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Existence, uniqueness and ergodicity for
the stochastic quantization equation

by

DARIUSZ GATAREXK' and BENIAMIN GOEDYS (Sydney, N.S.W.)

Abstract. Existence, uniqueness and ergodicity of wealk solutions to the equation
of stochastic quantization in finite volume is obtained as a simple consequence of the
Girsanov theorem.

0. Introduction. In this paper we discuss the stochastic quantization
equation in a two-dimensional finite area D:

(1) dX = [— %AX - /\A'ZC":XB:] dt + A~ *dW,

where A is a properly chosen power of the operator I — A (see Section 2
for details) and W is a cylindrical Wiener process in the space L2(D). The
nonlinear term in this equation is the so-called Wick power (for definition
see Section 2). This equation is of some importance in quantum field theory.

Since the nonlinear term in (1) is highly irregular the question of exis-
tence and uniqueness of solutions to this equation was an open problem for
some time. For the first time a positive answer has been given in [JM] for
sufficiently large positive a. The main idea of that paper was to apply the
change of drift method which proved to be successful in handling measurable
drifts in finite-dimensional equations. Ergodicity was proven by methods of
functional analysis. Recently the change of measure method has been applied
to equation (1) in [HK], where the main tool to show uniform integrability
of the family of Girsanov exponentials is the Kazamaki criterion.

A different approach has heen taken in [BCM], where the starting point
is an appropriate symmetric Dirichlet form on an infinite-dimensional space.
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Given the closability of the Dirichlet form the existence of the correspond-
ing Markov semigroup and the Markov process satisfying (1) follows. This
argument has been elaborated on in [AR], where existence and uniqueness
of solutions to (1) follows from the theory of Dirichlet forms on infinite-
dimensional spaces. The proofs in all three papers are quite involved. For a
slightly different approach, but still based on the theory of Dirichlet forms,
see also [W].

This paper is close in spirit to [JM]. First we define a sequence of finite-
dimensional problems for which the standard theory applies. We also derive
the existence and basic properties of Wick powers uging finite-dimensional
approximations. The main step is the proof of uniform integrability of Gir-
sanov exponentials which is performed differently from [JM]. Then the ex-
istence and uniqueness for the stochastic quantization equation follows to-
gether with the existence of a unique invariant measure. In this way we
recover all the existing results concerning solutions absolutely continuous
with respect to the Ornstein-Uhlenbeck process by the use of probabilistic
tools only. Ergodicity of the stochastic quantization semigroup is derived
here as a simple consequence of the absolute continuity of measures. This
generalizes the results of [JM].

1. Abstract results. Let H be a separable Hilbert space with norm || ||
and scalar product {-,.). Let 4 be a self-adjoint strictly positive operator
in H. We assume that A7172% is nuclear for & > 0. By {ex : k > 1} we
denote a complete orthonormal system of eigenvectors of A. The operator
—A generates a strongly continuous self-adjoint semigroup e'%“*,t > 0,
on H. Let W be an H-valued (possibly cylindrical) Wiener process with
covariance operator I. Let P® be a probability measure on 2 = C(0,1; H)
such that the canonical process X is given by the following formula:

i
(2) X)) = e Thg 4 SeﬁéA(t*s)A—o‘ dW (s).

0
It follows from Chapter 5 of [DZ] that for every z € H there exists a unique
Gaussian measure P? on 2 under which X is a solution to (2). For any
t > ( the random variable X (t) has a Gaussian distribution

LAy
% = N(e" 1%, Q,)
with Qg = A7172%(] — ¢~4%). By Theorem 11.7 of [DZ] the measure v =
N(0, A=1722) ig a unique invariant measure for equation (2). Moreover, the
measures v and 5 are equivalent for any t > ¢ and z € H.
We now consider a more general version of equation (2):

) { dX(t) = [~LAX () + A=2F(X (£))]df + A~ dW (5),
X0)==m, t20,
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where F is a measurab1e~tr31.nsformation on H. A process X is said to satisfy
E} under the measure P* if for some H-valued cylindrical Wiener process
W with covariance operator [,

t
(4) X(t) = e ity 4 (e~ HAU-9) g =20 pry (o)) g4

0

: .
- S ez'%A(t"a)A_“dW(s) Poas.
0
Let K, be the space spanned by the first n eigenvectors of the operator
A and let II, be the orthogonal projection onto K. Let us recall that
Hy = dom(A”) endowed with the norm ||zj|lo = [|4%z]| is a Hilbert space

continwously imbedded in H if o > 0. Let ag > 0. We shall be working
under the following set of assumptions,

(i) There exists a sequence of functions Fj, = F,IT,, € C(H;K,) and a
function F': H — H_,,_1 such that for all o > ayp,

Jim {|Fu(e) - F(a)]2, v(dz) =0
H

and
sup | [|Fa(z)]*, v(dz) < co.
n2l g

(if) The mappings F,, are of gradient type in the following sense. There
exists a sequence of functions G, = GpII,, € C*{H;R) such that for every
x€ H and h &€ H,,,

VGn(z)h = (Fn(z), h),
where V&, denotes the Fréchet derivative of G,,.
(iii) The sequence Gy, is convergent in L2(H,-y) to a measurable mapping
G: H — R, Moreover,

sup ‘ 2@ m(dy) < o0
>t H

(iv) For every o > o, » 2 1 and o € H there exists a unique nonex-
ploding solution of the equation

t
(5) X (t) = o™ #4tg 4 [ e $40-D 42 1 (X (5)) ds
0
t

+ [ em240=el g=a qw (s),
0
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Notice that X, = I, X, + X", where [T, X,, and X™ are independent,
X" are Ornstein~Uhlenbeck processes and II,, X, are finite-dimensional dif-
fusion processes. Define D = { eGn(2) y(dx). It follows from (iii) that

D1l= S %) y(de) < 0
H
and D,, — D as n — o00. Similarly from (i) and (iii) we get

[ 1G@)F1de) < oo and | |F(@)]4ov(da) < oo

H H
for & > agp. Because Fy, is of gradient type the process II, X, admits an
invariant distribution 5 of the form 7"(dz) = DneCr®)y(Ki-dz) for z €
K, (see for example [H]). In consequence, there exists a random initial
condition X,(0) € K, (independent of W) with distribution ¥* such that
the processes JT, X, become stationary with this law. Since X, = 0, X, -+
X", where X" is an Ornstein-Uhlenbeck process on K-, there exists a
random initial condition X,{0) € H (independent of W) with distribution
v (dz) = DneS@qy(dz) such that the processes X, become stationary
with. this law.

Let P be the unique measure on (2 such that X is a stationary selution

of equation (2). Notice that P(X (t) € B) = vy(B) for any Borel set B C H
and ¢ > 0. Define

(6) on(t) = exp{Gn(X(0))}

P exp{ S(A_“FH(X(S)),dW(s)) - S lA=>F, (X (s))? d.s},
[\] a

bo] =

The following lemma holds:

LEMMA 1. Agsume (ii) and (iv). Then D,FEgn(1) = 1. Moreover, the
process X is o stationary weak solution of (5) under the measure P* given
by

apP
== (w} = Dnon(l,w).
dP

Proof Since F, = F,GII, and G, = Gpll,, 0n(t) depends on I, X
only. By finite-dimensional results ([LS], Thm. 7.6), D, Eg,(1) = 1. More-
over, IT, X is stationary and satisfies

1
I X (t) = e 34411, X (0) + { e 340~ 42 F,, (11, X (5)) ds
i
¢

+ (e #At=D gmagr, aw, (s),
0
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where W, is a cylindrical Wiener process under the measure P™_ Since
X — II, X has the same law under both P and P*, X is stationary and is a
weak solution of (5) under the measure P,

PROPOSITION 1. Assume (i)-(iv). If & > o then DEp(1) = 1, where
N olt) = exp{G(X(0))

1 1

; gy P 1

< exp { (4206, a0 9) - 2 - P as).
0 0

Proof. It follows from (i) that ¢ is well defined. By Lemma 1,
£
W™t) = W(t) - | A7 F,, (X (s)) ds
0
is a Wiener process with covariance operator I under the measure P*. By

{1)—(ii),

1
sup Bea (1) | [ A™Fu(X(5)) | ds
n2 0

1
= sup E™ | |A~“F, (X (s))||* ds
nzl 0

= sup B" | A™*Fo(X(0))]% = sup | | A~*Fa(z)|eS*(® y(da)
n>1 n21

=t g
< sup S [ A= Fy () ||* v(de) +sup S < 00,
n2l gy g
Moreover,
sup Eo, (1)|Gr(X(0))]
=l
== sup |Gy (X(0))] = sup S |G ()€ oy (da)
ngl nzl g
< sup S |G () |* y(de) + p S 2@ (%) y(dg) < o0
n2l H H

Becanse D, are bounded and
1
log 0n(1) == Ga{X (0)) + §(A™“Fa(X(s)), dW™(s))
0

Mlh

NA-“F (X (s))]* ds
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it follows that

(8)  sup DnEp,(1)1ogT(Dyon(1)) = sup E™logt (Dnen(1)) < oo.
nzl

n>l
Therefore the sequence D, p,(1) is uniformly integrable and we can pass to
the limit with  in {6) obtaining DEp(1) =1. w

As a consequence we obtain the following theorem.

THEOREM 1. Assume (i)-(iv). If @ > ap then there exists o unigque
solution to (3) for v-almost every z € H.

Proof Notice that
1

| EZIlA—F(X ()17 dt v(de)
HO

Il

§|\A SR(X @) dt = E|AT*F(X(0))]? < .
Thus E® S; |A=*F(X(£))||® dt < oo y-a.e. and therefore

J(AmF (X)), aw (1)

0
is a well-defined P®-martingale y-almost everywhere. If we define
1 1
_ e T
7(1) = exp{ [ (4R (0, W (3 - 3 {14~ F X6 s
0 o

then for y-almost every = we have E%5(1) < 1. Thus E®p(1) = eF® E*5(1).
Therefore

1= DEg(1) = D | e®® E=5(1) v(da).

H

Hence we find that E®p(1) = 1 for y-almost every z. By the Girsanov The-
orem (see p. 290 of {DZ]) the canonical process satisfies equation (3) under
the measure P*(dw) = P*(dw)d(1,w) for v-almost every initial condition
tEH. »

COROLLARY 1. Equation (3) admits a stationary solution with invariant
messure 7(dz) = Dey(dx).

Remark 1. Notice that the whole argument in this section is indepen-
dent of & and therefore valid for any & > «p for which the process (2) is
well defined.

Let
A={zeH:E"31)=1}.

icm
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Obviously ﬁf(X (t) & o ) = Lfor any ¢t > 0 and hence we can consider H as
a new state space. Define the transition kernel P(t,z, B) as
P(t,z,B) = P*(X(1) € B).
PROPOSITION 2. For any © € ﬁ,

Var(P(t,,) - 7) = 33211;)1 {P(t,2,B) -F{B)| =0 ast— oo.

Proof. Recall that 4 (B) = P*(X(t) € B) and the measures y and ~¥
arc equivalent for any £ 3> 0 and « € H. Since the measures P* and P” are
equivalont for any x € H, P(f, %, ) and 4§ are equivalent for any ¢ > 0 and
¢ ¢ H. Thos 7 and P(t,z,) are equivalent for any t > 0 and z € H. By
Theorem 1 of [St], Var(P(t,z,) —7) — 0. =

CoRroOLLARY 2. The invartant measure ¥ is unigue for the eguation (3).

2. Stochastic quantization. In this section we apply the general re-
sults of Section 1 to the specific example of stochastic quantization for the
P(¢)$ euclidean quantum field in finite volume. For the reader’s convenience
we gbart with some standard properties of Wick powers which are basically
well known or easy to derive by the modification of the techniques presented
in [Si].

Form=0,1,...

Hyn(z) =

It is well known that the system

(mmad

is a complete orthonormal system (CONS) in the space L* (R, V-lT—ﬂe‘mz/ 2.

If X is a real-valued random variable then the mth Wick power of X
with respect to the Ganssian measure with mean zero and variance e on R
is deflned as

we define the Hermite polynomials by

2 d™, o2
(e et g

(X = g™ H (X)),
By standard properties of Hermite polynomials we find that

: (=D 2
(9) (X ==l Z 'k‘Zk X7

iyl

and therefore :X™: is a polynomial in X with positive leading coefficient.
If X and Y are two Gaussian random variables then (see for example pp. 11
and 12 of [Si])
(10) E:(XY)™: =mi(BXY)™
Moreover, if X and ¥ are independent then
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il m
{11) HX + ™ = (.):Xj::Ym“j:.

Let D C R? be a bounded rectangle and let 4 be a Gaussian measure on
C(D) with continuous covariance function

r@y)= | o(z)é(y)ude)

Io{8s))

for z,y € D. Then for every fixed & € D we can define a real-valued random
variable

(12) (™ (2) = 167 (e): = (r(@ @)™ Hin($(2)/ /{3, 0)),
Moreover, for every fixed ¢ € (D) the function :¢™: is continuous on D
or equivalently, :¢™: is a continuous random field on D.

Let A denote the Laplacian in D with zero Dirichlet boundary conditions
and let €' = (I — A)™". Let {ex : k > 1} denote a system of eigenvectors of
C normalized in L?(D) with the corresponding eigenvalues {A;' : k > 1}.
Notice that the eigenvalues of I — A are of the form 1 + 4% + 72 and the
eigenfunctions e are uniformly bounded. It follows that C is a Hilbert—
Schmidt operator in L?(D) with kernel

Clz,y) = > 27 lej(z)es (w),
=1
and the approximating kernels
n
Culz,y) = Z ,\j'lej(z)ej(y)
j=1

increase logarithmically:
(13) 0 < Culz,y) <dlogn,

where d is a constant depending on D only. However, the operator C is not
of trace class in L*(D). The following lemma will be useful:

LEMMA 2. For every m > 1 there emists a constant ¢ > 0 depending on
m and D) only such that
P I 0™ (2, 0)(C@,y) - Cule,y) dudy < ——.
nl/?
DD
Proof. Let C denote the kernel of the free Laplacian on the whole space

RZ. Then C,, < Cpr1 < C. Therefore inequality V.7, p. 138 of [Si], yields
for every m > 1,

(14) S S C™(z,y) dz dy < oo.
DD

icm
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Using the Holder inequality we obtain

| | 6™ 9)(C(a,v) - Culz,y)) dedy
DD

= o)
DD

[».2}

> s-exl@lecty)) dedy

k=n+1

o0 1 1/2 0

(X)) (X

k=n+1 k k=n--1

Let T denote the integral operator in L2(D) defined by the kernel C™. Then
by (14), T' is a Hilbert—Schmidt operator. Hence

[ | c™@,9)(C(a,v) - Cule, 1)) dudy

DD ., e .
g( > ) (X rese?)

k=n+1 "k k=n-+1

(1§ ™ ver(olents) do dy)z)l/ ?

DD

and the lemma follows from the relation

For s > 0 we denote by H*(D) the closure of C§°(D) with respect to
the inner product

o0
(6,9 —s = 3 Mo, e (¥, e),
k=1
where ¢, € C5°(D) and {-,-) is the inner product in L*(D). In the sequel
we will write simply H ™! instead of H~}(D) because the region D is fixed
in this note. It is easy to see that the vectors )\i/ 2ek, k > 1, form a CONS
in H1.

The operator C? is positive, self-adjoint and of trace class in H~*. Hence
we can define on H~' a Gaussian measure -y = N (0, C?) with the reproduc-
ing kernel given by im C(H ') = H}. Notice that a free quantum field in
D with Dirichlet boundary conditions can be defined as a mean zero cylin-
drical Gaussian measure on Hg (D) (see for example Chapter VII of [Si]).
It is easy to check that the imbedding of H} in H~* is Hilbert—Schmidt for
every s > 0. Therefore a free field is a Radon probability measure on every
H~#(D). In particular, for s = 1, we obtain a Gaussian probability measure
v = N(0,(I — A)~2) on the space H = H™'(D).

Our next aim is to define a Borel measurable mapping

HYD)3¢— :¢": € H" (D)
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which is an extension of the Wick power of a Gaussian random field (12)
defined on the space of continuous functions. To this end, let /T,, denote the
orthogonal projection on the linear span of the set {ex : & < n}. Then

T

n
Tap(z) = 3 (6, Ajes)-1v/ A ei(2) = O Aj(8,¢5)-1¢4(a)
j=1 =1
and the Gaussian random field IT,¢(x) has covariance function

S Hn¢($)ﬂn¢(y) ’Y(d‘fb) = Cﬂ(xay)'

H-1

Hence the measure vJI;! is concentrated on the space C(D) and equa-
tion (12) allows us to define a continuous function : (IL,¢)™

Lemma 3. The sequence ((I,@)™: s convergent in the space
LP(H = y; H7YY for every p > 1. Its limit is denoted by :0™: and called
the mith Wick power of ¢.

Proof. Assume first that p = 2 and let Iy denote the orthogonal

projection on the closed subspace generated by the vectors Ehils- s Er
Then for n > k,

ap(z) = Myd(x) + i n ()

and the Gaussian random varlables I ¢(z) and ITy, ,¢(z) are independent.
Hence

J 1l:(ag)™: = s (Mg ™ |2, 4(d)
H-L
= 1A § L™ ~ (D)™, e v(a0)
i=1 H-1

=20 | ([ @) = ()™ (@) )esta) o) +(d0)
i=1 H~1 D

o

=y A 00 U:(ﬂm)m(w)?w

i=l ~ DDH-!
X (: (ad)™(4)s = : (Hd)™ (4):ex()euly) v(de) da dy
(@9) § (@)™~ (Tup(a))™)

j o
D H-1
(:

(Tndp(y))™

o)™ (2):)

x Y

= {(ITed(y))™:) 7(d) da dy.

icm
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Notice that (11) yields

m-1

(ng(@)™: = (Hxd(z)™: =Y (T:) (Igp(@)) 2 (D)™ :

w

and therefore by (10),

[ b @)™ = (Mg (@)™ (Tl — : (Fadly))™:) 7(d)
H-1
= | El (m)I(Hkﬁb(m))j“(Hk P(2))™
H—1 =0 ‘7 ,
m—1 )
xS (7)) s ()™ 100)
i=0
S ( )() [ (@) - (Td(w)) ) 7(dd)
i,j=0 H-1

x | CUTrnd(@)™ (e (@)™ ) v(dp)

-1

H
m~1 2 ’ i
™ %)
= Y stom-1(7) (§ Meste)mot) (@)

=0

L:

x (| Bend(@Mand®) ()
H-1
Finally, we obtain

15 | (g™

mmE()

Hence it is enough to show that for every fixed j < m — 1 we have
Jim { § C(z,9)(Co(2, )Y (Cn(o,) = Culmy)) ™ dedy = 0;
y—+0Q 'D )
but the last equality follows immediately from Lemma 2. If p > 2 then the
lemma. follows from Theorem 1.22, p. 38 of [Si] (for details see [BCM]). m

COROLLARY 3. There exists a sequence of projections II,, such that
S(ITn, @)™ conwerges to :¢™: in L*(H1, v, H™) and y-a.s. Hence we con

(g (y))™
— ()™ ) v(dep)
Y)Y (Cu(z,y) — Crlz,y))™ 7.

s — ()™



190 D. Gatarek and B. Goldys

define a Borel measurable mapping F : H™' — H=! such that F(¢) =
limgo oo : (I, @)™ y-a.s.
COROLLARY 4. Let X be any H™'-valued random variable. If the law of

X is absolutely continuous with respect to the measure v then the random
variehle : X™: 45 well defined.

Proof. It follows from Lemma 3 that there exists a subsequence (still
denoted by n) such that : (TI,¢)™: converges to :¢™: almost surely. Because
the measure X~ is absolutely continuous with respect to -y, almost sure
convergence still holds on the space (H~1,vX~1) and the remark follows. m

For m > 1, let

Va(8) = | : (110 )"™(2): da
D
be the real-valued mapping defined on #~1, Then the following lemuma holds.
LEMMA 4. For everyp > 1 the sequence V,, is convergent in LP (H-LvR)
to o imit V' and

s}
ElVo = VI < (0 - 1™

Proof. We start with the proof for p = 2, In that case, proceeding in
the same way as in the proof of Lemma 3 we obtain for n > k,

BiVa=Vil= || | ()™ (@) - :(IIeg)*™(2):)
DD g1
X ( (TP ™(y): ~ :(Meg)*™(y):) v(dgp) dx dy.
Now applying (15} we find that
E”jﬂ, - V—Iclz

2m—1
=(2m) > (2:1) § V(O 9)Y (Culz,y) ~ Ci(m, 4))*™ 7 du dy.

F=0 nn
Therefore it is enough to apply Lemma 2 to each term of the above sum to

end the proof for p = 2. For p > 2 the proof follows easily from Theorem 1.22,
P- 38 of [Sl] u

LuMMA 5. There exist constants o > 0 and B such that for all K suffi-
ciently large,

v{p € H1: V(g) < ~bllog K)™}) < e X,
Proof. By (9),

2m
HIIng)*™:(z) = Y a5 (g (z)c2m
j=0

icm
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with ¢ = Cp(z, z) and agm > 0. Let Q(y) = 32.20 a;y7. Then infyer Q(y)
= —b > —oo and as a consequence we find that

()™ () = 2" Q(ITn(2) /en) 2 —be2™.
This inequality yields
\: (o)™ () dz > —b | O (2, 2) dz > —bd{D|(logn)™,
D

where |D| denotes the volume of D and the last inequality follows from (13).
The remaining arguments are exactly the same as in the proof of Lemma
V.5 on the p. 148 of [Si]. m

Already in [PW] it has been noticed that the measure -y can be obtained
as a unique invariant measure of a certain linear stochastic differential equa-
tion on a function space. The operator ~5A = ~%(I ~ A) with g > 0 gen-
erates a Cp-semigroup of bounded operators on H (D) and the operator
A~1=2¢ ig of finite trace for & = 1/8—1/2 > 0 or equivalently for 0 < 3 < 2.
Hence the Ornstein—Uhlenbeck process Z on H given by (2) is a well defined
solution to the equation

(16) dZ = -—%(I — AV ZdL + (I~ A)~ 62wy
for 8 € (0,1). Clearly, the measure « is a unique invariant measure for (15)
for @ € (0, 2]. Define

Fo(d) =—MI— A)Hn:(ﬂn¢)3:a

1
Gu(g) = =37 | :(Tnd)*(2): da.
D
PROPOSITION 3. For every 8 € (0,1) the assumptions (1)-(iv) are satis-

fied for the mappings F,, and G, witha =1/ —1/2.

Proof. Let ag = 1/(28). The property (i) follows immediately from
Lemma 3. The property (ii) follows from the definition of F, and G, and
the standard properties of Hermite polynomials.

(iii) By Lemma 3 the sequence G,, is converging in L*(H !, v) and v-a.s,
to a limit G which is usually written in the form

G(p) = —%A {:¢%(z): da.
D

Then by standard arguments (see p. 153 of [Si]) Lemma 5 implies that
| 9 y(de) < o0
H-1
for every positive A and hence (iii) follows.



192 D. Gatarek and B. Goldys
Consider now the equation
1
(17) dX, = [— S~ AP X, — MI - Ay 0P, (I, X,,)° :J dt

+ (I = A)~ =82 qw.

Recall that IT,,:(II,X)*: is a third order polynomial of ({X,ej),...
-1 (X, e,)) with positive leading coefficients and X, = I, X, + X", where
II, X, and X" are independent, X™ are Ornstein—Uhlenbeck processes and
Il X, are finite-dimensional processes. Applying standard existence and
nonexplosion results from the theory of finite-dimensional stochastic differ-
ential equations (see for example [IW]), it can be shown that there exists a
unique nonexploding solution of the equation (17) for any initial condition
¢ € H!, and hence condition (iv) also holds. w

Notice that all the properties of F,, and G, listed above are determined
by the measure ~ alone.

Now we are in a position to consider a stochastic quantization equation
with polynomial interaction

(18) X = |~ %(I—A)'@X——)\(IHA)‘(l“ﬁ):X3: dt

+ (I — A)~0-8/2 g,

This equation has the form slightly different from the equation considered
in [BCM] and [JM] since we identify the space H = H~'(D) with its dual.
The nonlinear term :X3: in this equation is well defined due to Corol
labries 3 and 4. Because all the assumptions of Theorem 1 are satisfied we
obtain:

T_HEOREM 2. For v-almost every initial condition there exists o unigque
solution X of equation (18) edmitting a unique stationary measure u of the
form p(dz) = e¥@y(dz). Moreover, for v-almost every & € H,

sup [PP(X(t) € B) — u(B 0.
aup (P(X(1) € B) - u(B)| ~ 0. »

Remark 4. Because the measure v is concentrated on the space
H ‘f(D) for every s > 0 and all transition measures of the process Z are
equivalent to vy it follows that the process Z is concentrated on H "I(D) as

well. Hence by Corollary 1 and Theorem 2 the same property holds for the
process X and its invariant measure .

’ Acknowledgments. We are greatly indebted to Prof. Richard L. Twee-
die and fukasz Stettner for remarks leading to Proposition 2.
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