icm

STUDIA MATHEMATICA 118 (3) (1996)

Uniform convergence of double trigonometric series
by

CHANG-PAO CHEN and GWO-BIN CHEN (Hsinchu)

Abstract. It is shown that under certain conditions on {cji}, the rectangular partial

SUIDE S (%, 3} converge uniformly on T2. These conditions include conditions of bounded
variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |7k, respectively. The
convergence rate i3 also established. Corresponding to the mentioned conditions, an anal-
ogous condition for single trigonometric series is

Z |Ack| = o(1/n) (as n — o0).
|k|=n

For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the
condition: nep, = o{l) a8 n — vo. As a consequence, our result generalizes those of
Chaundy-Jelliffe [CJ], Jolliffe [J], Nurcombe [N], and Xie-Zhou [XZ].

1. Introduction. Let T2 = [~m, 7] x [-m,#]. Consider the double
frigonometric series

(1.1) i i cjpetdn R

J=—00 k=t—oo

where {¢;z : —00 < j,k < oo} is a double sequence of complex numbers.
The rectangular partial sums sy, (2z,y) of (1.1) are defined as

Smnl2,y) = Z Z cjke"(j”’“y) (m,n = 0).

Flgm tk|sn

We are interested in finding conditions on {¢;x} under which s (z, y)
converges uniformly on T2, This problem for single trigonometric series has
been discussed by Chaundy-Jolliffe [CJ], Jolliffe [J], Nurcombe [N], and
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Xie~Zhou [XZ]. For higher dimensional case, it is still open. Set
A10Cik = Cjk — Cit1,k)
Apicjr = Cjk ~ i k+1,
A11Cik = Cijk — Cig1,k = Cihtl + Cidt ki

It was proved in [M1] that if both of the conditions

(1.2)

(1.3)

e =0 as max(|f], |k]) — oo,

Z Z lAllcjk[ < 00,

J=—00 k=—o00

are satisfied, then sy, (z,y) converges pointwise in Pringsheim’s sense to
some measurable function f(z,y)} with 0 < |z{,|y| € 7. Moreover, f €
LP(T%) for all 0 < p < 1, and smn(z,y) converges in LP(T?)-metric to f as
min(m, n) — oo, where

T T

= (22 § |

— T

1/p
F(z,5) zpdmdy) > 0).

In [CL, M2, M3], it was further proved that smn(2,7) converges uniformly
to f(z,y) on the set {o < |z| < 7, B < |yl < «} for all 0 < o, B < 7. As
indicated in [CL, C2, M3], f may not be Lebesgue integrable, and hence,
condition (1.3) is insufficient for the uniform convergence of $mp(z,y) on
T2. Instead of (1.3), we assume the following conditions:

(1.4)  sup ( Z Z Xmn (3], [E]) cjk) —0 as min(m,n) — oo,
20 0 41<u fhlZw
[ (o =)
(18)  sup (4 D7 3 xmalldl K] [ Asoead) = 0
21 Gl koo

as min(m,n) — oo,
o o0
(1.6) sup (v 357 xmalldl, 1)) \oncjkl) — 0
¥ J==o0 |k|=w

as min{m, n) — 00,
o0

(1.7)  sup (ﬁw Do > Xemalldl, K]) lﬂucﬂc?) =0
[Fl=p |

w21 " k:|=ll
as min{m,n) — oo,
where Xmyn denotes the characteristic function:

k= {1 > mor |k >n
1.8 - |
(1.8) Xmn (4, k) = {0 otherwise.
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We shall prove in §2 that these conditions are sufficient for the uniform con-
vergence of 8mn{z,y} on T?. The convergence rate of s,,,, is also established
there.

Conditions (1.4)-(1.7) are growth conditions on {c;,} with (§,k) lying
outside the rectangle [—m, m] x [—n,n]. It is obvious that the u-convergence
of series (1.1) with & = y = 0 implies condition (1.4), and (1.4) is stronger
than the convergence of the same series in Pringsheim’s sense {cf. [D}).
Moreover, a double sine series automatically satisfies condition (1.4). For
the one-dimensional case, (1.4) reduces to

sup( Z ck) —0 (asn — o0),
¥

n<|k|<y
which is equivalent to

oo
(1.9) Z(ck + ¢_j) converges.

k=1
This is a necessary condition for the uniform convergence. Next, (1.5)—(1.7)
are conditions of bounded variation of order (1,0), (0,1), and (1,1) with the
weights 7, k, 7k, respectively (cf. Corollary 2.3). Any of them implies (1.3).
They are necessary for certain cases, in particular, for O-regularly varying
quasimonotone sequences {cf. §4 for details). Corresponding to (1.5)—(1.7),
an analogous condition for single trigonometric series is
oo
3 [Ack] = o(1/n)

Jk[=n

(1.10) (as n — o0),

where Acy = ¢g — cgt1. It takes the following form for the one-sided condi-
tion:

00

Z |Ack| = o(1/n)  (as n — o0).

&=

For O-regularly varying quasimonotone sequences, we shall prove in Theo-
rem 4.2 that (1.11) is equivalent to

(1.12)

(1.11)

lim ne, = 0.
100

This leads us to an alternative approach to the uniform convergence prob-
lem. Our result generalizes [CJ, J, N, XZ].

2. Double trigonometric series. As in [C1], define ATge;k, AfyCik,
and Afjejp by
* el . — .
Alocie = Cik = Cr(j) ey D018k = Gk ~ Cr(k)s
* *
Arycik = AlgAjr ik = Ap1Alelsk-
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Here ¢cot,k = Co— = Coky Cj0+ = C5,0— = Cjo, and the function 7(j) is
defined by 7(0+) =1, 7(0~) = ~1, 7(j) = j+1forj > 1l,and 7(j) = j~ 1
for j < ~1. Obviously, A7 ze;, are the same as Agpcjy for j,k > 0+, For
other cases, they are relaled in the following way:

Afpesr = —Arocj—1 e (L 0-),
Ajicik = ~Ap1cjk-1 (kL 0-).
LemMA 2.1, Agsume that (1.2) holds. Then for m,n > 0, we have

H E Z cjkefz(jmwy)H

il €mik|<n

< sup |Z chk[-i"sgli (QWMi i |AIonk‘)

BEMVERT 1< k] < e |4]=p k=—00

o0 [e]
+ sup (971'1/ Z Z |A51cjk|)

vzl j=—00 |k|=t

s} oQ
+ sup (817rz,uu Z Z ]A'{lcjk|).

=1 ;
my2 1= lel=v

Proof. Let |z| < 7 and |y| £ . Define M = max([1/|z]],1) and N =
max([1/]y(],1). Then we have

(2.1) ’ >y Cjkﬁi(j“km’ < 2+ 2 + Doy + Doy,
[71&m |k|<n
where
Zap = ‘ .2 X?w(j)x?v(k)csikel(ﬂul‘ky}|
7] Zm k| <n

and x%, and x%; denote the characteristic functions X[~a1,01] a0d Xw\ [ ag,M]»
respectively. Set

=TT el Bess(e® — 1)7(e% - 1),
7€ Jk|gn
We have 1y < I + Z10 + 2% + T, Obviously, ¢¥* — 1| < wM 1]

and
lM“l Y XaeDds| < sup 3 |y

. 1 ,
7] €m =02 =

for any sequence {d;} with dg = 0. The choice dj == Z|k\<n |7cx| gives

7 < A—}( .3 x}w(j)kjcjkr) < up (w,u >y IA‘ionk\)-

|7l [ki<n 7 ]=x k| <n
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Similarly, we have

(]
50 < sup ('rrv oy |A31cjk|),

vzl

l31<m Jki=v
[= ¢} o0
o< swp (wr 3003 At sesul).
povzl |7l |5l =0

The above discussion shows that

o0
(22) T < sup ’ Z Z cjkl +f§: (mu Z Z |AI0cjk|)

Srprsn! .
HETHYST i< [k < 71=p Jie|<n

+ sup (m/ Z i ldglcjk|)

e TP

0] ]
-+ sup (7!'2,!.1.?/ Z Z FAficjkl).

w2l ;
paz lil=p |k|=2

To estimate X3, we employ the functions ¥y(t), which are defined by
WD%— (t) = Wo— (t) = 1/2 and
Te(t) = 1/24+ €' 4 ™ . 4 gt
P_p(t) =1/2+e ¥ e 4 ek

where k > 1. By {C1, Lemma 2], we get Z12 < £99 + 219 + 501 o 511
where

=Y 3 A 06 Ko € — 1))
l[Sm |k|=0%

SR T el e (€97 ~ ().
|71<m | kl=n

As indicated in [C1], we have |Fx(y)| < =/|ly| < 2«N. It is clear that
A5 (%% (k)ej) = 0 for [k < N, and
. A if [k > N
w2 N 01%jk ’
AOI(XN(]G)CM) = {“‘"cj,'r(k) if ‘kl = N.

Moreover, [e¥® — 1| < # M ~1|j|. Based on these, we get

(2.3) I9 < sup (47”/ § j § iA31cjkl) (6=0,1),
vl ;
= [ <m |k|=v
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4y
(2.4) o) <sup( Z Z i 3A01c3k|)
|_1\<m |k|-—v
< sup (471“ Lo Z Z |Allcjk|) (6=0,1).
izl
I |=ps |l =

Putting (2.3)(2.4) together gives

iz € Sup (87“/ Z Z mmCJH)

j=—cc \k]-"u

+ SUP (STF pv Z Z |4311C,1k1)

[51=p k=2

(2.5)

Like 5 g, the term Yo, satisfies

In € sup (Svr,u, Z 2 IAlochl)

4] = h=—o0

(2.6)

oo o0

+ sup (B‘JT uv Z Z |A11'3Jk|)

51
e [71=p |b|=v

It remains to estimate }322 With the help of [C1, Lemma 3], we get
222 S Egg + 210 + 201 22, Where

DD SRS SR RE ST LA
|71=0d: |k|=0

=] Y Y A0 ke ) ()E()],
lji=0=i=lkl=n

Iy = Z Ay (3 (G ) er(sy o) ¥ ()W (1),
9 l=m |b|=04

D=y > i (k))cr(j},r(k)f’j(w)%(y)1-
|3 ]s=rm [ k] s=n

A similar argument to (2.3)-(2.4) gives

u>1
”’ d]=p k|=v

I3 < sup (167" wv Z Z 1A1161k1) (7,6 =0,1),

which implies
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oQ o0
s < sup (647r2,uv Z Z |AIlcjk|).

vzt = k=
Putting (2.1)-{2.2) and (2.5)—(2.7) together, we obtain the desired result.

THEOREM 2.2. If conditions (1.2) and (1.4)~(1.7) are satisfied, then

$mn converges uniformly on T? to some continuous function f as min(m,n)
— 00, Moreover,

lsmn = flloo < sup | 5= 5 Xmn(17] [Bl)ese

w0t o
mve |J|<M|k|<"

woup (187 5 S el 51) | A50e]

>1
k= |5|=p k=—o00

+ sup (187w Z Z xmn(|7], [K]HAG 1Cjk|)

vzl 200 ||y

+ sup (3247r pv Z E xmn{[3], ) \AuCJH)

vl
o |5 ]=ps ||z

27

(2.8)

where Ymn 15 defined by (1.8},

Proof. Let Ann be on the right of (2.8). Then (1.4)—(1.7) imply that
Amn — 0 as min{m,n) — oc. Set djx = Xmn(|7|,|kl)cjx. For M >
max(m,n), it follows from Lemma 2.1 that

[$mm ~ $310 Yoo < H Z Z dine Jm+ky)”

5] €M [k|<M

< sup |Z Y dgk’+sup (9mu Z E |A5odsn])

<
wvsM = |dl=p he=oo

+ sup (Q:rrv Z Z IAold;,v.’cl)

iJ}‘L Jz_wlkJ_NV
+ sup (8171' v Z Z | AL d_,,-k|) < dmn-
w2l l#l= [Kj=v

Thus, {sarar} forms a Cauchy sequence in C(T?2). Let f be its limit in C(T%).
Then
Hs'mn - f“oo = l\/,]ftr-vnoo Hsmn - 3MM||00 < )\mm

which is (2.8). The desired result follows from this.
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It is clear that

Sup( Z Z lAijkD i: i |idArocjl,

[fl=p k=—00 (4]

o

sup(v Z Z 1401Cjk|) Z Z kAo1esnls
vzl j——oo|ki_u =00 |k|=
e} oo

sup (w/ Z E |A11cjkt) < Z Z |k Aviesk].
21 I]=te |Fel==w |fl=1 [k|=1

Hence, Theorem 2.2 has the following consequence.

COROLLARY 2.3. Assume that conditions (1.2), (1.4), and the following

conditions are satisfied:

(2.9) E Z |7 Arociri < ce,
S

(2.10) Z Z |kAgicik| < 00,

{2.11) Z Z l7kArie] < oo,

I
g
&

]—
Then the conclusions of Theorem 2.2 hold.

3. Single trigonometric series. Denote by 8,(t) the nth partial sum
of the single trigonometric series 3 5o cxe**. To modify the proofs of
Lemma 2.1 and Theorem 2.2, we get the following one-dimensional analogue
of Theorem 2.2, which corresponds to the case where ¢j; = 0 for j # 0. In
this case, (1.4) is replaced by (1.9), and (1.10) takes the place of (1.5)~(1.7).
We leave the proof to the reader.

THEOREM 3.1. Let {cr}32 oo be o null sequence of complex numbers. If
conditions (1.9)-(1.10) are satisfied, then s, converges uniformly on T to
some condinuous function f. Moreover,

Z (e + c*k)( + 31;131 (187rv i |Ack|).

n<k<y | k| =2

lsn — fllos < sup

v>n

It is clear that condition (1.9) is weaker than the following condition:

=]

Z \Ck -|-C..~k| < 00.
k=1

(3.1)
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To replace (1.9) by (3.1), we get the following analogue of Theorem 3.1. In
this case, condition (1.11) takes the place of (1.10). In §4, we shall relate
this result to O-regularly varying quasimonotone sequences.

THEOREM 3.2. Let {cx}52 . be a null sequence of complez numbers. If
conditions (1.11) end (3.1) are satisfied, then s, converges uniformly on T
to some continuous function f. Moreover,

lon — Flloss < Z lew + c—p| + sup (18mxz |Ack|)

k>n k==y

Proof. The proof is similar to that of Lemma 2.1 and Theorem 2.2. Let
t| < . Define N = max([1/|t],1). For m > n, we have

(3.2)  lsn(t) —sm(t)] = ‘ Z cke"kt|
n< |k|<m
= ‘ E (ck + c—)e ™ + Z cu(e™t — emikt)
n<k<m n<k<m
< Z e + cpl + Ep + X,
n<k<m
where
I, = Z x%(k)cp(e* — e""“)|
n<h<m
and y and X?v denote the characteristic functions x|_y, ~] and Xg\[-N,N]»
respectively. Since |et* — e~t| < 2|kt| < 27|k| N, we have
(33) Ei< %( Y x(B)lkes) < sup (2WZ|AC,¢;)
N
n<k<m =v

For Xy, summation by parts yields

B4 m< Y (AGK k) () — Tk (t)]
n<hsm
|{ Z > }XN (k) )er ) (T (t) !T’—k(t))‘
=m k=n*
< ;S,g?. (167ruk§j|dck|)

where n* = n for n > 1 and n* = 0% for n = 0. Putting (3.2)-(3.4) together
gives

|85 = 8mlloa < Z ek + ek + sup (ISWVZ |Ack|)

k>n k=v
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The desired result follows from this inequality, (1.11), and (3.1).

Write 5o, o, cxe™®® in the form g + Y 4o ; (ax cos kt + by sin kt). Then
ap = Ck + Ciy, by = ’e‘:(Ck - C_k), and

L Sn(t) = co + Z(ak cos kt + by sinkt) (n>1).
k=1

In this notation, condition (3.1) becomes

(3.5) > lax| < oo
k=1

If oy and by, are real, then
gjack| = 5}; | Ay = iAby| 2 5 max (}; }mﬂ,é yAbk\).

This indicates that condition (1.11) implies both of the following two con-
ditions:

(3.6) i |Aax| = o(1/n) (as n — ),
k=n

(3.7) i |Abxf = 0(1/n) (as n — co).
k=n

In the following, we shall extend Theorem 3.2 from (1.11) to (3.7).

THEOREM 3.3. Let {ax}32, and {bx}32, be null sequences of comples
numbers. If conditions (3.5) and (3.7) are satisfied, then s, converges uni-
formly on T to some continuous function f. Moreover,

o0
lsn = fliso < 3 lak| + sup (97rv v \Abk|).
k>n v b=
Proof. Let s5,(t) and s2(t) denote the mth partial sums of cp +
2 pe1 Ok coskt and 30°, bysinkt, respectively. Condition (3.5) and the
Weierstrass M-test ensure the existence of f; € C(T) such that st — f1

uniform.Iy on T. Moreover, [|sp — filloe < $gsn |ok|- Applying Theorem 3.2
to the sine series, we find f; € C(T") such that s2 — f, uniformly on T, and

[ee]
53 — fallos < sup (97”/ > |Abk:|)v

k=v

Therefore, f = fy + f2 € C(T), 5, = 8% + 52 converges uniformly on T to
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f,and
52 = flloo ”Sh = filloe + Hsi — falleo

(v}
< Z |a| + sup (QWUZ iAbk\).
fraed v>n —

To end this section, we give an example to distinguish our results from the
Weierstrass M-test. Let cg = ¢ =c.; = 0, and for & > 2, ¢, = 1/(klnk),
¢k = —1/(kInk). This example satisfies conditions (1.9)~(1.11) and (3.1).
Hence, Theorems 3.1 and 3.2 apply for this case. However, 3 1o |ex| = oo,
so the Weierstrass M-test fails.

4. Application to O-regularly varying quasimonotone sequen-
ces, In this section, we shall relate Theorem 3.2 to O-regularly varying
quasimonotone sequences. Our result generalizes [CJ, J, N, X7Z).

A sequence {R(n)}32,, of positive numbers is said to be O-regularly vary-
ing if it is nondecreasing and for some A > 1,

R([Mn])

(4.1) llﬂsogp R(m) < 00,
in other words,
R([An)
s&p R(n) < o0

This generalizes the concept of regularly varying sequences introduced in
Karamata [K]. Set A1, = [Mn], and define Ay, = [AAy~1,n] for v > 2. For
A* > A > 1, choose v so large that

Atn 1 1 2
A b+ < i
w —|-,\V_1 + . +A_n (foralln_)\_l)

Then for n > 2/(\ — 1), we have [\*n] < Ay, and so
Rwl) _ RONn) _ ROw) BQw)  BOur)
R(n) = R(n) = R(n) R(n)  Ru-1.)
Based on this inequality, we see that if condition (4.1) holds for some A > 1,
then it is satisfied by all A > 1.
As defined in [XZ], the sequence {¢n}3% is said to be O-regularly vary-

ing quasimonotone if for some fy € [0,7/2) and some O-regularly varying
sequence {R(n)}52,, the following relation holds:

(4.2) Alen/R(n)) € K(6) = {2 € C: |argz| < o} (for all n).

We have
Acy, -+ (% - 1)cn = R(n + 1) (AR—?J)'
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Hence, condition (4.2) is equivalent to
R(n+1)
e - n € K (6 for all n).
(4.3) Acy + ( Rin) 1)c € K(f) (for all n)
Notice that the quasimonotone sequences defined in Szész [S] correspond to
the case of R(n) = n®.

LeMMA 4.1, Let {ca}3% be an O-regularly varying quasimonotone null
sequence. Assume that Oy and {R(n)}52,, are the corresponding angle and
O-regularly varying sequence. Then the following assertions hold:

(i) len] £ (seco) Recy for all n;
(i) {(Recn)/R(n)}2, is nonnegative and nonincreasing;

(iii) |Aep + (M—l) tn| < (secdp) Re {Acn+ (%ﬁ—l) cn}

R(n)
for all n.

Proof. (i) was proved in [XZ, Lemma 1]. For (ii), we have A(c,/R(n)) &
K(gﬂ)a 50

x ~msy ™ (4t 2
This indicates that {(Rec,)/R(n)}2%, is nonincreasing. On the other hand,
{Reen)/R(n)| <jen|/R(1) =0 asn — oo,
Hence, (Recn)/R(n) > 0. This proves (ii). For (iii}, we have

Aco + (1—{%%_1_)_ - 1) on € K(60),

and so for all n,
R(n+1)
A T
ot (e 1)
This completes the proof.

¢n| < (secp) Re {Acn + (R—g(—:—)—a - 1) Cn}-

THEOREM 4.2. Let {c,}2, be an O-regularly varying quasimonotone
null sequence. Then condition (1.11) is equivalent fo condition (1.12).

Proof. Obviously, (1.11) implies (1.12). This follows from the inequality

o0
|nen| < n( Z |Ack|).

k=n
Conversely, we asswme that (1.12) holds. Choose a positive integer A > 1
such that (4.1) holds. Set
R(An) 1
R(n) ’

(4.4) M = max (sec @y, sup
T
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where #q i3 the angle appearing in (4.2). By Lemma 4.1(1), (iii), we get
R(k+1} ) ‘ R{k+1)
Acy + (212l Rl L
o (Mgt 2)e | R 1)

< MRe{ a0, —I-Q(E%f%l—)bl)ck}.

Summing up both sides with respect to k gives

@5) S |Acel < MRo (chk) +2MZ (__%1_) )Re%

IAck-l S

k=n
< M Rec, + I,
where
_ [ R(k+1)
I= 2M{ kZ:T: (——-_R(k) ~ 1) Reck}.

Since (Reck)/R(k) is nonnegative and nonincreasing,

o ﬁ B vl { Aun..;kZ(Auﬂ.n(R(k 0= RED Fay RGE c};}
Re ¢y
Z R()\')’\n { Z

Ayn<k<)\u+1n

= ZR@ Cavp (——)\:i—l-j-l
<5 11)

=0

Putting (1.12), (4 5) and (4.6) together yields

o
1
n g [Ack| € Mney| + 2M3( sup[uc,,‘ (E F)
=0

kasmy

(R(k +1) ~ R(K)) }

o0
1) <MY feaenl
pe=0

-~ 0 asn - 00,
This 13 (1.11) and the proof is complete.

Combining Theorem 4.2 with Theorem 3.2, we obtain the following re-
sult, which generalizes the result [XZ], and hence includes those of Chaundy-
Tolliffe [CJ], Jolliffe [J], and Nurcombe [N] as special cases. As indicated in
(XZ], condition (1.12} is a necessary condition for O-regularly varying quasi-
monotone sequences. Thus, (1.11) is also needed for such a case.

COROLLARY 4.3. Let {c,}& _ . be a null sequence of complex numbers,
and suppose that {¢, }32. is an O-regularly varying quasimonotone sequence.
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If conditions (1.12) and (3.1) are satisfied, then sn converges uniformly on
T to some continuous function f. Moreover,

3

2

l|$n = Flloo < ,;) lek + ek | + 187 M . §L>1%|ch|,
n

where A > 1 48 a positive integer satisfying (4.1} and M is defined by (4.4).

Proof. The first conclusion follows from Theorems 3.2 and 4.2. For the
second, Theorem 3.2 gives

[0}
(4.7) |8n — flloo < Z leg + c—&| -+ sup (187rm Z )Ack|).
k>n man k=,

For m > n, the proof of Theorem 4.2 yields

o0 cQ
1
48w Aed < Mimen| + 2075w o) (3 5 )
v>m Av
k=m = v=0
< MZS}‘ ~~ sup PZR

- A=1 vom
Combining (4.7) with (4.8), we get the desired estimate for ||8, ~ flloc.
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