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A note on the Ehrhard inequality
by

RAFAL LATALA (Warszawa)

Abstract. We prove that for A € [0,1] and A, B two Borel sets in B* with 4 convex,
7 (M + (1= A)B)) 2 27 (3 (4)) + (1 = N6 (3 (B)),

where v, i8 the canonical gaussian measure in R" and 81 is the inverse of the gaussian
distribution function.

Introduction. Let 7, be the canonical gaussian measure in R”, i.e. the
measure with density

Ya(dz) = (2)~"/? exp(—|z[2/2) du,
and let

B(x) =y ((—00, %)) = \/% f eV /2 dy forzeR

A. Ehrhard proved in {1] the following Brunn-Minkowski like inequality for
convex Borel sets A, B in R™:

&7 ¥ (A + (1= X)B)) 2 2™ (3 (4)) + (1~ )E ™ (a(B))-

This is an iraportant result which has found numerous applications in the
theory of gaussian processes and elsewhere.

It is still an open problem if this result remains true if we only assume
that A and B are Borel sets. In the book of M. Ledoux and M. Talagrand
[2] it is listed as Problem 1.

In this paper we generalize the result of Ehrhard to the case when one
of the sets A and B is convex. ‘

Let us start with the following lemma:

LeEMMA 1. Let A = (a,b) be a finite open interval and let numbers I'p,
A€ (0,1) be given. Then there emists an interval (¢, d) with v1((¢c,d)) =I's
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such that for each finite union B of intervals with v1(B) = I's we have
Y {AA+ (1= XN)(c,d)) < m{rd + (1 - XN)B).

Proof. Let a positive integer n be fixed. We will look for the minimum
of 71(AA + (1 ~ X)B) over all sets B which are unions of at most n open
intervals (some of them may be infinite) with the fixed gaussian measure
1{B) = I'p. It is easy to notice that the minimum is achieved for some set

Bg“—”(cl,dl)u...U(Ck,dk), a<di<c<..<d k<n.

We are to show that k = 1. Assume that k& > 1. Then we have
k
A+ (1=X)Bo = [ (a4 (1~ X)ei, Ab+ (1= \)dy).
gl

If [)\a,-i— (1 - /\)Ci, Ab-F (1 - }\)di] N [)\a-i— (1 - )\)Ci.t_]_, Ab - (1 — )\)d,‘,...l] # ]
fgr some § < k then we can find & > ¢ and d; > _d.,.; such that for
B = (El,dl) U = U (C@,di) U...u (Ck,dk) we have ’)’1(3) = ’Yl(BQ) and
(A4 + (1= N)B) < 71(AA 4 (1 - A)Bo), which contradicts the minimality
of By. Hence the intervals [Aa -+ (1 — A)eg, Ab + (1 — M)di], i = 1,...,k, are
disjoint.

If ¢; = —co we define the function ¢(¢) for & > 0 such that
(1) 1{(—00,d1)) = 1 ((p(e), da +€))

and let B, = (p(e),d1 +&)U Ufzz(ci, d;). Then 1 (B,) = v (By) for & small
enough and so

(2) ROA+ (1= A)Be) > 1M+ (1~ X)Bo).
From (1) we obtain
Bdy +€) — B(dy) = P((e))
and from (2),
S(Ab+ (1= A)(d1 +€)) — B(Ab+ (1 - A)dy) Z $(Aa+ (L= Nele)).
But that is a contradiction since
Hm P(Aa+ (1 — Np(e))

=0 B(pe) -
and
iy ZOB+ (1= N (dr + ) — (A + (1 = A)dy)
€0 B(1p(e))
_ e BB (L A)(dy + ) — B(Ab+ (1 — A)dy)
= 24y 2) = 5(ds) <o

S0 ¢1 > —oo and analogously dj, < oo.
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Now for |¢| small enough let us define the function () by the condition
ml{er +e,d1) Uea + 0(e), d2)) = m((e1,d1) U (ea, d2)).
This means that
Bler + &) + Ber + 9(e) = B(e1) + (ca)
s0 ©(0) = 0 and

2 ol

Let .
Be = (ex + &, d1) U (ea + (), da) U (i, i)
i=3
and 1¥(g) = 71 (M + (1 — A)B,). By definition of ¢(c) we have v1(B,) =
v1(Bo), hence 1(g) = +(0) and +'(0) = 0. Since
Y(e) = ¢(0) + P Aa+ (1 - A)er) + B ha+ (1 — Aeg)
—P(Aa+ (1= A)(cr+e)) - Bha+ (1~ N){ea +0(e))),

from (3) we obtain

9(0) = L2 [ - exp - el e))

Aa+(1—Ae)? ¢ o
-I-exp(—( (2 )2)+_22__m21“ ’
g0 since ' (0) = 0,
(Aa+ (1~ Ney)

2

Gat+(1-Ne)? G o

2 2 2 2
Therefore (c; + ¢2)(2 — A) = 2(1 — A)a, and since ¢z > ¢,
{4) (2= XNeg > (1= ANa.
In the same way we prove that
(5) (2 - A)dy < (1— A)b.

Finally, for |¢| small enough we find the function ¢(¢) such that
mi((e1, dy +€) U (ea + @(e), d2)) = 71 ((c1,d1) U {ea, d2)),
that iz, ,
B(dy + ) — B(ea + w(e)) = $(dr) — B(ca),
s0 (0) = ¢ and '

- I's] 5 2 dl‘ .‘52
©) o(e) = (2T 2OE (o)
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For
k

B = (e, dy +) Uca + (e}, da) U | (i, i)
13

and ¥(e) = 71 (AA+ (1 - A)B;) we have v1(Be) = 71(Bo), hence ¥{g) > 4(0)
and so ¥'(0) = 0 and ¢"{0) > 0. Since
{e) = P(0) — PAb + (1~ Aydy) + P(Aa+ {1~ A)ez)
+P(Ab+ (1~ A)(d1 + €)) = B(Aa+ (1 — A){ea + p(e)))
we deduce from (6} that

- - 2
(N (o) = iﬁ;’l [exp (_ 00+ (1= V(s +2) )
— exp ( _ Qe+ (1~ f\g(cz + p(e)))? . (cp +;p(5))2 (& ;E)z)}
and
(8) ¥"(0)= -1--\/_2=-_$ {-— (1= N)Ab+ (1= Ndy) exp ( (Ab + ( 1._ 2

— (_(1—)\)()\a+(1—~)\)cz)exp (é—%i) + coexp (c ) dl)
P ( (ha + (1 —~ Aeg)? 62 )]
Since 9'(0) = 0, by (7) we have
R S
80 from ¥"(0) > 0 and (8) we obtain
(9)  exp(df/2)((L— (1 = XN)%)dy — AL =~ A)b)
> exp(¢3/2)((1 = (1= M)2)ez = A(1 - N)a).

But by (4) the right-hand side of (9) is positive and by (5) the left-hand
side is negative. This contradiction shows that & = 1 and the proof of the
lemma is complete.

COROLLARY 1. If A = (a,b) and B is a Borel set in R then for A € (0,1),
(10) &7 (M + (1= X2)B)) 2 AS™H(y1(A4)) + (1 — \)&~} (1 (B)).

Proof. By simple approximation arguments it is enough to show (10)
when B is a finite union of open intervals. Then Lemma 1 reduces this case
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to the situation when B is an interval, Therefore (10) holds by the result of
Ehrhard.

THEOREM 1. If A and B are Borel sets in R™ and A is convex then fo'r
Ae(0,1),

(11) &7 (m(AA+ (1= N)B)) 2 AP (14(A)) + (1 = \)B (v, (B)).

Proof. We follow Ehrhard’s method in the proof of Théoréme 3.1 of [1].
We refer to that paper for the definitions of gaussian k-symmetrizations.
For n = 1 the theorem follows from Corollary 1.

Now let n = 2 and f be an arbitrary 1-symmetrization in R2. Then one
can easily deduce from the already established case n = 1 that

(12) AIA] + (L - X f[B] C fIAA+ (1 - M)B].
Assume that (11) is false, that is,
(13) A (72(A)) + (1 ~ N8 (32(B)) =8 (1 (A4 + (1~ \)B)) = ¢ > 0.
Since symmetrization does not change gaussian measure, by (12) we have
(14) 287 (v (FIAD) + (1~ NS~ (1a(FB))

- &7 (MLl + (1 - MFIB]) 2 &
By Théoréme 3.1 of [1], f{A] is again a convex set, therefore we can inducti-
vely prove (14} for each finite composition f of 1-symmetrizations in R?.

But by Théoréme 1.6 of [1] we can choose a sequence f; of compositions of
l-symmetrizations such that

Fm (0™ (a(f5[AD) + (1 - NP~ (na(f51B1))
- & m(AflA] + (1= N HED) = 0.

This contradiction shows that the assertion holds for n = 2.

Finally, let n > 3. Then as above we prove (12) for an arbitrary
2-symmetrization in R, So if we assume (13) we derive (14) (with ~, instead
of 3) for f a composition of 2-symmetrizations. But each n-symmetrization
in B is a composition of some 2-symmetrizations (Corollaire 2.3 of {1]) and
for an n-symmetrization f we obviously have

M7 (FAD) + (1~ B (1a(FB]) =87 (1 (A [A]+ (1= NFIB]) = 0.
This contradicts (14) and completes the proof.
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Two-parameter Hardy-Littlewood inequalities
by

FERENC WEISZ (Budapest)

Abstract. The inequality

o0 o ,.. 1/
“ (2 3 mmp2femF) " <Gy, ©<r<a

[]s=1 jr|==1

is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional
classical Hlardy space Hp on the bidise, The inequality (*) is extended to each p if the
Fourier coefficients are monotone. For monotone ¢coefficients and for every p, the supremum
of the partial sums of the Fourier series is in Ly whenever the left hand side of (*) is finite.
From this it follows that under the same condition the two-dimensional trigonometric-
Fourier series of an arbitrary function from Hy converges a.e. and also in Ly norm to that
function.

1. Introduction. The inequality (*) was proved by Hardy and Little-
wood [11] for the one-parameter trigonomstric system (see also Coifman
and Weiss [2] and Edwards [5]). Recently the author [17] verified (x) for
two-parameter Walsh-Fourier and Vilenkin—Fourier coefficients.

In this paper we show all the results of [17] for two-parameter trigonome-
tric-Fourier series of distributions. The Hardy space Hy(T x T) = H, of
distributions is introduced with the L, norm of the two-dimensional non-
tangential maximal function. Using the atomic decomposition of Hj, we can
formulate a new version of Fefferman’s ([7]) theorem: if a sublinear operator
T is bounded on Ly and if there exists § > 0 such that for every rectangle
p-atom @ and for every r 3 1 the integral of [Ta|f over (R")¢ is less than
Cp27%", where the dyadic rectangle R is the support of ¢ and R" is the
2-fold dilation of R, then T'is also bounded from H, to L, (0 < p < 1).
That is to say, to show (*) we only have to consider the left hand side of (x)
for rectangle p-atoms. We also give the dual inequalities of (*). Note that
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