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A note on a formula for the fractional powers
of infinitesimal generators of semigroups

by

CELSO MARTINEZ and MIGUEL SANZ (Valéncia)

Abstract. If — A ig the generator of an equibounded Cp-semigroup and 0 < Rea <m
(mn integer), its fractional power A™ can be described in terms of the semigroup, through
a formula that is only valid if a certain function K4 m is nonzero. This paper is devoted
to the study of the zeros of Ko m.

1. Introduction. A closed linear operator A: D(A) C X — X in a
Banach space X is nonnegative if p(A} D ]—o0, 0] and there exists a constant
M > 0 such that

MA+A4 <M, A>0.

If —A is the generator of an equibounded Cp-semigroup {F; : ¢ > 0} in X,
then A is a nonnegative operator with a dense domain.

The fractional power, A®, with base a nonnegative operator A and com-
plex exponent @ € C; = {z € C: Rez > 0}, has been widely studied (see
(1, 3-5, 8, 9]) and has the property that if 0 < Rea < m, with m integer,
then D(A™) C D(AD‘) and

[V a—1 =1 41m m
At = mmnm ®§A [(A+ A A™dd), ¢ € D(A™)

(where A% = e*!°8* with log A € R). This formula was obtained by H. Ko-
matsu and, furthermore, he proved in [4, Th. 2.10] that if the operator A
is densely defined, then the domain D({A*) consists of elements ¢ € X for
which

N
lim | A7MAQ + 4) "¢ dA

0

—0C

1991 Mathematics Subject Classification: Primary 47A60; Secondary 47D03.
Work partially supported by DGCYT, grant PS88-0115, Spain.



248 C. Martinez and M. Sanz
exists and A% is defined as

ap_ 1 I'(m)
A% = i T m =)

N
f A=A+ A med), ¢ € D(A%).
0

This formula can be rewritten as

A% = slim __Llm) ?A“"l[A(,\ + A)7H™ dA.
Nevoo D{a)I'(m — ) 5

In the particular case where ~A is the generator of an equibounded
Cp-semigroup, Komatsu described the fractional power 4* by means of the
semigroup P;. He proved in [4, Th. 4.4] that if 0 < Rea < m, then
O
{7 1-P)™dt,

£

(1) A% = slim

e-—0 a,m

where Ko m = {5 173711 — e7*)™ dt.

But this assertion is only correct when K, ., is nonzero. It is obvious
that it holds when « is a real number, but it is not true if v is complex; for
example, K2 =0 for o = 1 +4(2nn/log2) (n > 1).

The aim of this paper is to study the behaviour of the function K m;
thus, we will know if it is correct to apply (1) to obtain the fractional
power A%,

We prove that the set {Rea : Ky 3 = 0} is dense in [0,1] U [2,3] and
likewise the closure of {Reex : Ky 3 7 0} is the interval [0, 3]. On the other
hand, we obtain general representations for K, ,;,, deducing from them two
interesting properties:

1. Given « € C,, there exists an integer m > Rea such that Ky m # 0.
2. If 0 < Rea < m and |Imea| < 7/logm, then K, # 0.

If 0 < Reex < 1 and m > 1, we obtain, after simple calculations, the
known formula

m
(2} ' ' Ka,m = Z <k>(“1)kkaf(“a):
1LkEm
where I' is the Buler function (see [4, pp. 103-104]).

Analytically, identity (2) is valid on the strip B = {& € C: 0 < Rea <
m}. The symbol Hym will denote the value 3 cpepm (7) (—1)5F1E% As
Kom = ~I'(—a)Ha,m, we have Hypm = 0 for @ = 1,...,m — 1. These
identities can also be easily obtained by observing that

dp

= (1)1 — e HYyM o = —
8 Hpm=(1Pg] A-eT =0 (p=1mo).
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2. Zeros of K1, Ku 3 and K, 3. By integrating by parts it is evident
that Ko 1 = —I'(~a) and therefore K, 1 is nonzero. On the other hand, it
is clear that the zeros of K, o are the complex numbers 1 + i(2n7/log 2)
(n2>1).

The behaviour of the zeros of K, 3 i3 completely different, as the follow-
ing proposition shows.

PROPOSITION 2.1. The function K, 3 satisfies
{Rea: K3 =0} =[0,1]U[2,3].

Proof. The proof is based on the fact that for any couple of complex
numbers z;, 23 we have the simple equivalence

142z + 2 =O{#]‘1+21|= |Zg|,t1+Z23 =|le and Im(2’1+22)=0.

On the other hand, we will also use the known fact that if ¢ is an irrational
number, then the set {pc+ q: p,q € 2Z} is dense in R.
For simplicity, we split the proof into two parts:

Part 1. Let a be such that Rea € [0,3]. We define
b=Rea—1, 7=ImBeR, 2z =-2-2%-2" and 2, =3%.3"".

Firstly, let us prove that H, 3 = 0 if and only if b € [~1,0] U [1,2] and
moreover there exist integers p, ¢ with the same parity such that

' .4b —gb _
(4) m(plog 3 — qlog2) = (log 2) arccos ((*l)‘fi%ggbﬂ——l>
4.45—9b+1
— (log 3) arccos ((—1)*”755————)

(where arccos denotes the main determination of the arc cosine function in
the interval [0, #]).

IfH, 3 = 0, then 142142, = 0 and thus |1+2;1| = |23| and |14 2s| = |z,
that is,
9°=1+4-4°—4.2%cos(rlog?) and 4-42=1+0"42. 3% cos(rlog 3), -
whence
4-4b—09b 41 4-4>—9b —1
—— L S k- I

o <1 and 1< 3 38 <1

It is easy to see, by rearranging the above inequalities in order to- form

the squares (2-2°+1)? and (8°41)?, that they are equivalent to the relation

~1<

1
O§3b—2-2b+1=§HRm,3§2.

Hence, by elementary considerations (or, more directly, through formula
(8) that we will prove below in Proposition 3.2) we can conclude that b €
[-1,0]U[1,2]. : -
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If p, g are integers such that Tlog2 — pr € [0, %] and Tlog 3 — g7 € [0, 7],
then we have

4.45 941
TlogZ — pPT = arccos ((—1)13—“-""“1-"51]———““),

4.4°—gb 1
7log3 — gm = arcces ((—l)q—zT>

By eliminating r from the last two expressions, we get (4).
Now, let us see that p and g have the same parity. Indeed, the equality
Im(z; + 22) = 0 means that
2. 2°sin{r log 2) = 3% sin(r log 3),
that is,

(3) 2-2°(-1) [1 - (%)] N

4.4b —gb 1\ F)1/2
3(1)[1 (——2-3b )} .
And, since

2_2b 1 4.4b_gb+1 2 1/2_3111_ 4.4b_9b_1 27172
4.2b N 2.3

for any b € [-1,2} (where both members are zero only if =0 or b == 1 and
these values of b are not possible since Hy i3 # 0 and Hzy4r 3 # 0 for any
7 €R), it follows from (6) that p and ¢ have the same parity.

Conversely, if there exist b € [~1,0]U[1, 2] and two integers p, ¢ with the
sarme parity such that (4) holds, then by considering

1 440041
= e NP
T Tog 2 [arccos (( 1) T ) —i—pw]

1 4-4°-9b -1
= log3 [arccos ((—1)‘1—-—"5".-'3{7—) ‘|‘f]ﬂ‘:|,

it is obvious that |1 + 21| = {z2] and |1 + 23] = |z1| and direct calculations
show that Im(2; 4+ z3) = 0.

Part 2. Let us prove that {Rea : K3 =0} =1{0,1] U [2,3].
Given by € ]—1,0{U]1,2] and an open interval I around bg, the image of
I under the function

4.45—9b— 4-4°—9¢° 41
f(b) = (log 2) arccos TR T T (log 3).arccos %

has a nonempty interior, since the analytic function f is not constant, On
the other hand, the set {m(plog3 — qlog2) : p € 2Z, ¢ € 2Z} is dense in R.
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So, there will exist even integers p1, g1 'such that f(b1) = m(p; log 3—g; log 2)
for some by € I. From this and part 1, the result follows. m

The behaviour of the zeros of K, 1, K, » and K, 3 shows that. the zeros of
Ko m are not predictable, which seriously limits the possibilities for applying
formula (1).

3. Representations of K, ,, and consequences. A first interpreta-
tion of Hy,m is suggested by relation (3) between Hy, ,, and the derivatives
of (1 —e~*)™. In fact, for any noninteger & € B, the value of —H, ., equals
the value at £ = 0 of Wey!’s fractional integral of the —ath order:

1 oo
Fgam) § (s — )71 — e*)™ ds,
associated with the function (1-¢7%)™. That is, in the language of fractional
differential calculus, H, ,, would be the value of Weyl’s fractional derivative
of the ath order of the function (1 — %)™ at ¢ = 0.

Although K, -, could be zero, we can prove, in the following proposition,

that there always exists an integer m > Re o such that K, # 0.

ProposrTioN 3.1. Let m and n be integers such that n > m > Reca.
Then

1
(6) Ka,m - Ka,n = (0-' + 1) Z 8 ot1,p-
m+1<p<n

Therefore, the series 351 (1/P) Kas1,p s convergent and

(7) Kom=(a+1) > %Ka+z,p.

pzm+l

Accordingly, given any o € Cy there exists an integer m > Rew such that
Kaum #0.

Proof By writing

- —(Q-e=(l-e e’ Y  (1-e)
0<g<n—m—1
and integrating by parts, {6) is obtained.

As n — oo, Ky — 0 by the dominated convergence theorem. Taking
limits in (6) as n — oo we get (7).

The last assertion of the statement is shown by induction. For 0 < Re
< 1, we know that K, 1 # 0, and if Rea = 1, then, according to Proposi-
tion 2.1, K, 3 # 0. Thus, the statement is true for 0 < Rea < 1. Assuming
that it is valid for all & with 0 < Rea < h, if 0 is a complex number such
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that k < Ref < h + 1, then, by the induction hypothesis and (7), there
exists an integer m > Re S — 1 such that

1
Kgoim=8 > ~Kpp#0,
pzml1 P

and therefore some of the swmmands must be nonzero, as we wanted to
Prove. m

The following representation of K ., provides a horizontal strip on the
real axis where K, »,, has no zeros.

ProposITION 3.2. The following identity holds:

m-—1 o
(8) Ham=m Y, ( L )(——1)’“(k+ 1)>1
0gkEm—1
= (-1} tm(a~1)... (@-m+1) S (1+z14 . A Tm—1)¥ dey .. dEp—1.
[0,1}m—2
Therefore, Ko m has no zeros if |[Ima| < w/logm.

Proof. The first identity is evident. The second is a particular case of
the general formula

n
1Y (L 8
© ¥ (})evrerq
0<k<n
=(-)"8B-1)...(8~n+1) S (a4 z1+ ... +2,)* "dzy .. .dzy,
[0,1]"

where 3 € C, g >0, and n is a positive integer. This formula can be proved
by induction on n. The case n = 1 is an immediate consequence of Barrow’s
formula. If we assume that the formula is true for any integer k, 1 < k < n,
then from the identity

¥ (Jeverer= £ (e

0<k<n 0gkZnt1
n
- 5 (H)evrerary,
0<k<n
we conclude that (9) is also valid for n + 1.
Finally, if o is noninteger and |Im | < 7/ logm, then Im[(1+ 2y +... +
Tp-1)® ™| has a constant sign for any (1, . .. » Zm—1) €10, 1[’”—l and thus,
by (8), we obtain Hy , # 0, and s0 Kom #0. »

Hg,m can also be represented by the value of a certain determinant, which
is a sort of “exponential version” of Vandermonde’s determinant. This new

icm
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representation itself is very interesting, although we were not able to obtain
information on the zeros of H, , from it.

PROPOSITION 3.3. We have the following identity:

1 2 3 m

(<)t 122 32 . om?
Hym = det | ool
e (m— 1)1(TTL“-'Z)'2r 1 2m_1 3m-—1 m.m__]_

1 2(! 3&. ma

Proof. Analytically, it is sufficient to prove the identity for those values
of « such that the above matrix is invertible. We will call this matrix T}, ()
and let v € C™ be the vector with components v, = (—1)*+1 (W) & =
L,...,m. The identities Hy,, = 0 for p = 1,...,m — 1, along with the
very definition of H, ., can be expressed as Twl{o)v = Hymem, where
em 18 the m-tuple with a 1 in the mth place and zeros elsewhere. Then
v = Hom[Tm(e)] tem and by equating the mth component of the two
members, we obtain

detT,_1 (m - 1)
" det Tp(a)

which proves the statement, taking into account that 7%,._; {m —1) is imme-
diately reduced to a Vandermonde determinant. =

(ml)m+1 —
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On uniqueness of (-measures and g-measures
by

Al HUA FAN {Cergy-Pontoise)

Abstract. We give a simple proof of the sufficiency of a log-lipschitzian condition
for the uniqueness of G-measures and g-measures which were studied by G. Brown,
A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian
condition together with positivity is not sufficient. In the special case where the defining
function depends only upon two coordinates, we find a necessary and sufficient condition.
The special case of Riesz products is discussed and the Hausdorff dimension of Riesz
products is calculated.

1. Introduction and main statements. The G-measures were con-
structed by G. Brown and A. H. Dooley ([2]) and they generalized to some
extent the g-measures constructed previously by M. Keane ([8]). Typical
(-measures are the Riesz products defined by

w= H(l+7‘ncos21rm1 TR T
n=1 -
(-1 < r, < 1,m, > 2 integers) (see [5]). The special case where v, =
7 and m, == m provides typical examples of g-measures. For these two
constructions, a major question is to know when we have a unique G-measure
or g-measure. This is the subject of the present work.

Here are the definitions of G-measures and g-measures, and the results
that will be proved in the sequel.

Let {X;};»1 be a sequence of finite abelian groups of orders {m;}j>1.
We shall denote by X their infinite product [J32, X; and by I their infi-
nite direct sum @?’;1 X;. Then X is a totally disconnected compact metric
group, and I' is viewed as a countable subgroup of X that acts on X. More
precisely, for v € I'and z € X, the action is vz = y-z = (y1+z1, 72-+22, .. .)
(recall that v; = 0 for j sufficiently large}. For n > 1, we shall denote by I,
the finite product H;=1 X ;, which can be viewed as a subgroup of I'. For a

1991 Mathematics Subject Classification: 28A35, 28D05, 43A05.
Key words and phrases: G-measures, g-measures, ergodic measures, Riesz products,
quagi-invariance, dimension of measures.



