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Weak type estimates
for operators of potential type

by

RICHARD L. WHEEDEN (New Brunswick, N.J.)
and SHIYING ZHAO (5t. Louis, Mo.)

Abstract., We derive two-weight weak type estimates for operators of potential type
in homogeneous spaces. The conditions imposed on the weights are testing conditions of
the kind first studied by E. T. Sawyer [4]. We also give some applications to strong type
estimates as well as to operators on half-spaces.

1. Introduction. In this note, we study two-weight weak type norm
inequalities for integral operators of potential type. Our main goal is to
characterize the pairs of weights for which such inequalities are valid in
homogeneous spaces (in the sense of Coifman and Weiss [1]) by means of a
condition of the kind shown in [4] to hold in the case of Euclidean space.

Let X denote a homogeneous space with quasi-metric d and underlying
doubling measure p (a precise definition is given below). By an operator of
potential type we mean an integral transformation T which is defined by

(1.1) T(fdo)(z) = | K(z,u)f(y)do(y), c€X,
X

where o is a Borel measure on X, and the kernel X(z, y) is nonnegative and
satisfies the following condition: There are constants €y > 1 and Cp > 1
such that

E(z,y) < C1K(z',y) whenever d(z',y) < Cad(z,y);
K(z,y) < C1K(z,y') whenever d(z,y') < Cad(z,y).
We shall dencte the adjoint of T' by T, which is given by

(1.2).
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(1.3) T*(gdw)(y) = S K(z,y)g(z)dw(z), y€X,
X

for a Borel measure «w on X.
The weak type inequality in question is

1/p
(04 swpAlee X [T(fdo)(a)| > ML < O( [ 15 do(a))
> X
for 1 < p < g < oo, where |E| denotes the w-measure of a set E. In
case X = R™, a necessary and sufficient condition for {1.4) was given hy
E. T. Sawyer [4], namely,

(1.5) (17" (ead)” a0) ™™ < clQly?,
Q

for all cubes @ in R™, where p’ = p/(p ~ 1). In this note, we want to derive
an analogous result for homogeneous spaces. Condition (1.5) is of course a
“testing” condition, i.e., it amounts to testing the dual strong type estimate

([Tt a0y < o {1ol” aw) "
X X

with functions g which are characteristic functions of cubes. In case p < g,
a characterization of a different type is given in [3], [6], [2] and [7]. Strong
type estimates of both types are studied in {6] and (7).

A homogeneous space (X, d, 1) in the sense of [1] is a set X together with
a quasi-metric d and a doubling measure . By a quasi-metric we mean a
mapping d : X x X — [0, 00) which satisfies

1. d(z,y) = 0 if and only if = =y,
2. d(z,y) = d(y,x) for all z,y € X, and

3. d(x,y) < k(d(z,2) + d(z,y)) for all 2,9,z € X and some constant
# = 1 which is independent of z, v, and z.

By a doubling megsure p on X we mean a (locally finite) nonnegative
maeasure on the Borel subsets of X so that |B(x, 2r)|, < Cy|B(z,r)|, for all
€ X and 7 > 0, where B(z,7) = {y € X : d(z,y) < r} is the ball centered
at ¢ with radius r, and |B(z,r)|, is the p-measure of the ball B(x,r). The
constant C; is called the doubling constont of y and is independent of
and 7. We assume that all balls B(z,7) in X are open. We shall also assume
that all annuli B(z, R)\ B(z,r) in X are nonempty for 0 < r < R. As usual,
we denote by ¢B the ball B(zpg,cr(B)) for ¢ > 0.

It has been proved in [6] that, for o = 8%, and for any (large negative)
integer m, there are points {z}} and a family D, = {E¥} of sets for k = m,
m+1,...and § =1, 2, ... such that
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(i) B(x;“,gk) - EJ’“ - B(x?, oF Ly,
(i) for each k =m, m+1, ..., X = |J; B} and {E}} is pairwise
disjoint in 7, and
(iif) if & < I then either E¥ N Ef = § or EF C E..

(1.6)

We shall say that the family D =}, .z Pm is a dyadic cube decomposi-
tion of X, and call sets in D dyadic cubes. If @ = Ej’“ € Dy, for some m € Z,
we say () is centered at w;?, and define the sidelength of Q to be I(Q) = 2¢".
We also denote by @~ the containing ball B(xz¥, g**!) of Q.

Since neither of the measures w and o is assumed to satisfy a doubling
condition, it is generally not a simple problem to determine whether (1.5} is
aquivalent to the analogous testing condition in which cubes ) are replaced
everywhere by balls B. Testing with balls seems especially natural in a
homogeneous space, where the nature of cubes, or even dyadic cubes, is less
certain than in Euclidean space. Qur first result involves a testing condition
for balls and is given in the following theorem.

We always assume that sets of the form {z € X : |T(fdo)(z)| > A} are
open for A > 0, and also that they are proper subsets of X whenever f is a
bounded function with support contained in a fixed ball.

THECREM 1.1, Let 1 < p < ¢ < oo, and let 0 and w be locally finite
Borel measures on X. Then the weak type inequality (1.4) holds for all Borel
measurable functions f with o constant C independent of f if and only if
there exists a constant C such that

r 1/ ! ;
(17) (J7°Ceodw'do) " < C1BI?
B
for all balls B in X.

We remark that the theorem is also true for p = L and 1 < ¢ < oo if
(1.7) is replaced by

(1.8) ess sup, {T*(xpdw)(z) : € B} < C|B|Y/Y

for all balls B. Also, (1.8) implies (1.4) if p = g = 1. Similar remarks can be
made for Theorems 1.2 and 1.3 below.

We now make some comments concerning the testing condition for cubes
instead of balls. In the first place, for a general homogeneous space with no
additional structure, we will derive the following result.

THEOREM 1.2. Let 1 < p < g < oo, and let o and w be locally finite
Borel measures on X. Then the weak type ineguality (1.4) holds for all Borel
measurable functions f with a constant C independent of f if and only if
there exists a constant C such that
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(1.9) (] 7" (xqdw) da)l/p'gmm;f‘f’

23>
for all dyadic cubes Q@ in a given dyadic decomposition D of X.

Condition (1.9) has an advantage over its Euclidean analogue (1.5) in
that it only involves testing over dyadic cubes. However, it has the disad-
vantage that the integration on the left in (1.9) is extended over a larger set
than @. In case we make the additional assumption that (X,d, ) has an
appropriate group structure (in the sense of [6]), it can be shown that (1.4)
is equivalent to the condition

/ /v

(1.10) (§ 7"(xqusdw)?do)
Q42 .
for all translations @ + z of dyadic cubes Q) € D and z € X, where “4+” de-
notes the group operation. The proof of this equivalence can be found in [8).
As a first application, we consider the corresponding result for half-
spaces. Let us introduce some notation first. For a homogeneous space
(X,d, u), we consider the upper half-space X = X x [0 oo) of the prod-

uct space X x R. We define (as in [7]) a quasi-metric d on X x R by

(1.11) d((2,1), (y, 8)) = max{d(z, y), [t — 5|},

and define a doubling measure 1 by dfi(z,t) = d,u,( Jdt. Then (X, d, ,u,) is
also a homogeneous space. We note that a ball in X {with respect to d ) has
its center in X by definition; such a ball is the intersection with X of the

corresponding ball in X x R.
We now define integral operators T' as follows:

(1.12) T(fdo)(e,t) = | Kilz,v)f(y) doly), (2,t) € X,
X

where o is a Borel measure on X, and the kernel K;(z,y) is nonnegative and
satisfies the following condition: There are constants Cy > 1 and Cy > 1 so
that

< C|Q+ 2|47

Ky(z,y) < C3Ku(z',y) whenever d{z',y) +¢ < Cy(d(z,y) +1);
Ki(z,y) < CaKy(z,y') whenever d(z,y’) +1t < Cy(d(z,y) +1).

An example of such a kernel in case X = R"® is K(z,y) = t~*P(z — 1, 1),

where P(z,t) = ¢,t(|azf” + t2)~("+1)/2 is the Poisson kernel for the upper
half-space R, We also let

(1.14) T*(gdw)(y) = | Kilz,y)g(=,1) dw(z,t), ye X,

X

(1.13)

for a Borel measure w on X.
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THECREM 1.3. Let 1 < p < ¢ < o0, and let o and w be locally finite
Borel measures on X and X, respectively. Then the weak type inequality

<o(isra)”

holds for all Borel measurable functions f with a constant C independent of
[ if and only if there exists a constant C such that

(1.15)  supAl{(z,%) € X : IT(fdo)(z, B)] > A}/°
A0

Y
(1.16) (§7 (g, o) < ClB [T
B

for all balls B in X and r(B) < h < 2r(B), where By, = B x [0, A).

Theorem 1.1 can also be used to derive the following strong-type testing
result.

THEOREM 1.4. Suppose that 1 < p < ¢ < oo, and that w and o are
nonnegative, locally finite Borel megsures on a homogeneous space X. Let
T be defined by (1.1) with a kernel which satisfies (1.2}, Then the inequality

(1.17) ( § IT(£do) | dw) Mg c( Wis da) e
X X

holds for all Borel measurable functions f with o constant C independent of
F if and only if both

1/
(1.18) (§T(xndo)? dw) *<oBlYr
B
and
* ! 1/13’ 1/‘57J
(1.19) ({7 (xpawy o) ™ < C)BIS
B

for all balls B in X.

The point of this theorem is the specific form of the conditions (1.18)
and (1.19), in particular, the manner in which the ball B is involved. Some
similar characterizations of (1.17} which involve cubes rather than balls are
derived in [7], sometimes with the additional asswmnption that X has a group
structure, but again we do not know how to directly relate these conditions
to (1.18) and (1.19) if the measures ¢ and w are not doubling measures.

2. Proof of Theorem 1.1. Let f > 0 be a given bounded function
with support contained in a fixed ball. For A > 0, we put 2, = {z € X :
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T(fdo)(z) > A}. Let D be a given dyadic decomposition of X'. We first show
that (1.7) implies (1.4).

For a fixed constant R > 0, we denote by Dpp, the dyadic cubes @ € D
with the property that RQ* C 2. For eachm € Z, welet Dy ym = D, NDpy
and QA,m = UQE'D,\,m Q

Let A > 1 be a constant which will be chosen shortly. It is easy to see
that 2\ C 25,4 and 25 C 2yj4,m for all m € Z. It is known (see [6])
that there exists R, independent of A, m and A, such that the sequence of
maximal dyadic cubes {@;} in Dy m has the following properties:

(i) Zrjam =; Q5 and Qi N@Q; =0 for 1 5 j,
(2.1) (i) RQ} C 24, and 26R0Q} N 1K, # @ for all j, and

(iii) Ej X2wQ% < OXQA/A'

We note that our assumption that the sets (2 are proper in X guarantees
the existence of maximal dyadic cubes {Q;} in Dy /4 m-

We note that 2, C $25-1,m. Also, for the given R, there is a fixed
sequence m; decreasing to —oo0 5o that (2 o, /" 2 for each k; in fact, this
follows by observing that if = € {2 then z € (2, for all large negative m,
and also that there is a positive integer M depending only on R and s such
that if z is a point which lies in a cube Q € Dg,, with {(Q) = 20, then the
cube Q' in Dy,_pr with sidelength (Q") = 20"~ which contains z satisfies
Q’ € Dk,m—M-

Let § be temporarily fixed. It is well known that the operator T' satis-
fies the following maximum principle (see [5] and [6]): There is a positiv
constant C, independent of f, A, m, § and A, such that :

(2.2) T(x@xq;efdo)(z) < C(A/A)
With C as in (2.2), we now choose A = 2C, and then it follows that

for all z € Q.

| K(2.)f() doly) = T(7do)(w) ~ T(xanage Fdo)(2) > 5
2rQY

for all @ € Q; N {2, ;. Therefore, by using Hélder’s inequality and then
condition (1.7), we have

@8 SN2, < | | Ky dol)do(e)
Qy 2rQ

< | (] KG9 dol@)) 1) dofy)

QIGQ; Qj
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2(,§ Toaera) ”p'(%sq R 2"

’ 1/
< C |25Q3[H/9 ( [ s do) ?
2rQ%
by (1.7), applied to the ball 26Q7.
By summing the last inequality over all maximal cubes @; in Dy, JA,m, and

recalling that {25 ,n C {2)/4,m, we see that there is a constant C' independent
of f, m, and A such that

Maml, < CY e (| pra0)
I 2K,Q_,’;.‘

<o(Sasp’ )7 (2 | )
7

i 2mQ;

< OI‘QA/A‘:;/LII( S 2 da)l/P’
X

where we have used Hélder’s inequality, property (2.1)(iii) of the family of
maximal cubes in Dy /4 m, and the fact that 1 < ¢’ < p’ < oc.

Since the constant ' in the last inequality is independent of m, by letting
m — —oa through the sequence m; mentioned earlier, we get

, 1
X[05, £ COQyal )V (§ Pdo)
X
By taking the supremum in A for 0 < A < N, we obtain
a 1/ ] 1/p
(2.4) sup AU, < Of sup 29| 2y,)47 ( | fpda) :
OCACN QCACN x

with C independent of f, A, and N. Thus, assuming that the first factor on
the right-hand side is finite and dividing both sides by this factor, we obtain

1/
( sup /\q|ﬂ;\iw)1/q < C'( S fpda) ?
O<ACN x

From this, (1.4) follows by letting N — oc.
It remains to show that

(2.5) sup MY, < oo
0<A<N

for each finite N. The proof is similar to the one in [7] which follows (4.13)
there. We first define

(2.6) w(B) = sup{K(z,y) : z,y € B and d(z,y) > cr(B)},
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for a suitably small constant 0 < ¢ < 1 (depending on «), where r(B)
denotes the radius of B. Using (1.2), it follows that (see (4.1) in [7])

w(BY < CK(z,y) foralz,yebB.
Then, by (1.7),

‘ ' /9 '
o(B) 1B, 1B < o | (| K(e,y)du(e))” o) <0IBT
B B

Thus,
(2.7) o(B) |B|Y/?|B” < C  for all balls B in X,

Assume that the constant ¢ in (2.6) satisfies ¢ < s~ (< 1) and pick

o with ¢ < @ < £71. Let B be a ball in X so that spt(f) C B. Cleaxly,
M|(a~e)7*B|, < N(a—¢e)™'B|, < 00 if N > A, so it is enough to show
that

sup M|\ (@ —¢)71B|, < 0.

A>0
In fact, we will show that this expression is less than C||f(|7»(4y)- Fix 8> 1
to be chosen. If z € 2\ \ (@ — ¢) 7' B, let D, = B{zg,Bd(z,z5)), where
zp is the center of B. Then z € D, since 8> 1, d(z,2p5) = (a — c)*r(B)
and B C D, since @ — ¢ < 1 < f. Note that if ¥ € B then d(z,z5) <
k(d(z,y) + r(B)) € kd{z,y) + k(a — c)d(z,28), and so

dz,y) = (7 —a+)d{z,z5) = (v — e+ c)F7r(Ds) > er(Da),

since (k™! —a +¢)87! > c if we choose 3 close enough to 1. Since both
z,y € Dy, the definition of (D) gives K(z,¥y) < ¢(Dg). Then

! 1/
A< T(fdo)(a) < p(Ds) | Fdo < (DDl (| f7do) ",
B B
where spt(f) C B C D, is used. Thus, by (2.7) applied to D, we have

a/
(2.8) XDy, < (| frdo)™,
B
with the constant C' independent of A and D, Since 23\ (a—¢)~'B ¢ |J D,
and the D are all balls with common center, we see from (2.8) by monotone
convergence that

g/p
M2 (o) LB, < 0(5 I da) ,
x
and we are done. This completes the proof that (1.7) implies (1.4) in case f
is bounded and has support contained in a fixed ball. The general case then
follows by monotene convergence.
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We now show (1.4) implies (1.7). The proof is similar to the one in [4].
Let B be a fixed ball in X, and let g be a nonnegative function such that
lgllzo¢aey < 1. Then

§ T (x5dw)(@)g
X

< | min {lBl C}dA<CiB|1/q

Since the constant C is independent of B and g, we obtain {1.7) by taking
the supremum over g; in fact, we obtain an estimate better than (1.7) with
o-integration over all of X. This completes the proof of Theorem 1.1.

Incase p=1and 1 < g < oo, only small changes in the proof are needed
in order to see that Theorem 1.1 remains true with (1.7) replaced by (1.8).
In fact, (2.3) is still true, and if we simply 1ncrea.se the last line in (2.3)
by replacing the factor |2:Q7]| 14 by (42,4, m| ¢ and then use the finite
overlap property (2.1)(iii), the fact that (1.8) 1mpl1es (1.4) follows as before.
This is true even if ¢ = 1. To see that {1.4) implies (1.8} when p = 1 and
1 < ¢ < 0o, no changes are needed.

3. Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1,
but somewhat simpler. First of all, without loss of generality, we may assume
that f is nonnegative, bounded and has support contained in a fixed ball.
To prove (1.4), it is enough to show that

(3.1) sup A?| 2 N D, £ Cllfl Lo gam
A>0 .
for the union D of any family of finitely many dyadic cubes in D, with

a constant €' independent of D and f. Arguing as before, we obtain the
following analogue of (2.3):

: 1/
(32) 21Qin D, <1 | pran)

2,03
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In fact, to obtain this, we use the same steps as in (2.3) but with (1.7)
replaced by (1.9) for the cube Q.

By surmming (3.2) over all maximal cubes @; in Dy /4y, which are con-
tained in D, and recalling that {2y ,» N D C 2y;4,m N D, we see that there
is a constant C independent of f, m, A, and D such that

M2ymnD|, < CZ |Qj|¢1.,-/q’( S 7 dg)l/?
J 26Q7

<o(YieE )" (3§ sras)”
i

i 2x@Q%
1/¢’ Lp
<Clan DY (§ f2d0) "
X
Consequently, arguing as before, we obtain the following analogue of (2.4):

v/ 1/p
sup A?[3 0 D], < O( sup N2 Di,) '?(jfﬁda) ,
0<A<N X

with C' independent of f, A, N and D. Thus, since | D]  is finite by the local
finiteness of the measure w, we deduce by dividing that

Y
{ sup |2, ND| )< O( S P dcr) p,
0<ACN X

and (3.1) follows from this by letting N — co. This shows that (1.9) implies
(1.4). The proof of the converse is omitted since it is similar to the proof of
the corresponding part of Theorem 1.1.

4. Proof of Theorem 1.3. In this section, we show that Theorem 1.3
is an easy corollary of Theorem 1.1. The converse is also true by picking
dw(x,t) = 6o(t)dw(z)dt, where §(t) is the Dirac delta function at 0.

Let K be the kernel on X x ¥ which is defined by
(41) K({e,t), (v,9)) = K| (z,1)-
Then it is easy to see that condition (1.13) implies that K satisfies condition
(1.2), with Cy = C3 and Cp = 27 C}, since, for instance, if (z, £), (', '), (3, )
e X with d{{z’, 1), (y, s ) € Cod{(z, 1), (y,s)), then

: d(m :y) + |t - 51 < Zd(("‘c ot ): (y1 3))
<2Cd((,1), (v, 8)) < Ca (d(z,y) + [t — 3]),

so that (1.13) implies. that K“vs,( ) < CgK‘t,_ﬂ( z',y).

For measures #, © on X and functions f,gon X we define
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(4.2) T(fd8)(z.1) = | R((2,), (v, 5))7(, 5) d&(y, )

X

= ’S\Klt—sj (SE, y).f(y’ 3) da(y’ 5)

X
and
(4.3) T*(9d2)(w,s) = | B((2,9), (v, 5))g(z,1) d(z, 2

X

S K| (m, y)g(z, 1) dB (2, 1)

For the given measures o on X and w on X as in the statement of Theorem

1.1, we pick do(z, t) = éo(t)do(2)dt and © = w. Then, for any function f on
X, we have

T(fdo)(z,t) = | Kiz, ) f(y) doly)

) Kieeai (2,901 (v, 5) &8 (y, s)  where f(y,5) = f(y)

RL’?ML-—-':

= T(fd5)(z, )

and hence (1.15) is equivalent to the inequality

by (4.2),

sup M{(z,1) € X : |F(£d5)(z, )] > A} ®
A0 :

c({irras)”

o~

X

By Theorem 1.1 for X ; this weak type inequality holds for all f if and only if

(4.4) ( | T (x gDy da) e ciBEY,
B

where B is a ball in X with respect to the quasi-metric d. But the last
condition is equivalent to (1.16), since, if Bn(x x{0}) = - 0, then condition

(4.4) is trivial, and B N (X x {0}) # @ if and only if B = B, for some
r(B}<h< QT(B) where B is the projection of B onto X x {0}. (Also, note
that & = w, 5(By) = o(B) and T*(gdd)(y, 0) = T*(gdo)().)

5. Proof of Theorem 1.4. Testing (1.17) and the inequality which is
dual to (1.17) with f = x5, we immedijately obtain (1.18) and (1.19), respec-
tively, and it remains only to prove that (1.18) and (1.19) together lead to
{1.17). To obtain (1.17), it suffices (e.g., by Theorer 1.1 of [7]) to prove both

{5.1) (S T(XQdU)? dw) e <C|QIY*  and
X
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(5.2) ( | T (xqdw)? da) < olqp
X

for all dyadic cubes @ € D. To verify (5.2), let g(z} satisfy g > 0 and
llgllzo(ae) < 1, and consider § T"(xqdw)gdo. Assuming condition (1.15},
it follows from Theorem 1.1 that (1.4) holds. Then, by the same argument we
used to show that (1.4) implies (1.7) (but with B there replaced now by @),

[ 7 (xqdw)gdo < C1QLLY,
X

and (5.2) follows by taking the supremum in g. Also, by Theorem 1.1 applied
to T*{gdw), we see that (1.18) implies the weak type estimate

' ' /g’
supA{y € X : |T*(gdw)(y)| > MY/ < (| lol¥ dw)
A>0 X
This in turn implies (5.1) as usual, and the proof is complete.
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Amenability of Banach and C*-algebras
on locally compact groups

by

A.T-M. LAU (Edmonton, Alberta) R.J. LOY (Canberra, ACT), and
G.A. WILLIS (Newcastle, N.§.W.)

Abstract. Several resulis are given about the amenability of certain algebras defined
by locally compact groups. The algebras include the C*-algebras and von Newmann al-
gebras determined by the representation theory of the group, the Fourier algebra A(G),
and various subalgebras of these.

0. Introduction. A Banach algebra A is amenable if every (continuous)
derivation D : A — X* is inner, for every Banach A-bimodule X . In partic-
ular, if & is a locally compact group then L*(G) is amenable (as a Banach
algebra) if and only if @ is amenable as a topological group [27]. If one only
considers the bimodule X = A, one has the notion of weak amenability.

There are many alternative formulations of the notion of amenability;
gee [27, 23, 11].

Over recent years, various authors have considered the amenability of
Banach algebras constructed over locally compact groups and semigroups
[13, 20, 14, 18, 33]. In particular, the latter two papers show that amenability
of the second dual of such an algebra imposes finiteness conditions on the
underlying semigroup. The present paper continues these investigations, and
presents several results relating amenability and the representation theory
of the objects concerned.

This paper was written while the first author was visiting the Australian
National University and University of Newcastle in

May/June 1994. We acknowledge with thanks the support for this visit
provided by a Faculty Research Fund grant. The first author was also sup-
ported by an NSERC (Canada) grant.

1. Preliminaries. For a Banach algebra A, A* is a Banach algebra
under two Arens products, of which we will always take the first, or left,
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