é{y) = 1). For later reasons
this multiplicative functional will be denoted by é,.-1. An elementary cal-
culation yields the equality

(9) {n ==

1
= (92 % Gn1 + (1~ 2) ]
1
= m[@i‘z —= g1] * gt + G
for all n > 2. More generally, we want to show in the next lemma that
Pa 1= gy — a7y I8 & generating element for each o € C, Using (9) we find that
(10) Do * Gt = (10 = 1), ~ (@+n—2)gn.1 forallnz2
In the following we need the binomial coefficients (E) = BB - 1)...
(B~ (n-1)/nl and (§) i=11for § & C. Then (*}"7% = ala+1)...
(e + (m=2))/(n — 1), . : ‘
4.1, LEMMA. Letb po v qg = oy, Then for each n 2 2 there ewist coeffl-
ctends eg{n),. . o, ena(n) € € such that
(11) n ™ Oy ('”')an 1* P Aot '32('“*)‘12 * Byt ) (”)Pm + c:o('n)ql.
Proof. For n = 2 we have gy = p, + agi. Also note that’
] . n a+n-—2
- 1?&\: 1 1 n—~1
by (10). Now an easy induction yields the statement.

I ==
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Moreover, it is obvious that cp—1(n) = 1/(n ~1) and for n ~1 > k one
has the recursion formula

+n -2 )
en(n) = -q-q-{:T—ck(n -~ 1).

This leads to
(a+k-+1)...(a+(n~2)
() = T - D)
for n > 2 and & < n ~ 1. We thus have

ex(n) = (“+k,1jjj§zf§§""2))

Note that

erk 4 2)

a+n—2
PO
By the recursion formula it follows that |ex(n)] < (faf + 1) %=1 for n > &

Every element f € H has a unique representation f(z) = ¥ - angn(2),
where 307 ™ ig an entire function. Define

< e + 1

'rr—l
o0 r
- @-n~1
(12) 8o () 1=n¥1am< n—1 )
This number exists for all f € Hy and o € C since {(*171)| < (|o|+ 1)m?

and therefore |8, (f)] € Sooo, |an|(|a] + 1)** < oo. Clearly 6, @ H1 — C
defined by (12) is a linear functional with &, (y) = 8,{g1) = L.

4.2. THEOREM. Let I be an ideal of Hy which containg po. Then I i
generated by py and I is the kernel of the continuous multiplicaiive func
tional §4—1 : Hy — C. If ¢ i3 a multiplicative functional then ¢ is coniin
uous and ¢ = Go-1 for o = ¢(qa). Hence the multiplicative functionals an
exactly the functionals 6, with o € C.

Proof Let f(z) =30 1 angn(2). Pub dj 1= Z::“ )1 nCr(n), which is
well defined since {dy] < Yooyt [tncr(n)] € oo iy lon| (o] + 1)k
We now claim that g(z) = 3 pu,dez® is an entire function. Tndeed, lof
ky € N be so large that |¢] < ko, For all k 2 ky we infer that
K|k - 2)] < gkl

koooin-—~1)
This yields |ds| < Folpey lonce(n)] € S p [an|2%F7F and thus, fo
r>1,

(13) Z sl < Z Z jan|27F g §_4 Qk+T 5: n (27",

k=ko k=ky  m=k4l ke=kp nashy-l

n)| <
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which is finite since 7, a,2" is an entire function. Hence we have proved
that 3oy deqr 18 an element of Hy. With (11) we obtain

o0 e

(14) f(z) = (Zlﬂ'nfk(ﬂ' )t *pa) + fa1 (fa

nsn fonel

&)
= (Z dk(lk) * Poy o+ ﬁﬂ*l(f)@'b

Feosis 1
Let now I be an ideal containing pe. By (14), f ~ §u-1(f) € T for cach
f & H(G). It follows that ker(6,..1) < I and therefore I is a maximal ideal
and ker(y..;) == I. Thus ker(d, 1) iy an ideal and as already mentioned
ba1(v) = L. Hence bq..y s multiplicative. Now let ¢ be a multiplicative
functional. Define v 1= ¢(ga). Then ¢(p.) == ¢(ga — ay) = 0. Hence p, €
ker(¢) = I and therefore I is the kernel of §,..; by the first part of the
proof. Let us now show that each §; is indeed multiplicative: Since p, is not
invertible it is contained in some maximal ideal I,. As above it follows that
I = ker(éc, ])

We now show that 6.1 18 continuous. To this end let f; ~ 0 with
() = Tt (2): We dofine hlz) = T2, (77)2" € H(D(ay-)
and fi(z) = 00 | ab 2™ € H(C). From f; -+ 0 uniformly on every compact
set K C C\ {l} it follows that f; - 0 uniformly on every compact set
E ¢ Cand buuy(fi) = 020 af, (0h0r %) = fi % h(1) converges to 0 by the

(]
continuity of the Hadamard ntultlpilcatlon "

We now give an elementary approach to the Gelfand transform of Hy.
For this purpose let us recall some definitions from the theory of entire
functions (see [5]), An entire function f is said to be of exponential type T
if lim sup,._, o, log(M(r, f))/r £ 7, where M(r, f) = max|sj., |f(2)| is the
maximum modulus of f. Bquivalent to this definition is the one that for
every € > 0 and sufficiently large |2| we have |f(2)| £ exp((r + &)|2]). Of
special interest are functions of exponential type zero. We just mention the
following property:

A function of exponential bype zero is either constant or surjective.

This can be seen as follows: IT £ omits the value 0 then f is of the form
F = exp(p) with an entire function . Stnce f is of exponential type zera
tha leads to M{r,Reyp) == o(r). I follows that v == const.

4.3. LisMMA. Let pp(a) = (@ +1).. (@ +n=1) forn = 2. Then for
each av > 0,

(1) pn ()] < ((x + %)a < (g)ni (2}‘;)’5.
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Proof Apply the arithmetic-geometric inequality to the numbers
l,a+1,...,c04+n — 1, This gives

(1‘(a+1)-...-(a+n—1))1/“S%((n—l)a-l—b%ﬂ-né—:—ﬂ) ch-l—-;E

for n > 2. Now the first inequality is obvious. For the second note that

n\" n\" 20 \" nl 1
21 =2 == oot o et
(‘“‘ 2) (2) (1"“ n) d TR SR

4.4. THEOREM. Let f(z) = Yo7 1 an2z" be a power series with conver-
gence radius v > e/2 and

- = a+n-1y — ()
(16) f(a:) = ;&n( ne1 )“'—all +§a,,zm

Then f is an entire function of exponential fype at most ¢/r.

Proof Lemma 4,3 giveg

2 el " (2le))”
if(a)|5|a1|+7§j§m(§> =T
Put
1 n i3
b= (n_1)1(5> |
Then

nef-1
b :2(1 1) —~2je<t,

Dot T nA4l
It follows that the power series § 2 anbyz™ has convergence radius at least
2r/e, which is by assumption strictly larger than one. Let 1 < R < 2r/e.
Then there exists ko € N such that Yiov ) {a.|bnR™ < 1 for all k > kg. It

nsk
follows that 3.7  [an|by < R™F gince R > 1. Finally, we have

= 2l S L2\,
]7 —— < — [eNL—— il Inl/ﬁi
(17) kEk E lan|br, S E AR ) Se

=hy n=hk A

Hence f(z) has type less than or equal to 2/R for any R < 2r/e and the
proof is complete, w

4.5. COROLLARY. Let f € Hy with f(z) = et G5y Then the Gelfand
transform f defined by (18) is of zero exponential fype and f(n) is the nth
coefficient of the Taylor ezpansion of f(2) at 2 = 0.

Proof. Theorem 4.4 yields the first statement. For the second note that

(%) = Tj2o ("IPTH 2. Now it is straightforward to determine the Taylor
coefficients, m
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4.6. COROLLARY. An element f € Hy is invertible if and only if there
exists A % 0 with f = Av.

Proof. For the “if” part, suppose that f is not a scalar multiple of . By

-~

Corollary 4.5, f : C — C is a non-constant function of exponential type zero

and is therefore surjective. So f(a) = 0 for some o € C. Hence 8a(f) =0, a
contradiction to the invertibility, The converse is trivial. =

Theorem 4.4 can be deduced from more general and deeper results in the
theory of entire functions; see e.g. [5, p. 171]. Corollary 4.5 can be interpreted
as one part of the theorem of Wigert, mentioned in the introduction. The
other part says that the Gelfand transform from Hj to the algebra Ep is
actually surjective. The results in Theorem 4.2 can already be found in [16],
where the following deeper result was proved:

An ideal I C Ey is closed and non-trivial iff there ezists o sequence
(finite or countable) (cn)n with |ow|/n — co such that I is the set of all
f € Ey with fla,) = 0 for all n.

From this we deduce

4.7. THROREM. Let I C Hy be an ideal. Then the following statements
are cquivalent:

(a) I is a closed prime ideal.
(b) I i3 a closed maximal ideal.
(¢) I is the kernel of some 64—1.

Proof It suffices to show {a)=(c). By Theorem 4.2 we just need to
prove p, € I. Now let I be the correspouding closed prime ideal in Ejy.
Forther let (on)n be the sequence in the above result of Rashevskil and
fel Clearly (), consists of at least one element, say ay. If n is the

otder of the zero of F at @y then 3(2) == flz)/(z - a)" € Eo does not
venish at ¢y and thus § ¢ I. Since f(z) =Gz} (z —a1)" € I and [ is prime
we find that (z—ay ) € 7 and thus (t }n, consists just of the element oy, With
o=y + 1 we find that 3,0 o (n = )2 = g(2) ~ ay(z) = pa(z) € I. m

5. The algebra Hj. Throughout this section k denotes a fixed positive
integer, We let by £ be the kth root of 1 gliven by exp(2in/k), and 4y = {7
g=0,...,k~ 1} be the set of all kth roots of 1. Similarly to the algebra Hy
we consider Hy, = {f € H(C\ Ax) : f(00) = 0}. Define ; (z) := v(2/£9); we
also write yp(2) == y(2/¢) for { € Ag. Thenyy € Hy foreach j =0,...,k—1.
Fach f € Hy has a unique decomposition

o1
(18) fﬂz'w*‘fj with f; € Hy
J=0
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by Laurent expansion. As pointed out in [10], Hy is topologically and linearly
isomorphic to the topological direct sum of the closed subspaces «y; * Hi,
§=0,...,k-1 Note that no problems occur in considering H; as a subspace
of Hy, because of removability of singularities. For each ¢ € Ay there is a
natural continuous algebra homomorphism T : Hy — H; defined by

b, k-l
(19) Tc(f)mTc(Z’rj*fj) :=2;)4ij;
J=0 g=

of. Lemma 2 in [10]. Note that T¢|H} is just the identity and that Ty(y;) =
(7. for 7 =0,...,k— 1. The next two theorems will be the basis for lifting
results from Hy to Hy.

5.1. THEOREM. For every prime ideal M of Hjy there exists { € Ay
such that T,(M) is a (proper) prime ideal of Hy. If M is closed then so is
Te(M).

Proof For ¢ € Ak define g¢ = Zj:é ¢I7;. Recall that Z;‘:ﬂl (§"")I =0

for each j = 1,...,k — 1, where £ = exp(2in/k). Then
k1 k-1 k—1

(20) dewmzz S)w—karZ%(Z(éJ V=i
=0 j=1

We infer that if M is an ideal then there exists C € A with go ¢ M which

will be fixed in the following. Now let f = Zr—o v * fi be an arbitrary
element of the ideal M. Note that g¢ * f is in M and an easy calculation
(using the identity ; * y; = ¥;4.;) shows that

k=1k—1 ' k=1 ’
(21) gl =3 > Cyrminfi= (Zﬁfﬂf")*gq-
=0 i=0 qz==0)

Since M is a prime ideal and g. & M we infer that the first factor of
the last product in (21) is in M. It follows that T¢-1 (M) < M M Hy. On
the other hand we have M N H; = TC (M N Hy) © TC (M) and thus

Te-2(M) = M N Hy. In particular it is obvious that it is a proper prime
ideal in Hy (for if v € M N Hjy then v € M), Let us show that M N H,
is closed in Hy if M is closed in Hg: let (fu)n be a sequence in M N H,;
converging in H to an element f. Then {f;,)n converges to f also in Hy and
since M is closed in H), we infer that f & M and thus f € M N Hy. Hence
M N Hy is closed. »

5.2. THEOREM, Let M be a mazimal (and closed resp.) ideal of Hy.
Then there exists ( € Ay such that Te{M) is a mazimal (and closed resp.)
ideal of Hi.
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Proof By Theorem 8.1 there exists € Ay such that Tp (M) is a proper
ideal. Let J be an ideal which contains T (M), It follows that M C TC (J) #
Hy. By maximality we obtain equality and therefore J = T (M). u

Our first conclusion from the above is:

5.3. THEOREM. For every muliplicative funciional ¢ on H, there exist
a&C and ¢ € Ax with ¢ = 6, 0 T¢. In particular, each multiplicative func-
tional i continuous, Burther, each cloaed prime ideal M of Hy is contained
in the kernel of some b, o Te. Hence the closed mazimal ideals of Hy are
exectly the kernels of the mulliplicative functionals.

Proof Let f = Zwﬂ v; % f; € Hy. Bince ¢|g, = 8, for some a € C it

follows that ¢(f) = }_,f,”_(l,’ B(v;)6a(f;). Hence ¢ is continuous. Now let M
be a closed prime ideal in H. By Theorem 5.1 there exists { € Ay such that
T;(M) is a closed prime ideal in Hy. By Theorem 4.7 it follows that T¢ (M)
is the kernel of some . Thus M is contained in the kernel of 84 o T;. To
complete the proof observe that §, o Tt is a multiplicative functional for all
acCand e Ap. w

b.4. Remark, Although each closed prire ideal i3 maximal for the al-
gebra H) this is no longer true for Hy with & > 1. For example, I := ker(7%)
is a closed prime ideal since T is continuous and multiplicative and H; is
an infegral domain {Ep is one). But I is not maximal by Theorem 5.3.

Now we are going to characterize invertibility in Hy. This will be the key
for the characterization of invertible elements in the case where 1 € G° is
isolated, Invertibility in Hadamard algebras has a very interesting analytic
interpretation: Let f(z) = o, 0n2" define a holomorphic functlon on
a domain @, Under what conditions does f~1(z) = 350 a7'2" define a
function which is alse holomorphic on G7 In fact, this question was the
starting point for the investigation of Hadamard algebras (see [1] and [9]).

. COROLLARY. An element f € Hy s not wvamble if and only if
thcm msi o € C and ¢ € Ag such that & o Te(f) =

Proof If f is not invertible then f Is contained in a maximal ideal M.
By Theorem B5.1 there exists ¢ € Ay such that T¢ (M) I8 a maximal ideal in
Hy. Hence T (f) is not invertible in Hy. From the proof of ‘Corollary 4.6 it
follows that there exists o € C with 0 = T¢ () = 65T (f). The converse
is clear. w o

5.6, THEOREM. An element [ & Hy Is mvemb{e 'bf and only faf there exist
compler numbers co, ..., cy—1 such that f 2320 ¢jYy end ZJ,:O cJC 7‘5 0
Jor all ¢ & Ay, b
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Theorem 5.6 can be expressed in the following way: 7€ Hy is invertible
iff f is o linedr combination of the v; end bdn{f) # 0 for oll n & Ny,

Proof Let f = }: 0 Ly f; be invertible. Then g 1= Te(f) = LJ o G f;
is invertible in H (smce g~ = Tp(f1)). But invert 1hle, clernents in Hy are
non-zero muitiples of . Hence there uxmtq de # 0 with Ty (f) = dey. For

each a € C we have 8, o Ip(f) = J,mn C»’éu(f”,) = (he, This is a linear
system for &,(f;). Since the coefficient matrix is Vandermonde thoere exists

a unique solution cqg, ..., Ck—1. It follows that 8¢ (fy) = ¢; independent of o
and therefore f; = (‘ﬂ for j=0,..., k=1
For the converse let f = EJ_MU ¢;vy a8 in the theorem. Then &y 0Te(f) =

ijo e;¢7 # 0. By Corollary 5.5, f is invertible.

6. The third case: 1 € G¢ is isolated. In this section we assume that
@ is an admissible domain such that 1 is isolated in G, As explained in
the introduction there exists k € N such that Ci e (U Ay is an admissible
domain containing the closed unit disk and there existy a topological linear
isomorphism

(22) T H(G) — Hy® H(G), Tf=fi+fo

H(G) is an ideal of H (G), where f € H (G) is identificd with f|G. Note
again that considering (G) as a subspace of H (G) pases no trouble since
all singularities { € Ay are removable for f € H (C:r) First we characterize
the multiplicative functionals on H(G).

6.1. THEOREM. Let G be an admissible domain with 1. &€ G¢ isolated.
Then each multiplicative functional ¢ + H(G) — € is conlinuous. Fur-
ther, either there exists n € Ny such that ¢ = 8, or there exist o € C
and { € Ap such that Hf) = bu 0 Tp(fr), where f = fi+ fo € He @
H(G).

Proof. Clearly ¢ := ¢|H(G) is a multiplicative lunctional on H (@) It
¥ 5 0 then Theorem 2.6 yields o = 6,|H ((’ ) for some n & By, Lel now
f e H(Q@) with ¢(f) = 0. As [ *xexp € H(G) wo ohtain 6,(f wexp) =
#{f »exp) = 0. It follows that &,(f) = 0 and thereloro ¢ = &, Buppose now
Y= 0. Let p: H(G) ~ Hy be the projection on Hy. Since p s an algebra
homomorphism and ¢ = 0 it follows that ¢(f) = $(f1) = ¢ o p(f), Now
Theorem 5.3 applied to ¢ o p completes the proof, w

According to Corollary 2.5, Theorern 3.10 and the above we have for
each admissible domain @ the following:

Bvery multiplicative functional on H{(?) is continuous.

Algebras of holomorphic functions 97

We are now able to generalize the invertibility criterion given in [10] for
the case G = D, \ Ay with r > 1 to all admisgible domains G with 1 & G¢
isolated.

6.2. THEOREM. Let G be an admissible domain with 1 € G° isoldted. For
F=fut fa € Hy @ H(G) and fa(z) = 307 anz™ the following stotements
are cquivalent:

(a) f is invertible.

{b) &6(f) # 0 Jor oll (continuous) multiplicative functionals ¢.

{c) b 0 Tp(f1) % 0 for oll 0 € C, and ¢ € Ay and 8,(f) # 0 for all
ne Ny,

(d) fi is invertible in Hy and 6,(f) # 0 for all n € Ng.

(a) There exist co,...,ep-1 € C such that fi = Zk:('} eyy; and
Z ) ('JC %0 forall C & Ak and ap, 7 ~ Zg'—ﬂ ;€™ for all n € Np.

Proof (a)=(b) and (b)=+(c) are clear; c¢f. Theorem 6.1. Corollary 5.5
yields (c)«>(d). For {d)«>(e} use Theorem 5.6 and note that an = 6,(fa) 5
by (f1) = »—-E;i“;é ;€™ since b () = 6, (L/(1~ 2/€7)) = £~"9. Hence it
remaing to prove, foE example, (d)=>(a). We consider g := fo x f;"*, which
is an element of H(G). By Theorem 2.7 it follows that (v + ¢) is invertible
since &n(g) = 6n(f2) « 6u(fi"") # —1. Hence there exmts h € H(G) such
that (v + h) * (v + g) = 7. On multiplying by ;"' * f; we obtain v =
(A e x (fut fa). m

6.3. PROPOSITION. Let G be an admissible domain with 1 € G¢ isolated
and f € H(G). Then the spectrum o{f) is equal to the set {p(f) : ¢ is
o multiplicative functional}. The specirum of 2;:3 ¢iv; + fa i3 o finite or
countable set.

Proof. The first statement is a consequence of Theorem 6.2(a)<(b).
The second follows from the fact that ¢ is equal either to scme 8, or 0 T3,
But 6 o Te(f1) = Eju:t) ;¢ forall e e Cand ¢ € Ak which is mclependent
ofl . m

6.4. PrROPOSITION, Let G be an admissible domain with 1 & G‘"‘ zsolated
Then H(G) 48 not o Fréchet algebra.

Proof. Since Hy is a closed subspace of H(G) it suffices to show tha;l;
the statement is trae for Hy. In a commutative semisimple Fréchet algebra
{different from C) there always exist invertible elements which are not mul-
tiples of the unit element (consider exp(a) with a & C). This contradicts
Corollary 4.6, m S ' '

Together with Theorem 2.8 and Proposition 3.11 we have the following
general result for Hadamaxd algebras: H(G) is a Fréchet algebra iff 1 € G.
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Our knowledge about invertibility enables us to generalize the results on
formal invertibility given in [10].

6.5. DEFINITION. Let G be an admissible domsin. For f € H(G) define
A(f) 1= {n € Ny : an # 0}. The element f_y := 3, sy 0 ' 2" I8 called the
formal inverse of f provided it is an clement of H(G). We call f formally
invertible if the formal inverse exists. For B C Ny define vp(z) = z:n en 2™
For B = { this means vg = 0.

Note that f is formally invertible iff theve exists b € H({G) with fxh =
Yacs)- I vacry € H(G) then vy has an analytic continuation heyond the
unit circle. According to a theorem of Szegd {see e.g. [17]), vas I8 of the
form P(z)/ (1~ 2*) with a polynomial P. This applied to vy 1= i\ a¢s) and
polynomial division gives a decomposition vy = Py -k Fa/(1 - 2%) with a
polynomial P;, and a polynomial P of degree lower than k. Let %7 denote
Py /(1 —2"*). Observe that 77 is a linear corubination of the functions ; and

~

v =5F + Py is an element of Hy @ H(G).

6:6. THEOREM. Let k > 1 and J = fi 4 fu € Hy @ ff(@) and & =
exp(2mi/k). Then the following statements are equivalent:

(a) f is formally invertible.
(b) f+ cyy is invertible for all ¢ # 0.
 (c) There emists ¢ # 0 such that f -+ cyy 43 invertible.
(d) There ewist co,...,co1 such that fi = 2571 eovi. Further, vy €

H(G) and §,0T¢(f1) = 0 implies 6,0 T¢(77) # 0 for all o € C and { € Ay,

(e) There exist cg,...,Chmt Such that fi = Z?m(} ¢y Further, vp €
H(G) and 6,(f1) =0 implies 6,(FF) # 0 for all n & Ny.

(f) There ezist cg, . .., Ch-y such that fi = Ej”:[{ ey and for each m =
0,...,k~1 with Ef;é ;7™ = 0 there ewists ng such that Gn,ppn = 0 for
all n > ng.

Proof, {a)=(b). Let f be formally invertible and ¢ # 0. Since fxyp =0
it follows that (f 4 cyp) % (fer + o lyp) sy, (b)=p(e) I trivial, For (¢)=(a)
a glance at the power series shows that f. | is the difference of (f +evp)™!
and ¢™ly; and therefore it is in H(Q).

For (b)=>(d) note that £+ vy is invertible and obviously v, ¢ H((). Let
p: H(G) — Hjy be the canonical projection. Since f+ v = fi +5F+ P+ fa
and 0 # 8, 0Ty op(f+y5) = ba 0T (f1+57) we find that f) +57 is invertible
in Hy. Thus by Theorem 5.6, f1 +%7 is a linear combination of the functions
7v; and since 77 is also such a combination, so is fy. Now if 8, o Te(fr) =0
then clearly &, o T¢{F7) # 0. Otherwise it follows that 6, o Telfy A+ 77) = 0.

For (d)=>(e) consider 6, as a multiplicative functional on Hy. By Theo-
rem 5.3 there exists ( € Ag and o € C such that §, = 8, o Ty, Now apply

Alyebras of holomorphic functions 9%

assumption {d). For {¢)=>(f) choose ng strictly larger than the degree of the
polynornial Py (sce above). Then 6,(57) = &.(vy) for all r 2 ng. Let m be
as in (f). Then r = m + kn is larger than ng (since k = 1) for all n = ny.
Now suppose that

kel ke~ | k-1

(23)  Blf) = by =) e =Y ™ =0,
Feli] Jul Fu()

By (e) we infer that &.(57) = 6,(vs) 5 0. Hence r € Ng \ A(f) and therefore

6p(f) = 0. Since §-(f1) = 0 we finally obtain 0 = &,(f) = 6r(f2) = ar.

For (f)=>{a) we choose a polynomial @ such that fox g := fi + gg with
g2(z) = f2(2) + Q(2) = $opeoln2™ and cach m = 0,...,k — L with
}"_":ff;:[} cjf“"«""” = 0 it follows that Gypppn == 0 for oll n € Ny. Obviously
it suffices to show that g = f 4+ @ is formally invertihle. For this purpose
we show that g + v, is invertible. By the choice of @ we have A(g) = A(f1)
and since A(f1) is periodic it follows from the proof of Szeg®’s theorem that
Yo = Fg. Now clearly &,(g + 7g) % 0 for all n € Ny. Moreover, f1 4, is in-
vertible in Hj by Theorem 5.6. Thus 60T op(g-+4,) = GaoTe(fi+yy) # 0.
An application of Theorem 6.2(h) shows that g + 4, is invertible. w

We conclude with a description of the closed maximal ideals if G is
bounded.

6.7. TurorEM. Let G be ¢ bounded admissible domain with 1 € G°
isolated and let M be a closed mazimal ideal of H(G). If M does not contain

i~

H(G) then M is the kernel of some 6,. If M contains H(G) then M is the
kernel of some bq 0 Ty 0 p.

Proof. In the first case M := M n H(G) is a closed prime ideal in
H(G) and by Theorem 2.9 it is the kernel of some 6,,. Now let f € M. Since
F*exp € M we obtain S (f * exp) = 0 and thus 6,(f) = 0.

In the second case there exists a closed maximal ideal I of Hy with M =
I+ H{G; of. Proposition 5 in [10]. But I is the kernel of some multiplicative
functional &, ¢ T¢ by Theorem 5.3, w '
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