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Factorization of weakly continuous
holomorphic mappings

by

MANUEL GONZALEZ (Santander) and
JOAQUIN M. GUTIERREZ (Madrid)

Abstract. We prove a basic property of continucus multilinear mappings between
topological vector spaces, from which we derive an easy proof of the fact that a multilinear
mapping (and a polynomial) between topological vector spaces is weakly continuous on
weakly bounded sets if and only if it is weakly uniformiy continuous on weakly bounded
sets. This result was obtained in 1983 by Aron, Hervés and Valdivia for polynorials
between Banach spaces, and it also holds if the weak topology is replaced by a coarser
one. However, we show that it need not be true for a stronger topology, thus answering a
question raised by Aron. As an application of the first result, we prove that a holomorphic
mapping f between complex Banach spaces is weakly uniformly continuous on bounded
subsets if and only if it admits a factorization of the form f = go§, where § is a compact
operator and g a holomorphic mapping.

Our aim is to give characterizations of polynomials and holomorphic
mappings on Banach spaces, which are weakly uniformly continuous on
bounded sets. The polynomials with this property have been studied by
many authors: see, for instance, [2, 3, 4]. A reason for that interest is that
they are uniform limits of finite type polynomials (assuming the approxima-
tion property on the dual space). [4, Proposition 2.7]. In the case of locally
convex spaces, these classes of polynomials have been analysed in several
places (see, e.g., [16]). The holomorphic mappings with weakly uniformly
continuous restrictions to bounded sets have also been considered in various
papers [3, 8, 16].

The paper is organized in three sections. In the first one we prove a
basic result (Theorem 3) on continuity of multilinear mappings between
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topological vector spaces, roughly showing that a multilinear mapping is
continuous on certain subsets if and only if the Cauchy nets contained in
these subsets are mapped into Cauchy nets.

As an easy consequence, we show that if a multilinear mapping between
topological vector spaces is weakly continuous on weakly bounded sets, then
it is also uniformly continuous on them. This is also true if the weak topology
is replaced by a coarser one, and the proof uses the fact that weakly bounded
sets are weakly precompact.

This result extends and simplifies a well known theorem proved by
Aron, Hervés and Valdivia [3, Theorem 2.9] for polynomials between Ba-
nach spaces. In fact, to prove Theorem 3, we just refine what they did in
[3]. The first section helps to understand what it means for a multilinear
mapping to be continuous or uniformly continuous on certain classes of sub-
sets.

In the second section, we answer negatively a question of Richard Aron’s
which was open for a number of years. Namely, he asked if given any vector
topology T on a Banach space X, it is true that 7-continuity on bounded
sets is always equivalent to uniform 7-continuity on bounded sets, for a poly-
nomia} on X . This was known to be the case when 7 is the norm topology,
the weak topology, or the weak-star topology on a dual space. We show
that if the unit ball is not r-precompact, then uniform 7-continuity does
not necessarily follow from 7-continuity. To this end, we consider a locally
convex topology, called ckw, defined as the finest locally convex topology on
a Banach space having the same convergent sequences as the weak topology.
This topology has been studied in various contexts [10, 18, 20]. Since the
unit ball of L;10, 1] is not ckw-precompact, and we have a nice description
of the ckw-topology on this space, we are able to construct a polynomial
on I4[0, 1] which is ckw-continuous on bounded sets, but is not uniformly
ckw-continuous on bounded sets.

Before giving the content of Section 3, we recall two easy properties of
weakly uniformly continuous mappings between Banach spaces: first, every
mapping whose restrictions to bounded sets are weakly uniformly contin-
uous, takes bounded sets into relatively compact sets [4, Lemma 2.2], and
second, a linear bounded operator is compact if and only if it is weally
{uniformly) continuous on bounded sets [4, Proposition 2.5].

Tt is then clear that if a holomorphic mapping f between complex Banach
spaces admits a factorization of the form f = gc 9, where § is a compact
operator, and g a holomorphic mapping, then f is weakly uniformly con-
tinuous on bounded sets. In Section 3, we apply the main result of the first
part {Theorem 3) to show that these easy examples are the only ones, i.e.,
every holomorphic mapping whose restrictions to bounded sets are weakly
uniformly continuous admits a factorization as above. We take advantage of
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work by Braunsz and Junek: namely, some ideas of Theorem 14 helow are
contained in [6, Proposition 2.14].

Factorizations of holomorphic mappings have already been considered,
but here the factors stand in inverse order. Thus, it is proved in [5] that
a holomorphic mapping f is compact (i.e., takes a neighbourhood of each
point into a relatively compact set) if and only if it admits a factorization
of the form f = 5 ¢ g, where g is a holomorphic mapping, and S a compact
operator. A similar result is proved in [19] for weakly compact holomorphic
mappings.

If X, Y are topological vector spaces, then with each k-homogeneous
polynomial . P from X into Y, there is associated a unique symmetric &-linear
mapping P x xtx X — Y, given by the polarization formula
[17, Theorem 1.10], so that P(z,...,z) = P(z) for all z € X. We refer
to [7, 17] for the general theory of polynomials and holomorphic mappings
on infinite-dimensional spaces.

The set of natural numbers is denoted by N, A net in topological vector
space is said to be (weakly) null if it is (weakly) convergent to zero. If X
is a Banach space, then Bx stands for its closed unit ball, and X™* for its
dual. By an operator we mean a linear continuous mapping.

1. Uniformly continuous polynomials. In this part, we give a basic
property of multilinear mappings, and derive an easy proof of the equivalence
between weak continuity and weak uniform continuity on weakly bounded
sets.

DEFINITION 1. A family B of subsets of a vector space X is said to be
a bornology if it satisfies the following conditions:

(a) B covers X;

(b)AeB,DC A= DEeB;

(c) A,DeB=AUD¢cB;

(d) for every A € B, and every scalar ), we have AA € B;
() A, DeB=A+DcB.

If X is a topological vector space, examples of bornologies on X are the
family of all subsets, the family of all (weakly) bounded subsets, the (weakly)
compact sets, etc. Given a bornology B on X, we say that 4 € X is a B-set
if A € B. We say that a net (za)aer C X isa B-net if {z,: @ €'} € B.

DEFINITION 2. Given topological vector spaces X3, ..., X, Y, a k-linear
(not necessarily continuous) mapping 4 : X3 X ... x X — Y, and a bornol-
ogy B; on X; for each 1 < j < k, we say that A is continuous on Bj;-sets
if for each B € B;, 27 € B; (1 < j < k), and each zero ne1ghbourhood



120 M. Gonzdlez and J. M. Gutiérrez

V in Y, there are zero neighbourhoods U; in X; so that
Al .. %) - Alt,..., 2" eV
whenever ¢/ € B; satisfy W —oielU;jfor1<j<k.

Clearly, A is continuous on Bj-sets if and only if, given a convergent
Binet i, — z (o« € ') in X; for each 1 < j < k, the net (A(zg,...
.. 85))aer converges to A(z?,...,z*) in Y.

THEOREM 3. Let X1,...,Xx, Y be topological vector spaces, and A :
X1 % ...x Xp = Y a k-linear (not necessarily continuous) mapping. Let

B; be a bornology on X; (1 < j < k). Then the following assertions are
equivalent:

(a) A is continuous on B;-sets;

(b) given Cauchy Bj-nets (zl)aecr C X; (1 £ 7 < k) such that al least
one of them is null, the net (A(zL,..., z%))aer converges to zero in Y,

(c) given a Couchy Bj-net (23)aer in X; for each 1 < j < k, the net
(A(zL,-..,z%))acr i Cauchy in Y.

Proof. (a)=(b). If k = 1, there is nothing to prove. Assume the result
is true for all (k — 1)-linear mappings and fails for the k-linear mapping A
Then we can find Cauchy Bj-nets (z)eer C X; (1 < § < k), at least
one of which is mull (to simplify notation, assume z}, — 0), and a zero
neighbourhood V4 in ¥ such that

Azl .., zB) eV (ael).

Let V5 be a zero neighbourhood such that ¥z + V2 C V;. For each fixed
a € I', the mapping Az given by

Azk (2. 2Py = AL 2R (e X 1<k 1)

is (k — 1)-linear and takes convergent Bj-nets into convergent nets. By in-
duction, there is k(a) € I" so that

A(mé,...,mg_l,m’;) = Am’;(m};,...,mz‘l) eVa
For every o € I', we have
A(m}q(a)a va ami‘(_;): mz(a) - az’;)
e A(SEE;(&), ey mﬁ(a)) — A(wha), . ,EL’::(—:), 932) ¢ V-2
Cansider the vectors

(8 2 s(a)).

R F1<i<k-1,
Yo = ko gk ik
w&(a) T, 7=k

We can assume #(a) > o. This condition ensures that the B;-nets (y})}acr C
X; (1 € j < k) are Cauchy, and at least two of them are null. By repeating
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the process, we obtain Bj-nets (21)aer € X; (1 < j £ k), all of them null,
and a zero neighbourhood V), in ¥ so that
Az, ., d
This contradicts our assumption (a).
(b)=(c). Let (zd)aer C X; (1 £ j < k) be Canchy B;-nets. We have
A(zl, ..., o8) — Alzh, ..., 2h)

:A(a::;-wk,mi,...,mﬁ)-{»A(mk,wiu—z%,zi,...,mﬁ)+...

(eI

+ Alzp, ..., zy 12k - 2f).

In each of the above terms, letting (o, §) € I" x I" increase, all the nets are
Cauchy B;-nets, and at least one of them is null. Then
A, . 58) = A(oh,... 2B =0,

and therefore (A(zl,...,5%))a is a Cauchy net.

(c)=>(a). Suppose A is not continuous on B;-sets. Then we can find sets
B; € B;, points ©' € Bj;, and a zero neighbourhood V in Y so that for
every zero neighbourhood Uj in X; (1 £ 5 £ k) there is yy, € B; with
yu; — % € U; but

A(yUu s ’yUle) - A(wls'- _’wk) gV
Let 2{; be the family of all zero neighbourhoods in X, and i := Uy x ... x

U;, x N, ordered in the natural way. For each U = (Uy,...,Ug,n) € U, and
je{l,. .k} let

e {y;rj. if » is even,
U™ lgd  ifnisodd.
Then (2} )veu is a Cauchy B;-net. However, the net (A{zhy. . 28 veu is

not Cauchy. m

If, for each j, we take as B; the bornology of all subsets of Xj, the
assertion (a) in the last theorem simply states that A is continuous.

DEFINITION 4. Let f: X — Y be a mapping between topological vector
spaces, and B a bornology on X. We say that f is uniformly continuous on
B-sets if for every zero neighbourhood V in ¥ and every B € B there is a
zero neighbourhood U7 in X such that f(z) — f(y) € V whenever z,y € B
satisfy # — y € U. This definition may be adapted to multilinear mappings
in an obvious way.

Recall that a subset B of a topological vector space X is precompact if
for every zero neighbourhood U in X there is a finite set M C B such that
B C M +U. Tt is well known that B is precompact if and only if every
net in B has a Cauchy subnet [14, Theorem 6.32]. We shall use this fact
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in the proof of the following result, which relates uniform continuity to the
properties considered in Theorem 3.

TaeoREM 5. Let X,V be tapological vector spaces, and B a bornology of
precompact sets in X. Then o mapping f: X — Y is uniformly continuous
on B-sets if and only if it tokes Cauchy B-neis into Cauchy nets.

Proof Let f be uniformly continuous on B-zets, (z,) < X a Cauchy
B-net, and V a zero neighbourhood in Y. There is a zero neighbourhood
U C X so that whenever 2, — 25 € U, then f(zq) — f(2a) € V. Now, since
(z4) is Cauchy, there is ag such that

a—mﬁeU

and hence (f(z,)) is Cauchy.

Conversely, assume f is not uniformly continuous on B-sets. Then we
can find B € B and a zero neighbouthood V' C ¥ so that for every zero
neighbourhood U C X, there are zp,yy € B with my — gy € U and
flzu) ~ flyw) € V.

Let 4 be the family of all zero neighbourhoods in X. Since every B-net
has a Cauchy subnet, we can assume that the nets (zy)vew and (yu)veu
are Cauchy. Consider the set W = I x N, ordered in the natural way. With
each W = (U, 4} € W we associate

zy if 1 is even,
2w = g s s
vy if 4 is odd.

(avﬁ Pt 050),

Then the B-net (zw)} is Cauchy. However, (f(zw )} is not Cauchy. w

Clearly, Theorem b5 is also valid for multilinear mappings, with obvious
modifications.

Remark 6. If f: X — Y satisfies the hypotheses of Theorem 5, then
f(B) is precompact for sach B € B. The converse is not true. Indeed, by
modifying an example given in [15, p. 82], we now construct a real-valued
function f on a Banach space with the following conditions:

(a) f is weakly continuous on bounded sets (it will even be weakly con-
tinuous on the whole space);

(b) f takes bounded sets into precompact sets, i.e., f is bounded on
bounded sets;

(¢} f is not weakly uniformly continuous on bounded sets.

Let X be a separable, nonreflexive Banach space. By James’ theorern,
we can find ¢ € X*, with ||¢|| = 1, which does not attain its norm on Bx.
Let

1

g(z) = D=1 (z € Bx).
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Since X is normal for the weak topology, and g is weakly continuous, ¢
admits an extension g to X which is weakly continuous. Since § is unbounded
on By, it is not weakly uniformly continuous on Byx. Therefore, there is
§ > 0 so that for each convex, weak zero neighbourhood U in X we can find
z,y € Bx with z—y € U and |§(z) — §(y)| > §. The segment [z, y] is clearly
contained in By N (y + U). Choose A > w6~!, and define

f(z) = sin(Xg{z)) (ze X}

Clearly, f is weakly continuous and bounded. However, it is not weakly
uniformly continuous on By since we can find 2 € [z,y] so that |f(z) —
y)| = 1.

COROLLARY 7. Let Xy,..., Xk, Y be topological veetor spaces. Let 7; be
a vector topology on X; coarser than or equal to the weak topology, and B;
a bornology of weakly bounded sets on X; (1 £ § < k). Then o k-linear
mapping from X1 X ... X Xy into Y is T;-continuous on B;-sets if and only
if it is uniformly 7;-continuous on Bj-sets.

Proof. Since the weakly bounded sets coincide with the weakly precom-
pact sets [13, Corollary 8.1.6], every B;-set is 7;-precompact. Therefore, it
is enough to apply Theorems 3 and 5. =

Using the polarization formula, it is clear that a polynomial P between
topological vector spaces takes convergent B-nets into convergent nets if and
only if so does P and that P takes Cauchy B-nets into Cauchy nets if and
only if so does P. Therefore, we obtain:

COROLLARY 8. Let X, Y be topological vector spaces. Let 7 be o vector
topology on X coorser than or equal to the weak topology, and B a bornol-
ogy on X consisting of weakly bounded sets. Then a homogeneous polyno-
mial from X into Y is T-continuous on B-sets if and only if it is uniformly
T-continuous on B-sets.

The particular case when B is the bornology of bounded sets in a Banach
space, and T the weak topology, was proved in [3, Theorem 2.9]. The result
for B being the bornology of Rosenthal sets, or Dunford-Pettis sets in a
Banach space, and 7 the weak topology, was obtained in [11, Proposition 3.6
and the comment after it].

2. A counterexample. In this section, we show that the rdle of pre-
compactness in Corollaries 7 and 8 is essential. We shall consider a topology
on L1[0,1], compatible with the dual pairing (Z1[0, 1}, Lcc[0,1]), for which
the unit ball is not precompact, and give an example of a polynomial not
satisfying the conclusion of Corollary 8 for this topology.

If X and Y are Banach spaces, the space of k-homogeneous (contmuous)
polynomials from X into Y is denoted by P(*X;Y’), and that of k-linear
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(continuous) mappings from X* = X'x *) xX into ¥ by L(*X;Y). If ¥ is
omitted, it is understood to be the scalar field.

The ckw topology [10] on a Banach space X is the finest locally convex
topology having the same convergent sequences as the weak topology. On
an infinite-dimensional space, it is strictly finer than the weak topology, and
on a Banach space without the Schur property, it is strictly coarser than
the norm topology. It is therefore a topology compatible with the pairing
(X, X*), and so its bounded sets are the norm bounded sets.

Given a Banach space X, a subset K of its dual X* ig an (L)-set if, for
every weakly null sequence (z,) C X, we have

lim sup |[{@n, @) = 0.
" ogekK

The ckw topology on a Banach space turns out to be the topology of
uniform convergence on (L)-subsets of the dual [10, Theorem 3.1]. A subset
is ckw-precompact if and only if each sequence in it has a weak Cauchy
subsequence [10, Theorem 4.4]. An operator between Banach spaces is ckw-
to-norm continuous if and only if it is completely continuous, ie., it takes
weakly null sequences into norm null sequences [10, Proposition 3.2].

If a Banach space contains a copy of £;, then its unit ball will not be
ckw-precompact. This is the case, for instance, of L;[0, 1]. Moreover, it is
proved in [10, Theorem 3.7 that a bounded subset K of Ly [0, 1] = L [0, 1]*
is an (L)-set if and only if it is relatively compact as a subset of L;[0,1],
when we consider Lo [0, 1] embedded in Ly [0,1] by means of the identity
map.

We first give a result whose proof uses standard techniques. With each
polynomial P € P(*X;Y), we associate an operator

Tp: X — L(*7PX, )
given by
Tp(z)(z1,...,T5=1) = ﬁ(a:,wl, ey Tht)
for z,21,..., 251 € X.
ProPOSITION 9. Let v be a vector topology on a Banach space X, and

P e P*X,Y). Then P is uniformly T-continuous on bounded sets if and
only if so0 is Tp.

Proof. Suppose P is uniformly 7-continuous on Bx. Given € > 0, we
can find a balanced 7 zero neighbourhood U in X so that | Pz — Py|| <€
whenever ¢,y € By satisfy z —y € U.

Assume z,y satisfy the above conditions, and let z3,...,2x € Bx. By
the polarization formula,
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(Tp(z) — Te(y)) (22, - - - > 2k)

o~

=ﬁ($,22,...,21€)—P(y,22,...,zk)

k
= SEut i Z £1...8f
2tk g =11
. [P(51$+5252;c|'---+5kzk)_P(51y+5222;—---+5k2k)]_

We easily conclude that
kk
|Tp(z) - Tr(y)l < e o
and Tp is uniformly T-continuous on By. '
Conversely, let Tp be uniformly m-continuous on Bx. For 0 < £ < 1, there

is a 7 zero neighbourhood U C X so that ||Tr(z) — Tr(y)|| < € whenever
x,y € By satisfy » — y € U. For such =z, y, we have
|Pz - Py|| < | B(z,...,2) — B(z,y,z,...,2)]|
+ | P(z,y,z,...,3) — Plz,y,y,2,...,3)|| + ...
+ ”P(ma:%ay) _P(yyay)u
= [|(Tr(z) - Tr{y))(=, ..., )
+ (Tp(z) - TeW) (@ v, 2, .. 2} + -
< ke,

and P is uniformly 7-continuous on By, which completes the proof. w

Since Tp is linear, Tp is uniformly 7-continuous on bounded sets if and
only if it is 7-continuous on bounded sets. Therefore, we easily obtain:

COROLLARY 10. A polynomial P € P(*X;Y) is uniformly ckw-continu-
ous on bounded sets if and only if the associated operator Tp i3 completely
continuous.

We are now ready to construct our polynomial, which is a modification
of an example given in [1]. To this end, we divide the interval (0, 1) into
subintervals

Ij=(1/2,1/27Y)  (jeN),

and denote by x; the characteristic function of I;. Let (rn) be the
Rademacher functions on [0, 1], given by

() == signsin 2wt (¢ € [0,1]).
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We easily obtain

0, . n> g,
(TnaX:i) = { _2.—'7: n=j,
273, n<j.
Note that for each f € L;[0, 1] we have
=}
(1) Yo 1Fxal < M-
i=1

For f,g,h € L41]0,1], define

00

Alf,90h) = {F X300 %5) (hy ).

j=1
Since
[s o]
|A(f, 0, W) < gl - IRl DD 1A xa ! < A5 Dlgl - 1A,
j=1
we see that A is a 3-linear continuous form on L4[0,1]. Then the function
P(f)=A(f1faf) (fEL]_[D,].])
is a 3-homogeneous continuous polynomial on L4[0, 1.

ProrosITION 11. The polynomial P is ckw-conlinuous on bounded sets
of L1{0,1], but is not uniformly ckw-continuous on bounded sets.

Proof. We first show that the associated operator Tp is not completely
continuous. By Corollary 10 this will imply that P is not uniformly ckw-
continuous on bounded sets. Since

P(f,9,h) = 3[A(f,9,h) + Ak, f,9) + Alg. b, )],
the operator Tp : I1[0,1] — £(2Ly[0, 1]) is given by

TP(f)"——%[A(, a.f)+A(f) " )+A(1fa )]

Then
BTp(ra) =Y [(-X3) 2 (Pmm3) + 2( X502 73) (P 5]
j=1
= (',X'n)z —-2. 2—n( ‘7Xn)<'17'n> +2 Z g_j('1x.7')< ':Tj>'

j=n+l
Since ||(-, xn}?|| = 1, and

oo

|22 Com i +2 3 2| < 4027
j=n-t+l
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we see that ||Tp(rs)|| does not converge to zero. Since (r,) is a weakly null
sequence in L;{0, 1], this shows that T'» is not completely continuous.

Let us now prove that P is ckw-continuous on bounded sets, in other
words, given fo € L1[0,1], € > 0 and r > | fo||, there exists an (L)-set
K ¢ I1[0,1]* so that |P(f) — P(fo)| < ¢ whenever f € L,[0,1] satisfies
[fll €7 and f — fo € °K, where

K :={g € L1[0,1] : |{g, )| < 1 for all h € K}.
Indeed, choose 6 > 0 with
(2) Br?§ < e.
Thanks to (1), we can find jp € N so that
(3) H{forxs)| <6 for every 5 > jp.
The set
Ki={6"x;:5 e N}U{§2r;: 1 <5< 5o}

is an (L)-set in L1[0, 1]*. Moreover, for f € L;[0,1], we can write
P(f) = P(fo)

= A(f, f — fo, F) + A(S, fo, f = fo) + A(f = Fo, fo, fo)

o0 Jo
= Z(f:xﬁ(f-mej)(f:W)+Z<f,Xj)(f0=Xj>(f"“f0;Tj)

j=1 j=1

+ 3 A Forxalf — fours) + 3 (F — forxa) (Fo, x3) (fo, 13)-
J=jo+1 Jj=1
If f—fo € °K, we have |[{f — fo,r;)| < 8 for 1 < j < jo, and [(f — fo, x;)| < 8
for all § € N. Using these two inequalities along with (1)—(3), we get

|P(f) = P(fo)|
AN 8- NAN+1FN - Hfoll - 6+ 11F1 -6 11f = foll +6 - |1 foll?
< Bri§ < e,

and the proof is complete. w

When we consider the norm topology, we do conclude that if a polynomial
is norm continuous {on bounded sets), it is also uniformly continuous on
bounded sets, and however the unit ball is not norm precompact in infinite-
dimensional Banach spaces. This is due to the fact that the balls centered
at the origin constitute a base of zero neighbourhoods, and a polynomial on
a locally convex space is continuous if and only if it is uniformly continuous
on some zero neighbourhood [9].
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3. Factorization results. In this part, we apply Theorem 3 to prove
that a holomorphic mapping f is weakly uniformly continuous on bounded
sets if and only if it may be written in the form f = go S, where S is a
compact operator, and g a holomorphic mapping.

For Banach spaces X1,...,Xg and Y, we use £(Xy,..., X Y) to rep-
resent the space of k-linear (continuous) mappings from X; x ... x X into
Y. The space of compact operators from X into ¥ is denoted by Co(X; Y.

We dencte by Lan(X1,...,Xx; Y) the space of k-linear mappings which
are weakly continuous on bounded sets, in the sense of Definition 2. We
define the spaces Ly (*X;Y) and Pyp(*X;Y) in an analogous way.

For each 1 <4 < %, consider the mapping

51 : 'C(Xll [ )Xk;Y) - L(Xls o '1Xl'; 'C'(X'ﬂ'+1: e 1Xk#Y))
taking A into A given by
A1, @) (@i, me) = Alm, . 2i)

for mj € X; (1 £ 4 < k). It is well known that & is a linear surjective
isometry.

PROPOSITION 12. Given Banach spaces X1, ...
maps the space Lup(X1,..., Xk;Y) onto the space

Lo (X1, 0y Xi; Lo (K1, o, X V).

Proof. If A is weakly continuous on bounded sets, it is clear that the
range of A lies in Lo (Xig1,-.., X Y). Now, let bounded, weak Cauchy
nets (24) C X; be given for 1 < J £, at least one of which being weakly
null. Suppose we have

\ Xk, ¥, the isomefry &

I Alzg, ... z3)| > 8
for some § > 0. Then we can find nets (z,) € Bx, (i+1 < j < k), that can
be assumed to be weak Cauchy, so that

1AGz5, . 2g)ll = A, . wb) (@b, .. 2k)) > 6,

a contradiction (Theorem 3). Applymg again Theorem 3, we conclude that
A is weakly continuous on bounded sets.

Conversely, if A € Lon(X1,. ., Xi; Lob{Xitts- ., X: Y)) and, for each
1< j <k, a bounded net (z) C X ; 18 given which converges weakly to 2,
we easily see that A € Lyy(X1,..., Xk; Y) by writing

[Aes - 28) — At ..., 3¥)|
< ”‘Z(‘Ti: < 7ma)( H—ls .- =m2) —- A‘(ml, . '1"”":)(@:‘;1? s ’mg)“
+H A, . af) (@i L ak) — At Lz (TR,
This completes the proof. =
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Our next result shows that P factorizes if and only if so does P.

PROPOSITION 13. Let U be an operator ideal, and P € P(*X;Y) for
Banach spaces X, Y. The following assertions are equivalent:

(a) there are a Banach space Z, an operator § € U(X;Z), and 4 poly-
nomial @ € P(*Z;Y) so that P = Q o S:

(b) there are Banach spaces Z;, operators S; € UX;Z;) (1< i <),
and o k-linear mapping B € L(Z,...,2;Y) so that P=Bo (S1,...,5%).

Moreover, if (b) is satisfied, then we can choose S and Q in (a) so that
|51 = max || S:]| and [|Q[ = ||B].

Proof. (a)=>(b). Take Z; = Z, S; =S (1< i < k), and B = Q.

(b)=+(a}). Take Z = Z; x ... x Zy, Sz := (Siz,...,8x) for all z € X,
and

Q((Zl, [ ,zk)) = B(Z], . ,Zk).

To see that () is a polynomial, note that its associated symmetric k-linear
mapping is

QU 1), s n ) 1= 2 3D B . ),
where the sum is taken over all permutations (i1,...,is) of (1,...,k).
Endowmg Z Wlth the supremum norm, we obtain ||S|| = max||5; 1| a.nd

il =

In the proaf of the next theorem, we shall use the well known fact that
for every compact operator I' : X — Y between Banach spaces, we can
find a space Z and compact operators § : X — Zand R: Z — Y so
that T = R o5 [13, Theorem 17.1.4]. We are indebted to H. Junek who
pointed out that, as shown in [12, Lemuma 1.2], we can renorm Z so that
|B[|-}|S] = ||T'||. As usual, we denote by co(X) the Banach space of all null
sequences in X, endowed with the supremum norm.

THEQREM 14. Given Banach spaces Xq,..., X%, Y and ¢ number g >
0, for each A € Lyp(X1,...,Xi;Y) there are Banach spaces Zy, ..., Z,
operators S; € Co(X;; Z;) and a mapping B € Lyn(Z1,...,Z,;Y) so0 that

A(.’l’:l,...,mk) =B(515L'1,...,Sk.."}k) (SC,_.; E_Xz'),
and [ B|[ - [|S1l ... [ISk] < (1 +e)]|All-
Proof. For k = 1, we have the above mentioned result for linear op-
erators, Assume the theorem is true for (k — 1)-linear mappings (k > 1),

and take A := (1 + ¢)¥*. Given 4 € Lyp(X1,..., Xk;Y), Proposition 12
provides an associated

Ae wa(XZ, ey X CO(Xl;Y)).
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By induction, we can write A = D o (S;,...,8%) with §; € Co(Xy; Z;)
(2<i<k), DeLy(Za,-..,Z;Co(X1;Y)), and
1D - 1Sali - - - 1186l < A5 A].
By Proposition 12, we associate with I} an operator
D € Co(Zy;Co(X1; La(Zs, ..., Zi; 1)),

Since D is compact, there is a sequence (Dp) C Co(X1; Lub(Z3, ..., Zi;Y)
with {|D,|| — 0 so that D(Bg,) is contained in the absolutely convex, closed
hull of {D,}, and

A~Y < || D||/sup || D]l.
Define
T: Xl — CO(wa(Z& sy ZJ(HY))

by Tz := (Dpx1)52.;. Clearly, T' is compact and so we can find a space Z;
and compact operators §1: X1 — Z; and R: 2y — ¢o(Lwiu(Z3,...,25;Y))
with §1(X1) dense in Z1, such that T = Ro 5; and ||R||- [|Sy]| = ||T||. Define
a linear mapping

U: T(Xl) - Ewb(zh ey Z]c;Y)
by ‘
U(Tz1) (22, .-, 26) = (Dz2)(z1) (23, .. ., 2k)

for 21 € Xy, 22 € Zy,..., 2z € Zy. Clearly, U is well defined. If || 25| = 1, we
have Dzg = Y o0 An Dy with 3°°0 |),,! € 1. Then

U (Tz1)(2a, ..., 2k |—|IZ)\ {Dnz1)(23, . zk)H

< (22 Pal)(sup Dzl - fzal .-

ne=l

STl - faall - ... |2l

Therefore, U is continuous and admits an extension V' to the closure of
T(X1), with [[V|/ = ||U]! < 1. Since R is compact, the operator

VoR:Z — Lun(Zy,..., Z1Y)

is compact. Let B € Ly1,(Z1,..., Zk; Y) be the k-linear mapping associated
with V o R by Proposition 12. We have |Bi|=||[VeoR| £ ||R|. For zy € X1,
i € Xy, we obtain

Factorization of holomorphic mappings 131

B(Slwl, ey Sk.’rk) = (V o R(S1$1))(Sz$2, Caay Skfl:k)
= U(T.’El)(SQJsz, e ,Skxk)
= (DS2x2)(z1)}(Ss23, - . . , Seai)
= E(Szmz, raay Ska:k)(:cl)
= .Z(&'?z, ces 755’0)(371) = A(mla ce ;mk)'
Moreover, since || A|| = || 4| and
5]l = 121l 2 A sup | Dall = AHT] = XHR] - [51]] 2 A1 B - | 5],
we get
BI - 1S2l- 1520+ - Sell < AUD - 18- - S| < A¥{A].,
and the proof is complete. u
CoROLLARY 15. Given Banach spaces X, Y and o polynomial P €
PrEX;Y), we have P € Pwp(*X;Y) if and only if there are a Banach

space Z, an operator S € Co(X;Z), and o polynomial @ € Pwp(*Z;Y)
such that P = Qo §. Moreover, given £ > 0, we can obtain |Q| - ||S||* <

(1+2)|P].

Proof. Suppose P € Pyup(*X;Y). Then Pe Lo (*X;Y). Given € > 0,
by Theorem 14, we can write P = B o (51,...,5%) with S; € Co(X; Z;),
Be ﬁWb(Zlg vy Zk;Y), and

IBI- Sl ISkll < (1 + )| B

We can assume that [|Sy] = ||Sk|| By Proposition 13, we have
P =Qo8 with |Q| - [|5]* < (1 + &)||P||. Tt is easily shown that Q is
weakly continuous on bounded sets. The converse is clear. m

For complex Banach spaces X, ¥, let H(X;Y) denote the space of all
holomorphic mappings from X into V', and Hybu(X;Y) the subspace of
all mappings in H({X;Y) whose restrictions to bounded subsets are weakly
uniformly continuous. We obtain:

THEOREM 16. Let X, Y be complei Banach spaces, and f € H{X;Y).
Then f & Mwn(X;Y) if and only if there are a space Z, an operator § €
Co(X;Z), and o mapping g € Hypu(Z;Y) 0 that f =go S.

Proof, Let f = ¥ .., Px be the Taylor series expansion of f at the
origin, and suppose f € Hupu(X;Y). By the Cauchy-Hadamard formula,
we have lim || Py|*/* = 0. By Corollary 15, there are spaces Z, operators
Sy € Co(X; Z) and polynomials Qy € Pub(¥Zk; Y) such that Py = Qi 0 S
with

[|Qxll - ”Ska<2”Pk”<2 lIP:cIJ
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(the last inequality is well known and may be seen in [17, Theorem 2.2]).
Then, using the Stirling formula,

ol/kg
(2mk)1/2k

We can assume therefore that ||Sy|f — 0 and ||Q&[[*/* ~ 0. Define § :
X — Z = co(Zy,) by Sz = (Spx)k. Clearly, § is compact. Setting 7 : Z 3
(9:) = Yk € Zx, we define g : Z — Y by g(y) := Y req @k o mx(y). Since
lim ||Q o mk[V/* = lim ||Qr|[*/* = 0, we find that g is a holomorphic map-
ping, bounded on bounded sets. Moreover, @y © 7y, is weakly continuous on
bounded sets, for all k. Therefore, ¢ € Huwbu(Z;Y). The converse is clear. a

lim [|Q /" - 18| < lim AP = 0.

‘We recall that it remains unknown whether or not a holomorphic map-
ping between Banach spaces which iz weakly continuous on bounded sets is
automatically weakly uniformly continuous on bounded sets [3], i.e., whether
or not a holomorphic function on a Banach space can satisfy the conditions
(a), (b) and (c) given after the proof of Theorem 5.

We thank Professor 8. Dineen for pointing out a gap in a first version of
Proposition 12. Trying to fill in this gap led us to find Theorem 3.

Most of this work was done while the second named author was visit-
ing the Mathematics Department of University College Dublin, whom he
wishes to thank for their hospitality. He also thanks DGICYT (Spain) for
supporting his stay.
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