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Polynomial selections and separation by polynomials
by

SZYMON WASOWICZ (Bielsko-Biata)

Abstract. . Nikodem and the preseat author proved in [3] a theorem concerning
separation by affine functions. Our purpose is to generalize that result for polynomials.
As a consequence we oblain two theorems on separation of an n-convex function from
an n-coucave function by a polynomial of degree at most n and a stability result of
Hyers-Ulam type for polynomials,

1. Introduction. We denote by B, N the sets of all reals and positive
integers, respectively. Let I C R be an interval. In this paper we present a
necessary and sufficient condition under which two functions f,g: I — R
can be separated by a polynomial of degree at most n, where n € N is a
fxed mumber, Qur main result is a generalization of the theorem concerning
separation by affine functions obtained recently by K. Nikodem and the
present author in [3]. To get it we use Behrends and Nikodem’s abstract
selection theorem (cf. [1, Theorem 1}). It is a variation of Helly’s theorem
(ct. [7, Theorem 6.1]).

We denote by cc{R) the family of all non-empty compact real intervals.
Recall that if F': I — ce{R) is a set~valued function then a function f : I —»
R is called a selaction of F iff f(z) € F(x) for every z € 1.

Behrends and Nikodem's theorem states that if W is an n-dimensional
gpace of functions mapping [ into R then a set-valued function F' : I —
ce{lR) has a selection belonging to W if and only if for any 7 + 1 points
Bl inyy € 1 there exists f € W such that flz;) € Flz;) for § =
Looyn L

et us start with the notation used in this paper. Let n € N, If @y, . .., @n
¢ I are distinet then for ¢ =1,...,n we define

1001 Mathernabies Subject Classificotion: Primary 26A51, 26E25, 39872, 54C65; Sec-
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Key words and phrases: separation theorerm, get-valued function, selection, n-convex
funetion, n-eoncave Funcion, affine function, Helty’s theorem, Lagrange interpolating
polynomial.
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Ci(m;ml,---,mn)=1—[ ) o
oy BT
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Note that ¢;(zy;21,...,2,) I8 0if ¢ #£ jand 1 if i = 7, 4,7 = 1,...,n.
‘P, denotes the family of all polynomials of degree at most n. If @1, ..., Tyt
€ I are distinct then the {unique) Lagrange interpolating polynomial passing
through the points {z;,%;),2=1,...,n+1, s

n-+l
(1) w(z) = Z (251, - oy Tpe1 ) Vi

d=1
This polynomial is a member of P,,. Moreover, if z < 21 < ... < Zy41 then
(@381, .., Tpy1) 18 positive if 4 is odd and negative if ¢ is even.

2. Polynomial selections of set-valued functions. Now we prove a
selection theorem which will be used to obtain our main result. If n ¢ N and
A CR,i=1,...,n, then } |-, A4; denotes the algebraic swm of the sets
Ai, izl,...,ﬂ.

THEOREM 1. Let n € N. A set-valued function F : I — cc(R) hus a
selection belonging to Py, if and only if for oll o, 1, ..., Zny1 € I such that
2o <31 < ... < Znay the following condition holds:

n1

@) Flao) 0 (3 elenizn, o, nt) Flzs)) 0.

iz=]

Proof If F has a selection belonging to P, then (2) is obvious. We
prove the converse. First we note that P, is an (n+1)-dimensional space of
functions. If we prove that for any n + 2 points g, 21, ... ' Bng.y. € I there
exists w € Pp such that w(z;) € F{z;),7=0,1,...,n+1, then by Behrends
and Nikodem’s theorem F' will have a desired selection. {(For another Helly-
type theorem which may be used here cf. also [7, Theorem 6.9].)

Fixazy, 21, enp1 €T withog < 21 <... < Ty, Let Ly = ei(oy ey, ...
s Zn41), f=1,...,n+ 1. Thus (2) has the form

n1

®) Plag) 0 (3 LiF(e) # 0.
i=1

As noted in Section 1, L; is positive if 4 is odd and negative if’ ¢ iy even.
Put
yo =inf F(xzg), 2o = sup F(xp)
and fori=1,...,n+1,

y _{ian(mi) i L; >0, . [supFlz) if L >0,
¢ sup F(z;) if Ly <0, Y7\ inf Fzy)  if Iy < 0.

icm
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Then F(20) = [yo, 20} and fori =1,...,n+ 1,
2] if Ly >0,
Pla) = | Woal L >0,
() { [z, ws] if Ly < 0.

Sinee [, ] = [~f, ~a] for all o, 8 € R, we have L;F(x;) = [Liwi, Lizi],
de Ly oo, L I = Iy -+ o Dy ypar and w= Lz 4. . vt L1 2041
then « < v. Furthermore,

el 1
Z Ll (ey) = [Lyyy, Inz] 4 oo [ iUng 1 Dndet Znget )
il
= iLlyl +o ok DypiYneen, Lnzg + .+ Ln+1zn+1] = [ua V]
anl by (3) we gob
(4) Y0, 20] 1 [u, v] # 0.
Three caxes are possible:

(a) u € [yo, 0],
(b) v € {yo, 2o},
(¢) [yo, za] < [u,v].

Fix ¢ € [0, 1] and consider the polynomial ¢, & P, passing through the
n 4 1 points

(o, tu+ (1 ~2)v) and (g, fy+ (1 —t)z) fori=1,...,m—1n+1
Wo shall show later that
(5) @1(tn) = tyn + {1 — t)2n.
Hence, in case {(a) for w = @, we have

w(wn) = u € [yo, 20] = F(z0),
wley) =9 € Flzy), i=1...,n-Lnn+l
and similarly in case (b) for w = @o. In case (¢), yo = Au -+ (1= A)v for some
A € {0,1]. For w == py we obtain
(@) = fo € Flzo),
wim) = Ayi + (L~ Az € Plwg), d=1...,n—Lnn+1L
S0 in all cases there exists a w € Py, such that w(z) € F(2;),i=0,...,n+1.
We will complete the proof if we show that (5) holds true.
By (1) we get
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0u(m) = o320, 21, -+« Tt B ) (B -+ (1 — t)v)

+ Zci(w;wo: B1y- s By Tt J{Hi 4 (1 — 1)20)
i=1
+ Cn+1($; L0, 15 Bnels Tntl) (BYnr + (1 = t)zn-l-l)-
¥ M; = ei{zn; %0, %1, -+, 1, Eng1)s 5 = 0,1,...,n — Ln+ 1, then after
some computation

n1
e(mn) = Y (MyLi + Mi)(tyi + (1~ £)2) + Mo L (tym + (1 = t)2).
=
One can verify (using the product formula given in the introduction)
that MoLy,, = 1 and MpL; + M; =0fori=1,...,n — 1,n+ 1. Hence (5)
holds and this finishes the proof. m

As a consequence of Theorem 1 we obtain

CoroLLARY 1 [8, Theorem 1]. A set-valued function F : I — cc(R)} has
an affine selection iff for allz,y € I and t € [0,1],

Fltz+ (1 - 8)y) N (tF ) + (L -)F(y) # 0.

Proof. The above condition is equivalent to (2) forn =1,z < y, £y = =,
Ty =y, T1 = txg -+ (1 — t)zo, where ¢t = (z1 — z2)/(zg — 23). =

3. Separation by polynomials. The main result of this paper is

THEOREM 2. Letn € N and f,g : I — R. The following conditions are
equivalent:

(i) there ewists w € Pp, such that f(z) < wiz) < gls), z € I}

(ii) f(8) < g(b), where b € I is the right endpoint of I (if it ewists) and
forallmo. 21, ..., %Bpp1 €7 such that zg <21 < ... < Loty

n-+1 n+l

Flo) € 3 alzoien, o np)g(m) + Y eilwojen, ., Bppn) Fld,
gl dmml
i odd i even

(6)

-1 nl

g(zo) 2 Z ci(@o; 21, ., Tust ) F(2) D el Ba, ey Baer) ()
=1 EE-
i’badd ié-uén

Proof. To prove that (i) implies (i) fix any 2o, 21,...,%n.1 € I such
that 2o < @1 < ... < @u41. Since the polynomial w passes through the

Separation by polynomials 79
points (g, w(zq)), ¢=1,...,n -+ 1, we have
n-1
w(xo) = Z ci(wos T, - . ., T Jw(Z;).
du=]

Then the incqualities (6) are obvious.

To prove the converse implication first note that replacing zo by 21 in
(6) we have f(1) < g(21) in both inequalities, i.e. (i) yields f < g on I.
Lot

)= [f(z),9(x)], =€l
We now show that F: I — ce(R) satisfies (2). Fix any zo,21,...,Zny1 € T

such thab wy << ay < ... < @41, Let wand v be the right hand sides of the
upper and lower inequalities of (6), respectively. Then v < w and

(7) [f(20), glzo)] N [v, ] # 0
(otherwise g(xg) < v or uw < f(zg), a contradiction with (6)). Let L; =
eil@o; @, @)y 1= 1,...,n+ 1. Then
ST a7 t)Lg )] if 4is odd,
Lif () = { Lig(e:), L f(z)] i i s even,
and
1
[, ] ZL ().
H=y

Thus (7) implies (2). By Theorem 1, F has a selection w € P,. This finishesg
the proof. m

Remark 1.Inequalities (6) in Theorem 2 do not guarantee f(b) < g{b),
where b € I is the right endpoint of I (if it exists). The functions

1 . .
pron ) 2e for 0< e <, _fz for0<gz<],
f(un)m{f for = 1, and g(ﬂ:)—{% for = 1,

satisfy {6) for m = L but f{1) > g(1). Of course, f and g cannot be separated

by a straight lnw
As a copsequence of Theorem 2 we obtain
CoroLLARY 2 [3, Theorem 1]. Let f, g : I — R. The following conditions

are equivalent:
(i) there exists an affine function h : I — R such that f(z) < h(z) <

g(z), # & I
(i) for all 2,y € I and t € [0,1],

Pt + (1~ 8)y) < ta(=) + (1 - g(v)
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and
gltw + (1 - t)y) = tf(@) + (1 = 1) f(v)-
Proof. The above inequalities are equivalent to (ii) of Theorem 2 (cf.
the proof of Corollary 1). =

4. Applications. One can verify that f : I — R is convex iff for all
Zg, 21,22 € I such that zg < 21 < 22,
Flzo) 2 camo; ma, w2) f @) -+ eal@o; w1, m2) f@a).
We adopt the following definition (cf. [6, §83], [2], [4], [5]).
DEFINITION. Let n € N, A function f : I — R is n-conven if for all
Ty &1, 8pt1 € I such that zg < 21 <000 < @1y
n-k1

(=)™ flzo) < (=)D ci(To; 21, -, Ty 1) F34).
i=1

f is n-concave i —f is n-convex. m

If f is both n-convex and n-concave then f is a polynomial belonging to
Pn. {passing through the points (x4, f{x;)), 7 =0,1,...,n+1).

COROLLARY 3. Letm € N. If f : I — R ds n-convez, g : [ — IR is
n-concave and f(z) < g(z), © € I, then there emists w € P, such that
Flz) w(z) < g{z), z el

Proof. Fix any zo,&1,...,%nts € [ such that g <2y <. <y If
7 13 even then by n-convexity of f,

n+41
Flmo} < D eil@oien, oo onpn)f (i)
i=1
n-1 n-1
< 3 eil@oimy, s anpn)g(z) + Y clzoian, ... enpa) fla).
=1 d==]
i odd ieven
If n is odd then by n-concavity of g,
‘ n+t1
Flma) € g(mo} Y cil@o; o, -+ s Bnget ) g ()
=1
-1 el
< Z (2o 1, - - -y Tnga)gles) + Z ci(Toyr, - oy inpr ) f().
foda ikven

The proof of the second inequality in (6) is analogous. Thecrem 2 completes
the proof. m

In the same way we get
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Coronbary 4 Letn € N If f 2 1 — R is n-concave, g : I — R
is p-conver and f(2) < gla), @ € I, then there exists w & P, such that
fle) < w(x) <glw),zel m

For no=: | the above two results are well known.

Finally, we prove a stability result for polynomials (cf. the Hyers—Ulam
Ly pe stability theorem for afine functions in [3]). First observe that if n € N
and wx) = L, @ ¢ I, then w & P, and for any distinet 21, ..., 2541 € 1, (1)
lias (he [orm

vehk

e

ey, o pg) =1, zel
e ]

CorROLLARY 8, Letne N, e > 0aend f: T — R If for allmg, @1, ..., Tott
¢ L such that wo < 21 < .00 < Xy,

7kl

(8) ‘f(-%‘o) =Y (@i zr,. - Enrr) fl@i)] S €

i=1
then there exists a polynomial w € Py, such thaet
(9) [fl@) - wlz)| £e/2, wzel

Proof. It f satisfies (8) then (ii) of Theorem 2 holds for g(z) = f(z) +e,
¢ & I. So there oxists © € Pp such that f(z) < ¢(2) < flz)+6 z € 1. For

wiz) = p(z) —¢/2, zel,

we obtain (9). =
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Invariant densities for C! maps

by

ANTHONY N. QUAS (Cambridge)

Abstract. We consider the set of ' expanding maps of the circle which have a
unique abgolutely continuous invariant probability measure whose density is unbounded,
and show that this set is dense in the space of C* expanding maps with the C topology.
This is in conirast with results for 02 or C**® maps, where the invariant densities can
he shown to be continuous.

For expanding maps of the circle which are C% or ¢ (that is, differen-
tiable with Holder continuous derivative), there is always a unique absolutely
continuous invariant probability measure whose density is continuous and
strictly positive. These functions will be called invariant densities. These
maps with their unique absolutely continuous invariant measures form ex-
act systems (see [4]). Our paper deals with the case of €' expanding maps.

Throughout this paper, let E*(M) denote the space of expanding ct
mappings of a compact manifold M to itself with the C* topology. In [3],
Krzyzewski showed that the subset A C E*(M) of those mappings which
have no absclutely continuous invariant probability measure with strictly
positive continuous density is residual or of second category in EY(M). This
means that topologically “most” mappings fail to have absolutely continu-
ous invariant probability measures which have continuous densities bounded
away from 0. Clearly there are a number of ways in which this failure can
take place: One way is for there to be no absolutely continuous invariant
probability measure. In the case where M is the unit circle, ', Géra and
Schmitt showed that this can occur (see [1]). A second possibility is that
there may be examples which have absolutely continuous invariant densities
which fail to be continuous or fail to be bounded away from 0, although no
examples of this type are in the literature. In particular, the question might
be asked as to whether there are examples of C* expanding maps which have

1991 Mathematics Subject Classification: 58F11, 28D05.
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