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Two-parameter Hardy-Littlewood inequalities
by

FERENC WEISZ (Budapest)

Abstract. The inequality

o0 o ,.. 1/
“ (2 3 mmp2femF) " <Gy, ©<r<a

[]s=1 jr|==1

is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional
classical Hlardy space Hp on the bidise, The inequality (*) is extended to each p if the
Fourier coefficients are monotone. For monotone ¢coefficients and for every p, the supremum
of the partial sums of the Fourier series is in Ly whenever the left hand side of (*) is finite.
From this it follows that under the same condition the two-dimensional trigonometric-
Fourier series of an arbitrary function from Hy converges a.e. and also in Ly norm to that
function.

1. Introduction. The inequality (*) was proved by Hardy and Little-
wood [11] for the one-parameter trigonomstric system (see also Coifman
and Weiss [2] and Edwards [5]). Recently the author [17] verified (x) for
two-parameter Walsh-Fourier and Vilenkin—Fourier coefficients.

In this paper we show all the results of [17] for two-parameter trigonome-
tric-Fourier series of distributions. The Hardy space Hy(T x T) = H, of
distributions is introduced with the L, norm of the two-dimensional non-
tangential maximal function. Using the atomic decomposition of Hj, we can
formulate a new version of Fefferman’s ([7]) theorem: if a sublinear operator
T is bounded on Ly and if there exists § > 0 such that for every rectangle
p-atom @ and for every r 3 1 the integral of [Ta|f over (R")¢ is less than
Cp27%", where the dyadic rectangle R is the support of ¢ and R" is the
2-fold dilation of R, then T'is also bounded from H, to L, (0 < p < 1).
That is to say, to show (*) we only have to consider the left hand side of (x)
for rectangle p-atoms. We also give the dual inequalities of (*). Note that
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176 F. Weisz

a continuous version of (x) was proved by methods of complex analysis and
by interpolation in Jawerth and Torchinsky [12].

Using some inequalities of D'yachenko [3] we extend (%) to every p > 2
provided that the Fourier coefficients are monotone. Under this condition a
converse-type inequality is also true: the L, norm of the supremum of the
absolute values of the partial sums of f can be estimated by the left side of
{x} (0 < p < ). For two-dimensional sine and cosine series this result was
obtained by Méricz [14]. From this it follows that under the same condition
the two-dimensional trigonometric-Fourier series of an arbitrary Hy or L,
function (p > 1) converges a.e. and also in L, norm to that function.

2. The space H,. For a set X # 0 let X* = X x X; moreover, let
T := [0,2r) and A be the Lebesgue measure. We also use the notation |1|
for the Lebesgue measure of the set . We briefly write Ly or L,(T?) for the
real L,(T?, A) space with the norm (or quasinorm) ||filp := ({pa |F|P dX)/?
(0<p<o0).

Let f be a distribution on C°°(T?). The (n, m)th trigonometric-Fourier
coeflicient is defined by f(n,m) := f(e~""®e~*™), where 1 = /1. In the
special case where f is an integrable function,

fln,m) = (;r—ﬁé‘;f(m,y)e“me“‘my de dy.

For simplicity, we assume that f(n, 0) = J?(O,n) =0(n&N).
If f is a distribution and z; = re*®, 25 := se” (0 < r, s < 1) then let
u(z1, z2) = ulre'®, se’¥) .= (f * P, x Py)(z,y),

where * denotes convolution and

o0
1-—p?
P T = “ﬂl !kmz-———-——_—.—.—_—.m... » T
() k;mr € 1472~ 2rcosx (zeT)

is the Poisson kernel. It is easy to show that u(zy, 23) is a biharmonic function
on the bidisc and

o0 )
u('re”", _ge'tb') - Z Z f(k, J),r.lk|3|l|ezkmedy
k=m0 l=—00

with absolute and uniform convergence (see e.g. Gundy and Stein [10] and
Edwards [5]).

Let 0 < a < 1. We denote by 2,(z) (z € T) the region bounded by the
two tangents to the circle |z| = o drawn from e'® and the longer arc of the
circle included between the points of tangency. The non-tangential maximal
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function is defined by

uy, p(c,y) == sup sup

"U-(ZL, 22)|
21 €0 () 23 €0 (y)

0<e,g<1),
For 0 < p < oo the Hardy space Hp(T % T) = H, consists of all distribu-
tions f for which uy, 5 € Lp. Set

Hf”H,, = HuI/z,mllp-

It is known that if f € Hp (0 < p < 00) then f(z,y) = limy, omy u(re®®, se¥)
in the sense of distributions (see Gundy and Stein [10]).

The equivalences |lug, 5llp ~ [[4] /51 olls (0 < p < o0) and H, ~ L, (1 <
p < oo) were proved in Fefferman and Stein [6] and Gundy and Stein [10]
for 0 < o, B < 1. For other equivalent definitions we refer to Gundy and
Stein [10], Gundy [9] and Chang and Fefferman [1].

Let us introduce the concept of the rectangle p-atoms. A function a € Ly
is called a rectangle p-atom if there exists a rectangle R € T? such that

(o) suppa C R,

(8) llaly < |RM2-27e,

() Spalz,y)eMde = [a(z,y)y™dy = 0 for all 2,y € T and all M <
[2/p— 3/2], the integer part of 2/p — 3/2.

By a dyadic interval we mean one of the form k27", (k + 1)2°"). For
each dyadic interval I let I™ (» € N) be the dyadic interval for which I ¢ I"
and |I"| = 2"|I|, If R := I x J is a dyadic rectangle then set R" := I" x J".

Let £2 be an arbitrary set and A be a o-algebra on it. For each dyadic
interval I we define I € A such that J ¢ J implies I ¢ J. For a dyadic
rectangle R =1I x J let E=1TIx J. If F C T? is open then set

F= |J R
RCP
dyadic

It is clear that, for open scts, Fy ¢ Fp implies Fy C Fo. We consider
the measure space (2%, (A x A),n) and the corresponding real L,{{2%) :=
Ly(02%, 0(A x A),n) space.

Although H, cannot be decomposed into rectangle p-atoms (see Chang
and Fefferman [1]), the following theorem, which is a new version of Feffer-
man’s theorem (7], holds.

THrOREM 1. Suppose that 0 < p < 1 and the operator T, which maps
the set of distributions inio the collection of o(A x A)-measurable functions,
is gublinear. Furthermore, assume that

(1) n(F) < C|F| for all F CT? open
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and there exists § > 0 such that for every rectangle p-otom a supported on
the dyadic rectangle R and for every r € N one has

(2) [ |TalPdn<Cp2™,
2\R
where Cy, is a constant depending only on p. If T' is bounded from Lo(T?)
to Lo(2%) then
1T Fllz 0% < Cpllflla, (f € Hp).

‘We omit the proof because it is similar to that of Fefferran’s theorem
(see [7]).

3. Hardy—Littlewood inequalities. Applying Theorem 1 we show our
main result.

THEOREM 2. For every distribution f € Hy,

1/p
@ (S ST o, 0<pso)

|n|=1 |m|=1

Proof. Suppose that {0 < p < 1. Denote by Z the set of integers and let
12 := Zy = Z\{0}. Let us introduce on Z¢ the measure n(n, m) = 1/(n?m?).
If
Tf(n:m) = nmf(n,m) (n1m € ZD)
then it follows by Parseval’s formula that T is bounded from La(T?) to

Ly(Z8).

For a dyadic interval I let I be the set {k € Zq : jk| > |I|~'}. Obviously,
I < J implies I C J. The condition (1) was proved by the author in [17].
Hence we only have to check the inequality (2).

We can suppose that for the dyadic rectangle R = I x J, the support of
the rectangle p-atom a, we have I = [0,27%) and J = [0,2~%) (K, L € N),
Then I = [0,2-%+") and J” = [0,2"5*+"). Since

ZE\R" = (2 \T) x TIU{(Zo \ T") % (Zo \ T U[T7 x (Zo \ T,

in the proof of (2) we integrate over these three sets. First we integrate over
(Zo \ I") x J" to obtain

| |Tamnm2§ff 5 B

2—-p
— (517}
(ZATT) X T™ In|=1 |m|=25-r41 [l

Hardy-Littlewood inequalities

T (—wmnz)?
< C’S eI Z 5 ‘ Sa(m yle ™ dylda:
I =0 7 J
’ N+1
<o ey

where N = [2/p - 3/2]. Therefore

(3, m)[P < Cyl| "+ K00 (] F oz, y)e= dy )"

I J
Since Np+2p — 1 > 0, we have
gft—r
(3) Z ‘m(N+1)p+p—-2 < Cfpz(Kwr)(Np+2p~1).
|n|=1

Consequently, by Holder’s inequality,

| [TaPdn
(ZAT) % TF
— |§, alz,y)e™ dy| dz)?
<C g=r(Np+2p-1)9K(p=~1) (SI J —
’“ e
0 1 —-p/2
< Cp2—1“(Np+2p—l)2K(P"-1)( E _....2.)
|m|=:214“"+1
o p/2

X

S (i et maas) ]

|mje2b=rat T J
It is easy to check that

—p/2
( i __1._>1 pf <OP2(.-L+T)(1"‘:P/2).
m?2 -

|m|=:21**"”+1
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On the other hand, by Holder's and Parseval’s inequalities and by (5) we
obtain

oo

Z (S ’ EG(m,y)e“mu dyi dw) 2]p/2

|m|=2L-r41 T

<[imy [Jatae **mydy) "]

I |m|=1

Iy

This yields
S \Tal? dny < Cpg—r(Np+5p/2—2)_
(Z\TT) X T7
Observe that § ;= Np+5p/2—-2> Q.
Next, we integrate over (Zg \ I7) x (Zo \ J7):

off—r gL-r 0
| =y Y el
(Zo\T) X (Bo\TF) i 1 nmf2—r
Again by (7)
[@(n, m)!

o (—tmy)*
- Z BT de dy
k=0 ’

< OlniN+1|”N+1|m|N+l!J|N+lS |CL(£17 y dmdy

17
< GIn!N+1|m|N-+~12~—K(N+3/2}2—L(N-|-3/2)(SS‘a(w)y)lzdmdy)l/z
IJ

Applying the definition of the rectangle atom we have

[@(n, m)|P < Cpln| N 1P| |(N+pg-K(Np+2p—1) g~ L(Np+2p-1},
Using (3) we conclude that

§ Taray< gD,
(Zo\TT) % {Za\TT)
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Since the integral over T™ x (Zg \ J7) is analogous to the first case, we
have proved condition (2) as well as Theorem 2 for 0 <p < 1.

Thus T is bounded from Hy to Ly(Z3). Since T is also bounded from
15(T?) to Lz (Z3), by a theorem of Chang and Fefferman [1] or Lin [13], we
know that 7' is bounded from. Ly(T?) to L,(72) (1 < p < 2). This completes
the proof of Theorem 2, w

Note that the continuous version of (x), due to Jawerth and Torchinsky
[12], can be proved in the same way. For the two-parameter Walsh and
Vilenkin system, () was proved by the author [17]. Other Hardy-Littlewood
inequalities for the two-parameter Walsh and trigonometric system can be
found in Weisz [19].

The dual of H| is characterized in Chang and Fefferman [1] and is de-
noted by BMO. By the usual duality argument (cf. Weisz [19], Theorem 4)
we can verify

COROLLARY 1. If Inm| < lanm| (n,m € Zp) are uniformly bounded real
nurnbers then

| 52 32 o

mace-amy”
[rj=l |mi=l

<C sup (nm|-|anm|-
nlmEZO

Again by the duality argument we derive (cf. Weisz [18], Theorem 6.10)

COROLLARY 2. If 2 € ¢ < 00 and (@nm; nm € Zo) is o sequence of
complex numbers such that

> 3 el

(=1 m=1

then

o oo g\ Ve
|53 ammemem] <0,( 3 3 foo)

|n[s=d [m]=1 |1 lmj=1

4. Hardy-Littlewood inequalities for monotone coefficients. In
this section we consider only those distributions for which
(4) Flnym) — 0 as max(|nj, [m{) — o0,
and

-~

R(f (pn, vm) ~ f(u(n + 1}, ¥m)
) ~ Flpm,vlm+ 1)) +
C (f(pn, vm) = Fluln +1),vm) A
~Flun, vim+ 1)) + Fluln+1),(m+1))) 2.0,

Fluln+1),v(m+1))) 2 0,



icm

182 F. Weisz

where n,m € N, gy = 41, v = &1 and Rb and &b denote the real and the
imaginary part of a complex number b, respectwely It follows 1mmed1ately
from (4) and (5) that the sequences (%f(n m)), (3f(n,m)) and (| fin, m)|)
are non-negative and decreasing. Since H, ~ L, for all 1 < p < oo, the
following result extends Theorem 2 to every p > 2.

THEOREM 3. Under condition (5) suppose that f € L,. Then

1/p
(& 5 Ve o, a<p<oo)

[n]=1[m|=1
Proof Let

oo 00

f= Z Z f(n’ m)em.’ce@my

|n|=1 |m|=1

=2f1"|"f2+f3+f4-

Combining the proofs of Lemma 2 of D’yachenko (3] and Theorem 6.12 of
Weisz [18], one can show the following result: if

oG o
gz, y) = Z Z bomsinnrsinmy € L, (1<p<o0)

n=1m=1
with coefficients (bn, m;n,m € N) satisfying (5), then
brm| < ClG(r/n,m/m)|  (n,m 2 1),
where
@y
G(z,y) SS g(t, w) dt du.
00
Using this, we can prove similarly to Theorem 1 of D’yachenko [3] that

1/p
(Z > [{nfn)?_,, ) <GllAl, (1<p<oo),

n=1 =l

The corresponding inequalities for fa, f3 and f4 can be obtained in the same
way. Since

[ £l ~ 1 F2llp ~ 1 fslle ~ | fallp ~ || £1ln
(see Gundy [9]), the proof of the theorem is complete. m

Note that this result for double sine and cosine series was shown by
Méricz [14).
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Denate by Snym f the (n,m)th partial sum of the Fourier series of a
distribution f, ie.

n m
Snmf z y Z Z zkweu‘.y.

kim—n lmm—m,

The following converse-type inequality can be proved as Theorem 6.13 of
Weisz [18].

TarporREM 4. Under conditions (4) and (5),

- |F(n, m)l?
| sup fonmflls < C'p( > Z i )

Ini=1 |m]==1

(0 <p < o0).

For p > 1 and for double sine and cosine series this theorem can be found
in Méricz [14], [15].
Combining Theorems 2, 3 and 4 we obtain

(6) | sup $n,mdflllp < Op“f”H,, (0 <p < 00).
n,meN

Since the trigonometric polynomials are dense in Hp, (6) and the usual
density argument imply the following generalization of Carleson’s theorem.

COROLLARY 8. If f € Ly (p > 1) or f € Hy such that (5) is satisfied
then snmf — [ a.e. and also in Ly norm (p = 1) as n,m — co.

The corresponding theorem for double Walsh and Vilenkin series can be
found in Weisz [17].
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A characterization of probability measures by f-moments
by

K. URBANIK {Wroctaw)

Abstract. Given a real-valued continuous function f on the half line [0, 00) we de-
ngot.e by P*{(J) the set of all probability measures 4 on [0,00) with finite f-moments
So Fle) ™™ {(dz) (n=1,2,...). A function f is said to have the identification property if
probubility measures from P*(f) are uniquely determined by their f-moments. A function
f i8 said to be a Bernstein function if it is infinitely differentiable on the open half-line
(0,00) and (=1)"f (”H)(w) Is completely monotone for some nonnegative integer 7. The
purpose of this paper ig to give a necessary and sufficient condition in terms of the repre-
genting measures for Berngtein functions to have the identification property.

1. Preliminaries and notation. This paper generalizes the results of
[11] where the identification property on [0, 00) was proved for the moment
function f(z) = 2P with p not being an integer. A related preblem for
the absolute moments and symmetric probability measures on (—o0,00)
satisfying some additional conditions was studied by M. V. Neupokoeva 18]
and M. Braverman [1]. In particular, M. Braverman, C. L. Mallows and
L. A. Shepp showed in [2] that the function f(z) = |z| does not have the
identification property in the class of symmetric probability measures.

The paper is organized as follows. Section 1 collects together some basic
facts and notation needed in the sequel. In particular, the notions of Bern-
stein functions and their representing measures are discussed. In Section 2
we describe the f-equivalence relation for Bernstein functions f in terms of
their representing measures, The final section contains a description of Bern-
stein functions with the identification property. A necessary and sufficient
condition is formulated in terms of representing measures and is related to a
generalization of the celebrated Miintz Theorem on uniform approximation
of continuous functions by polynomials with prescribed exponents (Miintz
[7], Szdsz [10], Paley and Wiener [9], Kaczmarz and Steinhaus [5], Feller [3]).
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Key words and phrases: Bernstein functions, Laplace transform, moments, identifica~
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