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On asymptotic density and uniformly distributed sequences
by

RYSZARD FRANKIEWICZ (Warszawa) and
GRZEGORZ PLEBANEK (Wroclaw)

Abstract. Assuming Martin’s axiom we show that if X is a dyadic space of weight at
most continuum then every Radon measure on X admits a uniformly distributed sequence.
This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary
result concerning finitely additive measures on w and asymptotic density.

1. Introduction. Let K be a compact Hausdorff space. We denote
by P(K) the set of all probability Radon measures on K. If z € K then
5z € P(K) denotes the usual Dirac measure.

Given A € P(K), a sequence (z,) C K is said to be A-uniformly dis-

tributed (A-u.d.) if
}u E 8z, — A
n

i<n
in the weak* topology, that is, for every real-valued continuous function f
defined on K one has

1 T
lim — ;) = | fdA
Jim = ; flas) IS{

The theory of uniformly distributed sequences originated in the classical
notion of a sequence in the unit interval which is uniformly distributed (with
respect to the Lebesgue measure). For many years the case of a compact
metric space K was mainly studied. The uniform distribution with respect
to the Haar measure of a given compact group also attracted much attention.
The book by Kuipers and Neiderreiter [7] surveys these topics.

Recall that every Radon measure defined on a compact metric space
has a uniformly distributed sequence. On the other hand, Losert [8] noted
that no nonatomic measure on Sw admits such a sequence (since every

1091 Mathematics Subject Classification: Primary 11B03, 28C15; Secondary 03ES0.
Partially supported by KBN grant 2 P 301 043 07.
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weak™ convergent sequence of Radon measures on Gw is necessarily weakly
convergent). ‘ | .

Losert {8, 9] investigated uniform distribution in nonmetrizable compact
spaces. In particular, he proved that every measure A € P(2*t) has a w.d.
sequence (see Section 3 for terminology and notation). Hence, under the
continuum hypothesis, if K is a dyadic space of weight at most ¢, in partic-
ular K is a separable compact group, then every measure \ € P(K) has a
u.d. sequence.

Recently Mercourakis [10] has singled out several classes of compact
nonmetrizable spaces, mostly related to functional analysis, in which every
Radon measure admits a u.d. sequence. Moreover, assuming Martin’s axiom,
he proved that this is the case in the space 27 for every s < c. This led him
to asking whether every A € P(2°) has a u.d. sequence if Martin’s axiom
holds. '

We show in Section 3 that the answer is “yes”. We base on an auxiliary
theorem which, under some assumptions, asserts that a finitely additive
measure on  can be expressed by the asymptotic density (see Section 2).
Finally, we make some remarks on a question that remains open, and on
u.d. sequences for product measures (see Section 4).

We would like to thank David Fremlin for finding a gap in the earlier
version of this paper. '

2. Measures on w and density. We denote the set of natural numbers
by w (= {0,1,2,...}), and sométimes regard a given n € w as the set
{0,1,...,n—1}. Recall that the asymptotic density of a set A C w, denoted
here by d(A), is defined as '

4(4) = lim |4 N n|/n,

provided the above limit exists. Tn the sequel, D will stand for the family of
all subsets of w having density. ' ‘

 We shall consider finitely additive measures defined on an algebra of
subsets of w. Note that while d is finitely additive, D is not an algebra.

For the basic facts concerning Martin’s axiom the reader is referred to
Fremlin [5]. We shall use the following version of Martin’s axiom (see B1D
of {5]). L | _

Martin’s axiom for o-linked partially ordered sets and x cofinal sets
(MA jiiea(x) for short) is the following:

Given a partially ordered set P that is a countable union of upwards
linked families; for every family C-of cofinal subsets of P such that |C| < &
there exists an upwards directed set G in P meeting every C € C.
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Now, the least cardinal for which MA, jukea(s) is false is denoted by
WMytinked, SO We have Kk < My yneed if and only if MA ;- jipred(x) holfis.

Recall also that, given a family F of less than mgjinees functions from w
into w, there exists a function g : w — w such that f <* g {that is, the set
{n: g(n) < f(n)} is finite) for every f € F; see 14B and B1D gf 5.

In the proof of the theorem below we shall use the following standard
Radon-Nikodym type lemma (see e.g. [1], Theorem 6.3.4). We enclose a
short argument for completeness.

LevMa 2.1. Let A be an algebra of subsets of a set T ond pu and v
be finitely additive measures defined on A such thet p < v. Given £ > 0,
there are k € w, pairwise disjoint sets A; € A, © < k, and real numbers o
such that V(T \ U, Ai) < € and for everyi < k, if B € A, B C A; and
v(B) > ev(A;) then |u(B)/v(B) — aul < 2e.

Proof Let S be the Stone space of the algebra A and let i,V be the
Radon measures on S corresponding to 4 and v, respectively. Let f be the
Radon-Nikodym derivative of i with respect to ¥ Furt}}f:r, choose nonempty
closed and pairwise disjoint subsets F; of S of positive ¥ measure, and.nm.n-
bers a; such that |fr, — a;} < e and T(5\ U, Fi) < €. Next ta,ke'paarwme
disjoint clopen sets V; 2 F; such that p(ViINFi) < e*D(Fy) fc.>r every z..Denote
by A; the element of A corresponding to V; in the natural isomorphism. We
shall check that A;'s are as required.

Suppose that B C A; and v(B) > ev(4;). Note that

L(B\ F;) < D(B\ F)) < 20(F;) < £*v(A;) < ev(B).
Thus
wB)=RBNF)+AB\F)< | fdv+ev(B)
BNF;

< (i +e)P(BNE) +ev(B) < (o +)v(B) + ev(B)

< (o + 2e)(B). '
The inequality u(B) > v(B)(e; — 2€) may be checked in a similar way.

THEOREM 2.2. Let A be an algebra of subsets of w such that AC D and

(Al < Moinkea- Further, let u be a finitely additive measure on A such that

u(E) € d(E) for every E € A. Then there exists a set X C w such that
XNEeD and u(B) = d{X NE) whenever £ € A.

Proof. (1) Assume first that p = ad for some (.:onstant o Es (0,1).

For every k € w we put [y = {i € w : k* <14 < (k+1)%}. We ghall
consider the set P of all elements (s,m, &), where s is a subS(‘et of m® (=
{0,1,...,m® ~1}), m € w, and & is a finite subalgebra of A with |&| £ .
‘We define a partial ordering on FP: '
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Given p = (s,m,&),p' = (s',m',£') € P we declare p < p’ if

i) snmd=sm<m, ECE,

(ii) for every n with m < n < m' and every E € £,
|ENs'NL|-aBENL| <n.

We first make the following observation. Let (s,m,€) € P and let £ be
a subalgebra of A with £ C £’ and 1’| < m. Then there is s’ such that

(5,m,E) < (¢, m+1,E)eP.

Indeed, we define s’ so that & N m3 = s and, given an atom 4 of the
algebra &',

[s'MAN Ly = [alAN Ly,
where [] denotes the integer part of a real number. Now (i) follows easily
from the fact that every £ € £ is a sum of at most m atoms.

We can now express P as a countable union of upwards linked families.
For every natural number m there is a number k(m) such that whenever
algebras £ and 7 have at most m elements then the algebra generated by
£ U F has at most k(m) elements. Let

P(s,m,C) = {{s,m,€) € P: ENk{m)® =C},

where C is a fixed algebra in &(m)®. Using the remark above, one may easily

check that P(s,m,C) is upwards linked and it is clear that P is a countable
union of such families.

Next we note that, given ¢ € w, the set
D; ={(s,m,£) e P:m >4}
is cofinal in P (use the observation above). Moreover, given E & A, the set
Dg={(s,m,E)e P:Fe&)}
is also cofinal in P. Indeed, take any (s,m, &) € P and let £ be the algebra
generated by £ and E (note that, since |£] < m, |£'] < m?). Now it suffices
to find s’ such that (s, m, £) < (¢, m?, €) since (', m?, &) < (s',m2, &) € P.

As we consider less than mg.jimeeq cofinal subsets of a o-linked set, there
exists an upwards directed set G C P for which G N Dg # 0 whenever
E e A and GND; £ 0 for every j € w. We shall check that the set
X =|J{s:(s,m, &) € G} is as required.

Fix B € A and let (s,m,£) be an element of G N Dg. For every n. > m
we can find (s',m/, &) € G such that (s,m,£) < (s,m/,&') and M’ > n.
Since X Nm'® = s' N m'3 we bave _

HEﬂXﬂIJ«I —-alENLl <]
whenever m < § < n. Hence

IENX N (P \m®) —o BN\ m®)|| Sm4+ (m+1)+...+n—1<n?
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HEN X Nnd| - alENnd|| < m?®+n?

m 5
S(——) + — 0.
_ 7 n

It follows that limy_.e0 | X N E Nn?|/n® = ad(E) for every E € A. This
easily gives EN X € D and d(X N E) = ad(F) whenever E € A, and the
proof of (1) is complete.

(2) In the second step we fix £ > 0 and prove that there is X C w such
that for every E € A we have ENX € D and |u(E) — d(X N E)| < 6e.

We first apply Lemma 2.1 to p and v = d|4 to get sets Ap,...,Ag and
real numbers aq, ...,y as in the lemma. Next, applying part (1) we find,
for every ¢ < k, X; C A; such that d(E N X;) = o;d(E) whenever 7 € A
and E C A;. We claim that X =, X; is the desired set.

Teke any F € A and put

B= (E\ U Az) U U{E NA;: d(E M A1) < Ed(A,;)},
i<k
and D = E\ B. Then d(B) < ¢ + & = 2¢. Moreover, since for every 1 we
have C!-,;d(DﬂAi) ﬂd(DﬂAiﬂX), :

(D) -d@nX)| = [u(DNAs) —cud(DNA;)| <Y 2ed(DNA) < 2
Finally,
\u(B) — d(ENX)i < |m(D) - d(D N X)| + |u(B)| + |d(B N X)| < 6e.

(3) We now construct a set X satisfying the assertion of the theorem.
Applying (2} for a suitable & we get, for every k, a set X} such that

|u(E) — d(Xx N E)| < 27%

for all E € A. Given F € A and k, choose a natural number fg(k) such
that for n > fg(k) we have

u(E) -

In this way we have defined less than m.iinkea functions so there is a strictly
increasing function g : w — w with fp <* g for every E.

Puiting Ji = {n : g < n < gr41} (here and below we write g instead
of g(k)), we define X by the formulae X NJp = XNy, k=1,2,..., and
claim that X is as required.

Fix E € A and €. Choose k such that 2-%72 < ¢ and fg(m) < gm for all
m > k. Note that X N BN Jm = Xm NENJy, and JEN Xy, Nn| —np(E)| <
n2~™ whenever m > k and n > gn,. Hence

We get

[EnXnnd . |Ennrd|
3 B,
T n

|Xk ﬂEﬂTL' <ok,
n
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(*) HE nxn Jmf - (9m+1 - gm)M(E)I
SUE N Xin N gmta| = gmi1p{ E)| + [[E N X 0 gn| — gmpp(E)|

< (gm-i—l + g'm)?'_m-

Consider an arbitrary n > gi/c. We have grii <1 < Ghtigl for some % and,
using (%),

NIEAX M| —nu(B)| < ge + 1B N X 0 Jk| = (grr — o)l E)| + . ..
+IENX N0\ gers)| — (n = grgs)u(E)|
< gk_ e (gk -+ gk+1)2mk‘+ R (gk+i + n)2-k—z‘
< gk + 2027 < e 4 ne = 2me.

It follows that d(ENX) = u(E) and the proof of the theorem is complete.

The proof of step (1) above uses an idea due to the first-named au-
thor, who showed that the measure algebra of the Lebesgue measure can be
embedded into D modulo sets of zero density (by a homomorphism transfer-
ring measure into density), [4]. As Fremlin [6] proved, this in fact holds, still
without special axiomns, for every measure algebra of cardinality at most c.
It is very likely, however, that in some models of set theory the assertion of
Theorem 2.2 does not hold for some algebra of cardinality wy < .

3. Uniformly distributed sequences. Given a cardinal number &, 2°
denotes the Cantor cube {0,1}*. Recall that a compact space K is called
dyadic if K is a continuous image of 2* for some {which in fact may be
taken equal to the topological weight of K). The class of dyadic spaces of
weight not greater than ¢ contains all c-fold products of compact metric
spaces as well as all separable compact groups (see [3] or [2]).

Suppose that g is a continuous mapping from a compact space K into
a compact space L. If A € P(K) then g()) stands for the image measure
which is defined by the formula g(A)(B) = A(g~*(B)), where B is a Borel
subset of L. It is well known that for every v € P(L) there is A € P(K)
such that g(}) = ». It is clear that if (z,) C K is A-uniformly distributed
then the sequence (g(x,,)) C L is g(\)-uniformly distributed.

Hence we bave the following well known fact: if every Radon measure
on K has a u.d. sequence so does every Radon measure defined on some
continnous image of K.

Our construction of uniformly distributed sequences in 2¢ proceeds by
induction. The basic step is described in the following lemma on “lifting”

u.d. sequences (compare Losert [8] Proposition 1, and Mercourakis [10],
Proposition 2.16).
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LeMMA 3.1 Let Xy = 2% and X = 2%H = 2% x {0,1}, where o <
Mg linked - L€ A be a Radon measure on X. Set Ao = 7(X), wherem : X — Xp
is the natural projection. Given o Ag-u.d. seguence (z,) C Xy, there are

€ {0,;1} such that the elements (zn,e,) form a A-u.d. sequence in X.

Proof. Denote by C the algebra of clopen subsets of X;. Let v be the
Radon measure on Xg given by v(C) = MC x {0}}. We define ¢ : w — Xp
by ©(n) == =, and consider the algebra A = {~*(C) : C € C} of subsets
of w.

The formula u(p~1(C)) = v(C) defines a finitely additive measure on A.
Indeed, putting D = {x : n € w} we have Ap(D) = 1 since (zy) is a Ap-u.d.
Hence »(D) = v(Xo). Now if we are given Cy,C; € C with ¢=*(C1) =
™ 1(Cy), it follows that CyND = CyND,s0 C1ND = C; N D, and
v(C1) = v(Cy).

Since _

e~ (C) N
n

we have A € Dand p(A) < d(4) for A € A Now, as |C] = |a| < Msjinked;
we can apply Theorem 2.2 and get X C w such that p(4) = d(X n A) for
every A € A.

= 13 6(0) = 20(0),

i<n

Oifnée X and g, =

We put g, = 1 otherwise. For every C € C,
. Z 6(31151 C x {0})
z<n

_Hign:izmed, e,—O}I le~HCYN X Nnj
n n

— d(p™H(C)NX) = u(pH(C)) = ¥(C) = A(C % {0}).

It follows easily that 232, 8,0y (V) — A(V) for every clopen set
V C X, and 80 (Tn, Pn)’s form a A-u.d. sequence.

Write now m = My uked fOr simplicity, Once we are given a tool for
passing from 2% to 22%! for every ordinal a < m, we can just repeat t}:_xe
argument of Losert (8] to construct a uniformly distributed sequence in
2™ (see also Mercourakis [10]). We enclose a sketchy proof for the reader’s

convenience.

THEOREM 3.2. Every Radon measure on 2™ has a uniformly distributed
sequence.

Proof Let m, : 2™ — 2% and 7% : 2% — 27 be natural projections,
where 2 < & < m. Fix a Radon measure ) on 2™; let A, = 7o (}). We define
inductively 2 € 2%, n € w, @ < m, in such a way that the sequence (z3)n is
uniformly d1str1buted with respect to Ay, and 73 (z3 } = = whenever 8 < a.
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Given z2’s, Lemma 3.1 enables us to define w2tV ’s If the construction is
done up to the limit ordinal «, then 2} is uniquely defined as an extension
of all 22, & < . It is routine to check that the sequence (27} so defined is
A,-u.d. For a similar reason we get 2, € 2™ as the unique element for which
To(Tn) = 22 for every a < ¢ and infer that () is a A-uniformly distributed
sequence.

The remark made at the beginning of this section, the fact that Mar-
tin’s axiom implies My jpea = ¢, and Theorem 3.2 give immediately the
following.

CoROLLARY 3.3. Under Martin's aziom, if X is o dyadic space of topo-
logical weight less than or equal to ¢, then for every Radon measure A on X
there ewists a A-u.d. sequence (z,) C X.

4. Some remarks. We do not know whether Corollary 3.3 is provable
within the ZFC theory but we conjecture that it is not. If we are right, the
following remarks might be helpful.

1) We can, of course, identify 2°¢ with {0, 1}, The latter space may be
treated as the power set of the unit interval. In other words, we may think
of A C{0,1] instead of x4 € {0,1}[%%. Every finite set a C [0,1] defines a
clopen set by C(a) = {4 C [0,1] : a C A}. It is routine to check that the
sets C(a) form the so-called convergence determining class, that is, in order
to prove that a sequence A, of measures is weak® convergent to a measure
A 1t suffices to check that lim A, (C(a)) = A(C(a)) for every finite set a.

2) Let A € P(2°) be given and suppose that subsets A, C [0,1] give a
sequence in 2°. Note that d4, (C(a)) = 1 if and only if ¢ € A,. Moreover,
if @ = {t,s}, the latter may be rewritten as x4,xa4,(¢,8) = 1. Thus if a
sequence (An) € 2° is A-w.d then the sequence of functions £ Y. x4, x4,
converges pointwise on the unit square to a function ¢, where @(t,s) =
A(C({¢t, s}). In particular, such a function is measurable with respect to the
rectangle algebra R =c({E x F: E, F C [0,1]}).

3) Recall that R coincides with the power set of the unit square if p = ¢
(see [5], 21G), but it is relatively consistent that R is strictly smaller. Thus
one can suppose that there is a function on [0,1] x [0,1] which is not R-
measurable. Now if one could provide a non-R-measurable function ¢ and a

Radon measure A such that ¢(t, s) = A(C({t, 5})} for every ¢, s € [0, 1] then
there would be no A-u.d. sequence.

The task of finding a u.d. sequence in 2° is much easier if we congider
a “nice” measure. It is well known, for instance, that the usual product
measure admits such a sequence {as it is the Haar measure on a compact
group).
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Let p be any product measure on 2°¢ (= {0,1}%4), that is,

pu= [T (a®)ss + (1 - g(2))éo),

t€[0,1)

where g : [0,1] — (0,1). It seems that the existence of a p-u.d. sequence in
such a case is also known, but we think that the following effective approach
is worth writing down.

‘We shall define a sequence (v,) C P(2°) converging to x in the weak™
topology, every v, being a finite combination of Dirac measures.

Fix a natural number n and put I; = [(j — 1}/n,j/n) for every j < n.
Define sets C;-“, k,j €< n, by Cf = {z € Iy : g(z) = j/n}. Let $(n) be
the family of all mappings from {1,...,n} into itself. Given ¢ € &(n), put
D(e) = Upws Cliry- Finally, let

1
= D bng)
peP(n)

To check that such a sequence is indeed convergent to p consider C = Cla),
where a = {21,...,2+} C [0,1]. Take n so that, denoting by &; the number
with @; € Iy,, we have k; # k; whenever i # j. Let g; be the integer part of
ng(z;).

Note that §p(,)(C) = 1if and only ifa C D(yp), equivalently ¢ (k:) < g
for every i < r. Thus

gr...¢@n" " @ G

Since p(C) = g(z1) . . - gz+), we get vo(C) < p(C) S wn(C) + 2711.
Since p is a limit of a sequence of atomic measures, there is a v-u.d.
sequence (sce the result of Neiderreiter cited on p. 178 of [7]). In fact, the
desired sequence may be obtained by a careful enumeration of the elements

of D{p) involved in the construction above.
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A compact set without Markov’s property
but with an extension operator for C*-functions

by

ALEXANDER GONCHAROV (Ankara and Restov-na-Donu)

Abstract. We give an example of a compact set X C [0, 1] such that the space £(K)
of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and
hence there exists a linear continuous extension operator L : £(K) — C®°[0,1]. At the
same time, Markov's inequality is not satisfied for certain polynomials on K.

1. Introduction. Let K be a compact set in R™ such that K = int K.
Then £(K) is the space of functions f : K — R extendable to C*°-functions
on R™. £(K) is a Fréchet space; its topology 7 is defined by the norms

I£llg = 1flg + sup{i(RZAD (@) - |a =y 2,y € K, 2 # 4, i S by

q=0311"' )Jm)EZTa|J|=.71++.7m1

Aflg=sw{|fP @)z € K, |5 < gy

and R2f(y) = f(y) — T2f(y) is the Taylor remainder. As is shown in [6],
2.4, by Tidten and in [10}, 2.4, by Vogt, the space £(K) is isomorphic to the
space

, where 7 = (j1,...

[s.<]
{ = (€n)nmr * Elle = Z enin? < oo, Vq}

n==1
of rapidly decreasing sequences iff there exists a linear continuous extension
operator L : E(K) — C>~(R™). An explicit form of a certain extension
operator, using the Lagrange interpolation polynomials, was given in 3].
{See also [5].) Following Zerner [12], Pleéniak considered for the space of
Whitney functions the topology 71 determined by the seminorms

~1(f) =1flo,  do(f) = Eolf), dg(f)=supann(f), geN,

where E,(f) is the best apprommatlon of f by polynomlals of degree at
most n in the sup-norm on K. By Jackson’s theorem (see, e.g., [8]), the

1901 Mathematics Subject Classification: Primary 46E10; Secondary 41A17.

(27]



