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Decomposable embeddings, complete trajectories,
and invariant subspaces

by

RALPH DELAUBRENFELS and VU QUOC PHONG (Athens, Ohio)

Abstract. We produce closed nontrivial invariant subspaces for closed {possibly un-
bounded) linear cperators, A, on & Banach space, that may be embedded hetween decom-
posable operators on spaces with weaker and stronger topologies. We show that this can
be done under many conditions on orbits, including when both A and A* have nontriv-
ial non-quasi-analytic corplete trajectories, and when both A and A* generate bounded
semigroups that are not stable,

0. Introduction. We produce closed nontrivial invariant subspaces for
a closed (possibly unbounded) linear operator A, on a Banach space X,
by “sandwiching” it between two slightly better operators. Specifically, we
embed A4 between a decomposable operator, acting on a smaller space con-
tinuously embedded in X, and an operator, acting on a larger space in which
X is continuously embedded, whose local spectral subspaces are closed. In
addition, we need either slightly better behavior of the restricted opera-
tor, including, but not limited to, generating a polynomially bounded group
(see Proposition 2.2), or having an element where the local spectrum of A
contains at least two points (Proposition 2.3).

We show that these conditions are satisfied when A* has a nontrivial
non-quasi-analytic complete trajectory and A has a complete nontrivial non-
quasi-analytic trajectory that either grows roore slowly (polynomial growth
is sufficient) or has spectrun that contains at least two points (Theorem 2.4).
By a complete trajectory we mean a mild solution of the reversible abstract
Cauchy problem (see Definition 1.4). Whon A generates a. strongly contin-
wous bounded sendgroup that i not stable, then it is sufficient for A to
have a non-quasi-analytic complete trajectory (Corollary 2.8; weaker condi-
tions on the senigroup ate sufficient -see Theorcin 2.6). It is also sufficient

1991 Mathematics Subject lassificution: Primary 4TA15 Secondary 47D03, 47A11,
47840,

We would like to thank Shengwang Wang and Michael Newmann for introducing us
to the subject of decomposable operators.

[e5]



66 R. deLaubenfels and Vi Qubc Phéng

that both A and the restriction of A* to the closure of its domain generate
strongly continuous bounded semigroups that are not stable (Corollary 2.13;
see Theorem 2.11 for a more general result).

QOur results on trajectories may be considered improved continuous ana~
logues of results in [A], [B], and [Co-F] (see Remarks 2.5, 2.9 and 2.12). Our
method is new, and provides very short, simple proofs. The operator that
we are producing invariant subspaces for need not be bounded, and may
have empty spectrum or resolvent; all we assume is that it is closed, and,
for the results on trajectories, densely defined.

When A has a nontrivial non-quasi-analytic complete trajectory in X
we show that there exists a Banach space continuously embedded in X on
which A generates a non-quasi-analytic strongly continuous group (Propo-
sition 1.8). For bounded trajectories, this was done in [dL-Ka] and [dL,
Chapter V]. When A* has a nontrivial non-quasi-analytic complete tra-
jectory in X*, duality arguments then produce a Banach space that X is
embedded in, and an extension of A on this larger space that generates a non-
quagi-analytic strongly continuous group. This enables us to apply Proposi-
tions 2.2 and 2.3 to Theorems 2.4 and 2.6. Proposition 1.8 may be viewed as
transforming local behavior (e.g., a complete nontrivial non-quasi-analytic
trajectory) into global behavior {a strongly continuous non-quasi-analytic
group).

Throughout, A is a closed (possibly unbounded) linear operator on a
Banach space X, with (not necessarily dense) domain D(A), resolvent set
¢( A}, spectrum o{4). We will write Z < X to mean that Z is continuously
embedded in X; that is, Z C X and the identity map from Z into X is
continmous. If B is an operator on X and Z «— X, we will write B|z to
mean the restriction of B to Z; that is, D(B|z) = {z € D(B)NZ | Bz € Z},
(B|z)z = Bz, for z € D(B|z).

If B is an operator that generates a strongly continuous group (semi-
group), we will write {et®};cr ({€*®}ip0) for the group (semigroup) gen-
erated by B. Some recent references for semigroups of operators and the
abstract Cauchy problem are [Da], [G], [Na], [P], [vC] and [dL].

I. Preliminaries. The following definitions are from [E-W]; see also
[Co-F], [Lan-W], [Ne] and [Va).

DerFiNiTION 1.1. If 2 € X, then a complex number Ay is in the local re-
solvent set p( A, ) if there exists a neighborhood 2 of Ay, and a holomorphic
map A — R(A, A, z), from 2 into D(A), such that

(A—ARMA,z) =2z, Yien.
The local spectrum o{A,x) is the complement, in C, of g(4, z).
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The operator A has the single-valued extension property (SVEP) if,
whenever {2 is an open subset of the complex plane, f : 2 — D(A4) is
analytic, and

(A-A)f(A) =0, VAaen,
then f = 0.

If F is a closed subset of the complex plane, then the local spectral sub-

space corresponding to F ([E-W, p. 9]) is

XA F)={zeX|o(Ad,z)C F}

The operator A has property (K) ([E-W, Definition 5.4]) if it has SVEP
and for any closed F C C, X (A, F} is closed.

In [Du-8), this is Dunford’s property (C).

In [Lau-Nel, it is shown that, for A bounded, the SVEP follows auto-
matically from the property that X (A, F) is closed when F is closed.

The operator A has the spectral decomposition property (SDP)} ([E-W,
Definition 5.1]) if whenever {G;}l-, is an open cover of o{A), with Gp con-
taining a neighborhood of oo, then there exist subspaces {X;}i o, invariant
under A, such that

(1) X; G D(A) when X; is relatively compact (1 <4 < n);

(2) o(Alx,) C Gi (0 < i < n); and

(3) X = 3o Xe.

For a bounded operator, this is equivalent to being decomposable. In

general, any decomposable operator has SDP. When A has SDP, then A has
property (K) ([E-W, Corollary 5.9 and Proposition 5.6]).

LEMMA. 1.2. Suppose Z « W, B is o closed operator on W, and x € Z.
Then
o(B,z) C o(B|z,x).
Proof. Suppose Ay € o(B|z, ). Then there exists a neighborhood 2 of

Xo, and a map A =+ R(),B|z, ), bolomorphic from 2 into D(B|z), such
that

(A~ Blz)R(\, Biz,w)=®, YA€
Since Z « W, thiy is also a holomorphic map from 2 into D(B) such that
(A= B)R(\, Blz,2) =%, VYAELN.
Thus My € p(B, ), 80 that p(B|z,2) & o(B, x), as desired. =

COROLLARY 1.3. Suppose Z, W and B are as in Lemma 1.2. Then, for
any closed F C C,

Z(B|z, F) € W(B,F).



icm

68 R. deLaubenfels and Vi Qudc Phéng

DEFINITION 1.4. By a complete trajectory with initial data x we will
mean a mild solution of the (reversible) abstract Cauchy problem

dult,s) = Alultia) (te®), w(0.2)=3;

that is, t — u(t, z) € C(R, X), Sf) u(s,z)ds € D(A), and

A(ﬁu(s,m) ds) = u(t,z) — @
0

for all real .
We will consider certain growth conditions on trajectories.

DerFINITION 1.5. A measurable locally bounded function o from [0, c0)
(or R) into [1,00) is a weight function if a(0) = 1 and

alt+s) <a(s)a(t), V¥s,t>0(stcR).

A function o from [0, oo0) into [1, 00) is non-gquasi-analytic if it is a weight
function such that
°§° log(a(t))

2ot di < 0.

5 14 ¢2

A weight function o on R is non-quasi-analytic if both ¢t — a(t) and ¢
a(—t) are non-quasi-analytic functions on {0, 0o).

We will apply our embedding results (Propositions 2.2 and 2.3) to indi-
vidual trajectories by introducing an obvious analogue of the Hille-Yosida
space (see [Kal, [Kr-Lap-Cv], [dL-Kal, [dL, Chapter V]). Qur definition will
be an analogue of the definition of Hille-Yosida space given in [dL, Defini-
tion 5.1].

DeFINITION 1.6. Suppose A — A is injective, for all real X, and « is a
continuous weight function on the real line. Since o is automatically expo-
nentially bounded, it follows that any O(«a(2)) complete trajectory is unique
([dL, Proposition 2.9]).

Define Z,(A) to be the set of all z for which there exists a complete
trajectory ¢ v+ u(t, ¢} with initial data = such that ¢ — (c(t)) " u(f, z) is
bounded and uniformly continuous on the real line, normed by

1

2]z, = sup a—ﬂHu(t, z).

We will need the following elementary lemma about weight functions.
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LEMMA 1.7. Suppose o is o weight function continuous at 0. Then, for
any Teal s, the map

- afs +t)

a(t)
is bounded and uniformly continuous on R.
Proof Let h(t) =Ina(t) (t € R). Then

h(s+1t) < h(s)-+h(t), Vs,teR,

thus

(%) ~h(—8) S h{s+1t) — h(t) < h(s), VsteR.

Since h is continuous at 0 and h(0) = 0, () implies that b is uniformly
continuous on K.

Assertion () also implies that, for any s € R, the map  — h(s+1) ~ h(t)
is bounded and uniformly continucus on R, thus

£ afs +1) = ehls+t)—h(t)
o(t)

is also bounded and uniformly continuous on R,

ProrosiTION 1.8. For A and @ as in Definition 1.6, Z, is a Banach
space continuously embedded in X and A|z_ generates a strongly continuous
group that is O(a(t})).

Proof Since
[ u(0, )]
> il o
2]z, = +(0) [,
it follows that Z, ~— X.
Suppose {zn}n is a Cauchy sequence in Z,. Then {z,}n is Cauchy in
X, thus there exists 2 € X such that z, — 2 in X.
The maps ¢ =+ (a(t)) 'u(t, #y,) are uniformly Cauchy in BUC(R, X),
hence converge uniformly to v € BUC(R, X) as n — oo. Let
u(t) = alt)w(t) (EeR)
Since o is continuous, w(t, @y, ) ~ u(t) 88 n —+ oo, uniformly for ¢ in compact
subgets of R. This implies that for any ¢ € R,
4 t
Su(s, Tn) dg — Su(s) ds
0 0
and
]
A(Su(s,mn) ds) ==l Tp) ~ Ty -+ u(f) — 2,
0
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as n — o0o. Since A is closed, this implies that Sf) u(s)ds € D(A) and

t

A(Su(s) ds) —u(t)—z, Ve

0
that is, u is a complete trajectory with initial data x. Thus z € Z, and it is
clear from the construction of u that z,, — = in Z,. This shows that Z, is
complete, so that Z, is a Banach space.

For any s € R and z € Z,,, define

T{s)z = u(s,z).

It is clear that ¢ — wu((t + 8),) is a complete trajectory with initial data
u(s,z). Since

1 Tals + 0 [l + ), )]
;(5|Ju((t+s>,x)n—[ g H ol ]

Lemma 1.7 implies that ¢ — («(2)) " u((t + ), %) is bounded and uniformly
continuous. Thus u(s, z) € Z,, and

lu(s, 2)l| 2. < als)llzl z,-
We have shown that, for any real s,
T(s): Zo = Zo and - |[T(s)|p(z.) < als).
The strong continuity of {I'(s)}ser follows from the uniform continuity of

t — (e(t)) "*ult, z), since we may write, for any s € R and z € Z,,

1
T(s)xs—z = sup ——||u(s+ ¢, 2) —ult, =
IT(6)e ~llz. = sup —ohuls +£,2) — utt,2)]

_ a(s + 1) 1
% e
1
+mu(s+t, z) — (t) u(t, z)
< (o)~ 1)ellz, +up | — H) (s+t,x)—a%u(t,:c) .

The proof that the generator of {T(s)}sem is Az, is exactly the same
as for the case a(t) = 1 (see [dL, Theorem 5.5(5)]). m

IL. Invariant subspaces. Throughout, we will say that a subspace ¥
of X is nontrivial if ¥ N D(A) is neither {0} nor D(A). A subspace Y is an
invariant subspace for 4 if A(D(A)NY)CY.

We should emphasize here that, in Propositions 2.2 and 2.3, Z may have
a stronger norm than X and W may have a weaker norm. In particular, we
are not assuming that A itself has property (K).
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LEMMA 2.1. Suppose there exists a Banach space W, and a closed oper-
ator B on W, such that X — W, A = B|x, B has property (K) and there
exists closed F C C such that X NW (B, F) is nonirivial. Then A has o
elosed nontrivial invariant subspace.

Proof Choose
Y=XNW(B,F).

Y ig closed in X, since W(B, F} is closed in W, hence, since X W, the
X-closure of ¥ is contained in the Weclosure of ¥, which is contained in
W (B, F). bince I3 wmaps W(DB,F") into W(B,F), Amaps Y into V. =

PROPOSITION 2.2. Suppose there exist nontrivial Banach spaces Z, W,
and a closed operator B on W, such that

=X =W,

A = Blx, B has property (K) and Alz generates a strongly continuous
group such that for some k > 0,

le417 ]| = O(t*) and [le™*I2|| = o(e¥)

Then A has o closed nontrivial invariant subspace,

as t — oo.

Proof. Since ||e*41#]| iy non-quasi-analytic, it follows that o(A|z) is

nonempty and A|z is decomposable {{Lyu-Mat] and [Mar]), hence A, has
SDP.

If o(A|z) is a single point {Ao}, then by [H, Corollary 3.6], Ag is an
eigenvalue of 4 and we are done. If not, then choose closed disjoint subsets
Fy, Fp of o(A|z) such that Z(A|z, F;) is nontrivial, for § = 1,2. Then for
i=1,2, by Corollary 1.3,

Z(Al5.F5) € Yy = X 0 W(B, Fy)
since the intersection of ¥y and Yy is trivial, Lemma 2.1 now implies that
¥: (and ¥3) 1 a closed nontrivial invariant subspace for 4. w

PRrOpoOSITION 2.3, Suppose there exist nontriviel Banech spuces Z,W,
and o closed operator B on W, such that

4 e Koo W,

A= B|x, B has property (K), Alz has SDP, and there ewists x € Z such
that o(A,x) contoins at least two points. Then A has a closed nontrivial
invariant subspace.

Proofl. By Lemma 1.2, o(A|z,2) containg at least two points. The re-
mainder of the proof is identical to the proof of Proposition 2.2. m
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THROREM 2.4, Suppose D(A) is dense, A and A" have nontrivial com-
plete trajectories u and ¢, respectively, there ezist continuous non-quasi-
analytic weight functions ey, j = 1,2, such that

w(t) = O (1)} and  @(t) = O(az(t)) as ¢ — Foo,
and either
(1} for some k> 0,
)] = O*) and Ju(—t)|| = o(e‘ﬁ) ast-— 00, or
(2) o(A,x(0)) contains at least two points,
Then A has o closed nontrivial tnvariant subspace.

Proof. First assume we are under hypothesis (1), and o(4,u(0)) is
empty or consists of a single point. Then by [H, Corollary 3.6], A has an
eigenvector, and we are done.

Now suppose we are under hypothesis (2). By replacing c;(¢) with (1 +
itNey(t), for 5 = 1,2, we may assume that t — (1(t))" u(t) and t —
(a2(£))1¢(#) are bounded and uniformly continuous.

If A or A* has any eigenvectors, we are done. If not, we may construct
Zo,(A) and Z,,(A*); the existence of » and ¢ shows that these spaces are
nontrivial.

In Proposition 2.3, let Z = Z,, (A). By [Lyu-Mat| and [Mar], A|z has
SDP.

Let YV = Zg,(A%), so that 4*|y generates an O(ap(t)) strongly contin-
uous group. Then let W = Y* B = (A*|yv)*. Since A*|y generates a non-
quasi-analytic strongly continuous group, A*ly has SDP ([Lyu-Mat] and
[Mar]). This implies that B has SDP ([E-W, Theorem 8.1]). If the closure
of ¥ in X* is not all of X*, then this closure is a nontrivial closed invariant
suhspace for A*, and we are done. Otherwise, since ¥ «— X, we have

X g X** c M‘f,
and A = B|y, thus we may apply Proposition 2.3, =

Remark 2.5. A discrete analogue of Theorem 2.4(1), for bounded oper-
ators, appears in [A, Theorem 1.1], except that the growth condition there
is a discrete analogue of u(t) = O(t*), as t — +oc.

THEOREM 2.6. Suppose A has a nontrivial complele trajectory u, w is a
non-gquasi-analytic weight function such that

[u(@)]| = Olw(t))  as t— o0,

a is a non-quasi-analytic function on [0,00) such that A generates an
O(a(t)) strongly continuous semigroup, there exists & such that
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L
() Jim a‘m”ﬁmfﬂil >0,

and esther

(1) a(t) may be chosen to equal e, for some r € {—o0, 1}, or
(2) o(A,u(0)) contains ot least two points.

Then A has a closed nontriviel invariant subspace.

Proof. We may assnme that (+) is valid for all nontrivial , otherwise the
set {2 | Hngouoo(r(t)) "1 |e* 2| = 0} would be a closed nontrivial invariant
subspace.

First assume we are under hypothesis (1). By [Vi2, Lemma 8], there
exists a Banach space V', and an operator B on V', such that X — V', X is
dense in V, A = B|x and B generates a strongly continuous semigroup of
isometries. We may assume Im(¢*4) is dense in X, for any ¢ > 0, hence, since
X is dense in V and the topology on V is weaker, Im(e*?) is dense in V.
This implies that the semigroup {e*®}i>¢ extends to a strongly continuous
group of isometries {eF }iecp on V.

As in the proof of Theorem 2.4, the complete trajectory ¢ —+ u(t), for A,
produces ¥ =+ X such that Aly generates a non-quasi-analytic group. In
Proposition 2.2, let W = Y™ and let Z be the closure, in V™, of D(A*|v+).
Then, as in the proof of Theorem 2.4,

e X e W,

A* = B*|x+, A*|z generates a strongly continuous group of isometries, and
B* hag SDP. By Proposition 2.2, we now have a noutrivial closed invariant
subspace for A*, hence for 4.

Under hypothesis {2), we construet ¥ and V' as we did under hypothesis
(1); the strongly continaous group generated by B, on V, may not consist
of isometries (see [V2, Lemma 3]); however, it is still a non-quasi-analytic
strongly continuous group, thus we may invoke Proposition 2.3, with Z
replaced by Y and W oreplaced by V. =

Rewark 2.7. Hypothesis (1) of Theorem 2.6 may be weakened, to
include v such that

o v (l 4 8) k
() = alllgc cx(8) o),

for some k > 0 (see [Vii2]), Then ihe strongly continuous group {e®}ien,
in the proof of Theorem 2.6, is O([t]%). _

COROLLARY 2.8. Suppose A has a nontrivial non-quasi-analytic complete
trajectory, and A generaies o strongly continuous bounded semigroup that is
not stable; thet is, there ezists © so that
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lim ||ef4z] # 0,
t—r00
Then A has a nontrivial closed invariant subspace.

Remark 2.9. A discrete analogue of Corollary 2.8 appears in [A, The-
orem 1.6] and [B].

Remark 2.10. Corollary 2.8 may also be proven by using [Vil] to pro-
duce a bounded complete trajectory for A*, so that we may apply Theo-
rem 2.4 to A*.

In the following, note that, when A generates a strongly continuous semi-
group, then the restriction of A* to D(A*) also generates a strongly contin-
uous semigroup (see [P] or [Na]).

THEOREM 2.11. Suppose o is a non-quasi-analytic function on [0, 00)
such that A generates an O(a(t)) strongly continuous semigroup,

e = I 25 o)

for some k > 0, and there exist x € X and «* € D(A*) such that

T —[let4

a 1 t[A*|
Ao z| >0 and  Im ——le

=% o)
Then A has o closed nontrivial invariant subspace.

Froof. Let ¥ = D(A*) and G = A*|y. As in the proof of Theorem 2.6,
if A, hence A*, does not have a closed nontrivial invariant subspace, then
there exist Banach spaces V and W such that

X=V, YW,

and operators By on V, By on W, such that A = Bi|x, G = Ba|y, and By
and By generate O Jtlk) strongly continuous groups.

Let Z = D(A*|y-). Then Z « Y, B¥|; = A*lz = G|z, and B}lz gen-
erates an O([t[*) strongly continuous group. Now we apply Proposition 2.2
to conclude that G has a closed nontrivial invariant subspace. This implies
that A*, hence A, has a closed nontrivial invariant subspace. m

TEg* || > 0.

Remark 2.12. A discrete analogue of Theorem 2.11 appears in [Co-F,

p- 134] and [A, Theorem 1.4], under the additional hypothesis that X be
reflexive.

COROLLARY 2.13. Suppose A gemerates a bounded strongly continuous
semigroup such that both et and e’ 1507 are not stable; that is, there
exist # € X and z* € D(A*) such that

B el #0  and  Jim [l BT 2 0,

Then A has a closed nontrivial invariant subspace.
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On generalized Bergman spaces
by

WOLFGANG LUSKY (Paderborn)

Abstract. Let [ be the open unit dise and 4 a positive bounded measure on [0,1).
Extending results of Mateljovié/Pavlovié and Shields/Williams we give Banach-space de-
scriptions of the classes of all harmonic (holomorphic) functions f : D — C satisfying

(2" | Fre) P de) /P dp(r) < oo.

1. Introduction. The aim of this paper is to give Banach space represen-
tations of certain classes of harmonic and holomorphic functions. Consider
D= {z€C:|z| <1} and put, for 0 < r,

27

1/
M,(f,r) = (517? S |f(rexp(i9))|”d9) ’ ifl1<p<oo,
0

and Meo(f, 1) = sup|5)=y | f(2)]-

We want to study harmonic functions f : D — € which are not neces-
sarily bounded but for which M,(f,r) grows in a controlled way as r — 1.
To this end we introduce & bounded (positive) measure p on [0, 1] and put,
for 1 < p < oo,

1

£l = (§ 87,7 die) "

0

ifl<g<oo

and
[£llpyoe = sup (Mp(f,r)u(lr,1])).
Dar<l
We investigate the spaces
bpyg{p) = {f : D =+ C: f harmonic, {|f[|pq < oo}y
bp(18) = { € by,eo(s)  lim My, ru([r,1]) = 0
and

By (1) = {f & bpo(p): f holomorphic} ifg=0o0rl<g<o0.
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