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Positive operator bimeasures
and a noncommutative generalization

by

KARI YLINEN (Turku)

Abstract. For C*-algebras A and B and a Hilbert space H, a class of bilinear maps
®: AxB — L{H), analogous to completely positive linear maps, is studied. A Stinespring
type representation theorem is proved, and in case 4 and B are commutative, the class is
shown to coincide with that of positive bilinear maps. As an application, the extendibility
of a positive operator bimeasure to a positive operator measure is shown to be equivalent
to various conditions involving positive scalar bimeasures, pairs of commuting projection-
valued measures or pairs of commuting positive operator measures.

1. Introduction and notation. Positive operator measures (PO-mea-
sures for short), i.e. measures whose values are positive operators on a
Hilbert space, play a central role e.g. in spectral theory and quantum me-
chanics. Early references on these aspects include [1] and [6]. An important
issue is what is called “amalgamation” in [1]: Given o-tings ¥; and two
commuting PO-measures E; : Z; — L(H), i = 1,2, one wants to construct
3 PO-measure F defined on the product o-ring &' of &y and Xy, such that
BX xY)=E(X)E;(Y) forall X € ¥y and Y € ¥y Tt is now (contrary
to the situation in 1966, see [1, p. 87]) generally known that even in the
case of spectral measures such a construction is not always possible (see our
Remark 4.4 for references to counterexamples). A related question in the
context of scalar bimeasures (i.e., separately o-additive functions) has also
been addressed in the literature; When is a positive bimeasure actually a
measure? (See Remark 4.4 for references, also to the case of not necessarily
positive bimeasures not discussed here.)

In thig paper we show that thege guestions (concerning PO-measures,
spectral measures or positive bimeasures) are equivalent (Theorem 4.3). This
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fact will emerge from a general analysis of PO-bimeasures, i.e. separately
weakly o-additive positive operator-valued mappings on the Cartesian prod-
uct of two g-rings. These in turn lead to operator-valued bilinear maps &
on A x B satisfying @(x,y) > 0 for positive z € A and y € B, where A and
B are commutative C'*-algebras. Analogously to a result of Stinespring [14],
we show (Theorem 3.1) that any such bilinear map is actually S-completely
positive in the sense to be presently defined. The notion of an S-completely
positive bilinear map on a Cartesian product of arbitrary C*-algebras is
the “noncommutative generalization” mentioned in the title. The main tool
in the theory of such maps is the Stinespring type representation given in
Theorem 2.2

The concepts and basic results from C*-algebra theory that we use with-
out explicit reference may be found in [15). Throughout our paper, A and B
are arbitrary C*-algebras, unless otherwise specified, H is a Hilbert space
with inner product (:|-), L(H} is the space of bounded linear operators on
H, and L(H).. is its positive part. If A is a sub-C*-algebra of L{H), the
C*-algebra M,(A) of (n x n)-matrices with entries in A is regarded as em-
bedded in L(H™), where H*" = H&® ... & H.

1.1. DEFINITION. Let & : A x B — L(H) be a bilinear map.

(a) We say that & is positive if ¥(z*z,y*y) > 0 whenever z € 4, y € B.
(b) For a positive integer n, we say that & is S-n-positive if

k() n
DY (@t uiy)Ele) 2 0
i=1 =1
whenever 2; € A, y; € B,and ;€ H,i=1,...,n.
(¢} If @ is S-n-positive for each positive integer n, we say that & is
S-completely positive.

The prefix “S” in this terminology stands for Schur. Tt is used to make
a distinction with another type of multilinear extension of the notion of a
completely positive linear map from a C*-algebra into another, studied e.g.
in [5] and [13]. These authors use a notion which depends on an analogue
of the usual matrix product, whereas the concept defined above is formally
related to the Schur (i.e., entrywise) product of matrices.

1.2. ExamPLE. Let T : A — B* be a linear map. The bilinear map
(z,9) — (Tz,y) from A x B to C is S-completely positive if and only
if T is completely positive in the sense of [10] (see [10, pp. 163-164] or
[15, p. 200)).

2. A Stinespring type representation theorem. The following
lemma plays a key role in the proof of the main result of this section.
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2.1. LEMMA. Any positive bilinear map & : A x B — L(H) is bounded.

Proof. Since the dual of L(H)} is spanned by its positive elements, it
is by the uniform boundedness principle enough to show that each positive
bilinear form ¢ @ A x B — C is bounded. For each z ¢ A and y € B
write ¢,{y) = ¢(z,y). Since each z € A is a linear combination of positive
elernents, each ¢ i8 a linear combination of positive linear forms on B, hence
hounded. Similarly,

sup{|¢(z,y)! | 7 € 4, [ig| <1} <00

for all y € B. Thus {¢, | # € A, ||z|| < 1} is a pointwise bounded family
of bounded linear forms, and so by the uniform boundedness principle their
norms are unifermly bounded. m

We are now in a position to prove the theorem referred to in the title of
this section. Related results may be found in [8, p. 133] and {11, p. 82].

2.2. THEOREM. Let & : A x B — L(H) be a bilinear map. The following
two conditions are equivalent:

(i) @ is S-completely positive;

(ii) there exist o Hilbert space K, representations m: A — L(K ) and o :
B — L(K) with commuting ranges, and a bounded linear map T : H — K
such that

D(z,y) = T*m(z)o(y)T

forallz € A, y € B.

Proof. Assume first (ii). For any 21,...,%, € A, ¥1,---,¥n € B, and
£,...,&n € H, we have

Xn: zn:(gs(w?%': iy )éile) = Y 3 (THr(aies)e(uivs ) TE:16)
i=1 j=1 il j=1
- H ZT"(%)Q(L’&)T&i ’ =0
=1

Assume now (i). Let Ko = A® B® H. Foru= 3., %; @y; ®¢; € Ko
and v = S, z; ® w; @ € Ko we define

=], n
(o= 3 S @z wiy)Es i)
i=1 j=1
A standard argument based on the universal property of the tensor product
shows that in this way we get a well-defined sesquilinear form (<)o on Ko,
and by assumption (u|u)o > 0 for all u € Ko. Thus N = {u € Ko | (ulu)g
= 0} is a vector subspace of Ko, and Ko = Ko /N is an inner product space
with the inner product defined (unambiguously) by {u-+N v+ N) = (ulv)o.
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We let K be the Hilbert space completion of Ky. Let @ € A. There is a
unique linear map T, : Ko — K satisfying T,(¢ @y ®¢) =az @y & for
allz € A,y € B, { € H. Let us fix a positive integer n, and z; € 4, y; € B,
& e Hfor j=1,...,n, and define

u:ij@)yj@{j.

g=1
We intend to show that
(TaulTau)o < [laf|® (ufu)o-

To this end, define F : M, (4) — M.(L{H)) = L(H™) for C = (c;;) by
F((ei;)) = (@(cij, yly;))- I C has the form (ufu;) for some uy, ..., u, € A,
the definition of S-n-positivity implies that F(C) > 0. But an arbitrary
positive matrix in M, (A4) may be expressed as a sum of matrices of this
form [15, p. 193], and so it follows that F' is a positive linear map. In the
C*-algebra Mn(A) we have the inequality (z}a*az;) < ||al®(¢}z;) as can
be seen by horrowing an argument from [15, p. 196]. Thus we can write

»
27 % w
lall* (zfzs) — (eta*azs) = Y By,
k=1l
where By = (bjb;r) with some by, € A, k = 1,...,p, i = 1,...,n [15
p- 193]. Therefore

1

F(lal*(zta5) - (afa*azy)) = F( Y By ) 2 0.
k=1

From this the inequality (Tuu|Tou)o < Jla||*(ulw)o follows.

_ As a consequence, there is a well-defined bounded linear map T, : Ko —
Ky satisfying To(u + N) = Tou + N for all u € Ko, and ||T,]| < ||a|. We
denote by 7(a) : K — K the continuous extension of T,. A routine calcu-
lation shows that 7 : A — L(K) is a representation. A similar construction
yields a representation ¢: B — L{K) characterized by the condition

oMzRYREF N =c@by®E+N

forallz € 4,y € B, £ € H. Clearly the ranges of 7 and @ commute with
each other.

We still produce the required operator 7': H — K. Let (ua)rer (resp.
(vu)uens) be an approximate identity in A (resp. in B). The Cartesian prod-
uct V = L x M of directed sets is also a directed set when (A1, 1) < (Ag, p2)
means A; < Az and p1 < pe. Replacing A — uy by (), @) = uy, and g vy
by (A, ) > vy, we may assume that the approximate identities (u,) and
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(vy) are defined on the same directed set. Suppose n € H. Since
la ® 0 @ 7+ N|* = (B(upus, vlv,Inln),

we may use Lemma 2.1 to conclude that (u, ® v, ® n + N) is a bounded
net in K, and so it has a subnet that converges weakly to some v € K. To
simplify notation we may assume that the converging subnet is actually the
original one. For any © € A, y € B and &£ € H we have

(Ve ®y @&+ N) =lim(u, v, @0+ Nlg@y £+ N)
= li(B (2w, g 0n)1l€) = (B(z", y™)ml€),

the last equality being a consequence of Lemma 2.1. Since the linear com-
binations of vectors of the type z ® y ® £ + N are dense in K, we conclude
that for each n € H there is a uniquely determined T € K satisfying

(Tnlz@y @&+ N) = ($(z", 5" )nif)
forall z € A, y € B, £ € H, Clearly T is linear, and its construction
combined with Lemma 2.1 shows that it is bounded. Using the construction
of the value of T" at p € H and the above characterization of its value applied
for £ € H, we finally get

(T*r(z)o(y)TEn) = (T¢|oly™ )m(z*)Tn)
= Um(T¢|o(y")m(z") (u S v, @7+ N))

= lillin(Tﬂm*u,,, @y, @n+ N)
= (T¢lz* @y* ®n+ N) = (¢(z,y)€[n). =

3. Positive bilinear maps on products of commutative C*-algeb-
ras. A (complex) bimeasure may be defined as a bilinear functional on a
Cartesian product of function spaces or as a separately c-additive function
on the Cartesian product of two o-algebras (or more general structures).
For a discussion of the connection between these two approaches we refer to
{16). In this section the emphasis is on the first interpretation; the second
will be prominent in the next section. Unlike [1] and [7], we ta.]zce the Borel
sets of a topological space to form the o-algebra generated by its topology.

Let 2, and {2 be locally compact Hausdorff spaces, and denote .by
Co(f1) and Cp(f2;) the corresponding commutative C""-algebrefs_ of contin-
uous complex functions vanishing at infinity. Any bound_ed_ bilinear form
& : Co(f) x Co((22) — C corresponds canonicarllx to' a linear form on
Co(f21) ® Cp(§22), continuous with respect to the pro JectlYe tensor product
norm, the greatest cross-morm 7. It is well known that in general such' a
linear functional is not continuous with respect to the only C* -norm, the in-
jective tensor product norm ), on Co(21) ® Co(§2z), whose completion with
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respect to this norm can be identified with Co(f2y X §22). If, however, the
bilinear form & is positive, then y-continuity is equivalent to A-continuity.
A statement to this effect involving compact metrizable spaces is proved in
[6, p. 51] using Choquet theory. We prove in the following a theorem which
in conjunction with Theorem 2.2 yields a generalization (Proposition 3.2) of
that result. In the next section we apply Theorem 3.1 to positive operator
bimeasures defined as operator functions on the Cartesian product of two
o-Tings.

3.1. THEOREM. If & : Cp(121) x Cp($2y) — L(H) 13 a positive bilinegr
map, then & is S-compleiely positive.

Proof. Let n be a positive integer Fix f; € Og(.(h) and & € H for
j=1,...,n For each (4,7) € {1,...,n}? let p;; be the regular complex
Borel measure on {2, satisfying

(@(f7 F, 9)6506) = | gy

{1y

for all g € Cp(f2). (We use * to denote complex conjugation.) Suppose now

that g1,...,9n € Co{{22). Let € > 0 be given, Choose a finite Borel partition
By, ..., Bs of 125 such that for some complex numbers ¢;,,,
g
sup |g;(8) = 3 cpuxa,(8)] < s
Lef u=1
for all j = 1,...,n. Clearly, by choosing ¢ small enough,

ani | (ifﬁmmu 9) (Z%uxm (t)) dpss 2)

i=1 j=1 2y wu=l
can be made to be as close to
Z Z(é(f*fg 97 91)6516:)
i=ml fml

as desired. It is therefore enough to show that each

523 § (3 cwxmn ) (3 orma ) )
= 23: Xn: iaﬁpcjpﬂij (Bp)

p=1i=1 j=1
is nonnegative. Since for any g > 0 in Cy(f2) the mapping f — &(f,g) i8
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positive, it is completely positive (see {14] or [15, p. 199]), and so

chmpcgp S gdﬂ'm —ZZ f fj)g c;:pé]lctpgz) =

g=1 j=1 i=1 je=1

forall g > 0in C’g(ﬂg) It follows that 3000, 377, Ejpeiputs; i a positive

measure. Thus
i) 1
E Z CipCiphtij (Bp) 2 0,
=1 g=1

and the proof is complete. m

The theorem of Stinespring, referred to in the above proof, that any
positive linear map from a commutative C*-algebra into any C*-algebra
is completely positive, may also be proved by the above technique which
avoids the use of the Radon-Nikodym theorem. (A proof in the unital case
not using measure theory may be found int [12, p. 33].)

3.2. PROPOSITION. Let & : Co(f2y) x Cp(£22) — L(H) be a positive bilin-
ear map. There is a unigue positive linear map ¥ : Co{fh x f2) — L{H)
such that W(f ® g) = &(f,g) for oll f € Co(fhr), g € Co(h).

Proof. Combining Theorems 2.2 and 3.1 we obtain a Hilbert space
K with representations 7 : Cp(f21) — L(K), ¢ : Co(f2) — L(K) and a
bounded linear map T' : H — K such that &(f,g9) = T*=(f)e(g)T for
all f g 00(01), g & Co(ﬂz). Since C’g(ﬂl X Qg) = CD(Ql) @ CO(QQ) is
isometricallly isomorphic to Cy(§21) ®max Co(£22) [15, p. 215], there is a
representation 8 : Co(f21 x 2;) — L(K) such that 8(f ® ¢) = 7(f)e(g)
[15, p. 207], and we may define the required ¥ by ¥(h) = T*#(h)T. The
uniqueness of ¥ is clear, since a positive linear map from Co(f2y x {22} into
L(H) is continuous, and linear combinations of functions of the form f ® g
are dense in Co(f21 X £25). w

4, Positive operator bimeasures. In this section (2, and (2, are ar-
bitrary sets, unless otherwise specified, and L is a o-ring of subsets of (2
for i = 1,2. We let f2 = f2; x (2; and & be the o-ring generated by the
Carteamn products X x ¥ with X € &1, Y € Z». We denote by (7 the
linear subspace of the space of bounded complex functions on (2; that the
characteristic functions yx of the sets X € X; span, and by C; its closure
with respect to the supremum norm. Then C; is a commutative C*-algebra.

We take [1] as our general reference on terminclogy and results related
to operator measures. In particular, a positive operator-valued measure, or
PO-measure for short, is a weakly (or, equivalently, strongly) o-additive
function F : X; — L(H)4. If its values are self-adjoint idempotents, we
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call such an E a projection-valued measure. (Unlike (1], we resexve the term
spectral measure for a projection-valued measure defined on a o-algebra and
having the identity operator [ in its range.)

If 8: Xy x 5y — L(H) is such that 3(X,.) : Xy = L(H) and 8(,Y):
2y — L(H) are PO-measures for all X € Ty and ¥ € X3, we call B a
PO-bimeasure. A separately o-additive function 8 : Ty x Ty — [0,00) is
simply called a bimeasure.

A PO-measure on a o-ring is automatically bounded [1, p. 13]. Part (a)
of the next lemma shows that a similar result (with a very similar proof) is
true for PO-bimeasures.

4.1. LEMMA. Let 8: 21 x Eo — L(H) be o PO-bimeasure. Then

(a) sup{|IB(X,Y)|| | X € &1, Y € Ty} < 00, and
(b) there is a unigue positive bilinear map @ : C1 x Ca — L(H) such that
@(Xx,)(y) = ﬁ(X, Y) forall X e Xh,Y € 5.

Proof. (a) There exist a sequence (X,,) in Xy and a sequence (¥,) in
279 such that

sup{[|8(Xn, Yo)l| | n € N} = sup{[|S(X,V)I| | X € By, ¥ € T}

Let X be the union of the sets X,, and ¥ that of the seta ¥,,. We have
B(Xo,Yo) 2 (X, Y0) = $(X,,Y,) for all n € N, so that ||P(X,,¥,)|| <
|8(Xo, ¥0)| for all n € N, Tt follows that

sup{|[B(X, Y)|| | X € 21, ¥ € Ta} = || 8(Xo, Yo)ll.

(b} For linear combinations f = >I%, a;xx, and g = > 7, bixy; of
characteristic functions of disjoint sets in X and X, define

m n
B(f,9) =3 ab;B(X;,Y;).

=1 j=1
A standard argument shows that in this way we obtain a well-defined bilinear
map $q : C x C§ ~ L(H). By (a) there exists a constant M € [0, co) such
that | (X, Y)|| < M for all X ¢ I, Y € Xy, If in the above expressions for
fandgwehave 0 < a; <land0<b; <lforalli=1,...,m,j=1...,n
then

30D absB(X ¥) € 3 a3 A V) = Yt (X5, | )
i=l =1 i=l =1 =1 J=1
<Y 8(xUw)=8(Ux,Uy) s M
i=l F=1 i=1 J=1
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By expressing a general function in C; in the usual way as a linear combi-
nation of four nonnegative ones we infer that $; is a bounded bilinear map
whose norm is at most 16M. Extending $y by continuity to €y x Cy we find
the required #. m

In the situation of the above lemma we call &(f, g} the integral of the
pair (f,g) € C1 x Cz with respect to 3.

4.2, THEOREM, Let H be a Hilbert space and 3 : Xy x Xy — L(H) a PO-
bimeasure. There i3 o Hilbert space K with a bounded linear map 1 : H — K
and two projection-valued measures E : Xy — L(K), F : Xy — L(K)
such that B(X,Y) = T*E(X)F(Y)T and B(X)F(Y) = F(Y)E(X) for all
X e X, Y e Dy If each Xy is a o-algebra, and 5(421,2) = I, then E and
F can be taken to be spectral measures.

Proof. Let @ : Cy X C; — L(H) be as in Lemma 4.1. Since & is S-
completely positive by Theorem 3.1, Theorem 2.2 yields a Hilbert space
K, representations = : C; — L(K) and ¢ : Cz — L{K), and a bounded
linear map T : H — K such that &(f,g) = T*w(f)e(g)T for all f € C;,
g € Cy. Define B(X) = w(xx) and F(Y) = o(xy) forany X € X1, ¥ € X».
Then F and F are additive projection-valued functions. Examining the proof
of Theorem 2.2 it is, moreover, easily seen that weak g-additivity is built
into the construction of E and F. If each X; is a o-algebra, approximate
identities in the proof of Theorem 2.2 may be replaced by identities, and
since one then obtains unital representations, F and F will be spectral mea-
sures. m

The above result resembles some representation theorems for complex
bimeasures in terms of (in general noncommuting) spectral measures. We
refer to [17] for details. -

4.3. TurorEM. Thee following conditions are equivalent:

(i) for every bimeasure 8 : Ty x Ty — [0,00) there is a measure i
5 —[0,00) such that u(X xY) = B(X,Y) for sl X € T0, Y € Zig;

(ii) for every Hilbert space H and any two eommuting projection-valued
measures E : Zy — L(H), F : Dy — L(H), there is a projection-valued
measure G : £ — L{H) such that G(X x Y) = B(X)F(Y) for all X € %y,
Y g Xy, ‘

(iii) for every Hilbert space H and every PO-bimeasure 3 : X1 x Xy —
L{H) there is ¢ PO-measure G : 5 — L(H) such that G(X xY) = B(X,Y)
forall X € Xy, Y € X

(iv) for every Hilbert space H and any two commuting PO-measures
E: 3 — L(H) and F : 5y — L(H), there is a PO-measure G: X — L(H)
such that G(X x ¥) = B(X)F(Y) for all X € Z1, Y € . o
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Proof. (i)=(ii). Assume (i). Let H, E and F be as in (ii). For each
£e H X € Xy and Y € Dy, put Be(X,Y) = (BE(X)F(Y)|¢). Then
B: Dy x Xy — [0,00) is a bimeasure; let pe : & — [0, 00) be the measure cor-
responding to it by (i). Let R be the ring generated by {XxY | X € 53, Y €
Za}. Tt is clear that the restrictions of the measures of the type pe to R sat-
isfy the conditions listed in Theorem 2 in [1, pp. 9-10]. In particular, since
all values of the additive operator function on R defined by & are pro-
jections, ue(X) < [i¢]|® for all X € R. The subset of & for which these
conditions hold (the boundedness condition being taken in the above form
with the constant equal to one} is a monotone class, and so it follows that
they hold for all X & X' [7, p. 27]. Thus by Theorem 2 in [1, pp. 9-10]
there is a PO-measure G on X such that ue(Z) = (G(Z)¢|£) for all ¢ € H
and Z € X, and so G(X xY) = E(X)F{(Y)forall X € 5, Y € I,
Since G(Z) is a projection for all Z € R and the set of those Z € I for
which this is true is a monotone class, G(Z) is a projection for every Z ¢ &
[7, p. 27].

The implications (ii)=>(iii) and (iv)=(i) follow from Theorem 4.2, while
(iii) trivially implies (iv). m

4.4. Remark. (a) The implication (i)=>(ii) is proved in a different way
in [4, p. 133].

(b) The equivalent conditions listed in the above theorem are satisfied
in the situations commonly occurring in practice. By the Corollary in [1,
p. 99] this is the case if each £2; is a locally compact Hausdorff space, and
2/; is the o-ring of Baire sets in §2;. In the literature mostly the case of o-
algebras is discussed. In [3] a sufficient condition for (ii) involving the notion
of a Lebesgue space introduced by Rokhlin is given. For an analysis of the
condition (i) we refer to [9] and its references. Variants of a counterexample
involving the axiom of choice have been published at least in [3], [2, p. 33],
9, p. 13] and [4, p. 125).

We still consider briefly the case of regular operator bimeasures. For any
locally compact Hausdorff space 2, B({2) denotes its Borel o-algebra, and
a mapping y : B(2) — L(H) is a regular operator measure if (u(-)€|n) is a
regular complex measure for all £, € H. A mapping @ : B(2,) x B(f22) —
L(H) is said to be a regular operator bimeasure if #(X,-) and (., Y) are
regular operator measures for all X € £y, Y € 2. A regular operator
measure or bimeasure is positive if its values are in L(H),.. We then use the
terms regular PO-measure and regular PO-bimeasure.

4.5. THEOREM. If 8 : B(f2,) x B({23) — L(H) is a regular PO-bimeasure,
then there is a unique regular PO-measure p : B{(} x (%) — L(H) such
that p(X x ¥) = B(X,Y) for all X € B(f21), Y € B{12,).
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Proof. Let ®(f,g) denote the integral of the pair (f,g) € Co(f2) x
Co(f2;) with respect to §. Then & : Co(f) x Cp{f22) — L(H) is a positive
pilinear map, and so by Proposition 3.2 there is a unique positive linear map
¥ Co(f2 x {22) — L(H) such that ¥(f ® g) = $(f,g) for all f & Co(21),
g € Co(f23). It is well known (see e.g. [12, p. 50] for the case of compact
spaces) that there is a unique regular PO-measure F : B(X x Y) — L{H)
such that ¥ is obtained by integration (in the weak sense) with respect
to B. Put B(X,Y) = B(X x Y) for X € B(1), ¥ € B({2). It is easily seen
that 3 is a regular PO-bimeasure, and ¢ can be obtained by integration
with respect to 8. Applying Lemma 6.5 in [16, p. 128] to the bimeasures

~

(B(-,)¢|m) and (B(:,-)&|n) for €, n € H, we see that A= 4. u

A related result in the scalar case is proved in [2, p. 24].
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A note on the Ehrhard inequality
by

RAFAL LATALA (Warszawa)

Abstract. We prove that for A € [0,1] and A, B two Borel sets in B* with 4 convex,
7 (M + (1= A)B)) 2 27 (3 (4)) + (1 = N6 (3 (B)),

where v, i8 the canonical gaussian measure in R" and 81 is the inverse of the gaussian
distribution function.

Introduction. Let 7, be the canonical gaussian measure in R”, i.e. the
measure with density

Ya(dz) = (2)~"/? exp(—|z[2/2) du,
and let

B(x) =y ((—00, %)) = \/% f eV /2 dy forzeR

A. Ehrhard proved in {1] the following Brunn-Minkowski like inequality for
convex Borel sets A, B in R™:

&7 ¥ (A + (1= X)B)) 2 2™ (3 (4)) + (1~ )E ™ (a(B))-

This is an iraportant result which has found numerous applications in the
theory of gaussian processes and elsewhere.

It is still an open problem if this result remains true if we only assume
that A and B are Borel sets. In the book of M. Ledoux and M. Talagrand
[2] it is listed as Problem 1.

In this paper we generalize the result of Ehrhard to the case when one
of the sets A and B is convex. ‘

Let us start with the following lemma:

LeEMMA 1. Let A = (a,b) be a finite open interval and let numbers I'p,
A€ (0,1) be given. Then there emists an interval (¢, d) with v1((¢c,d)) =I's
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