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Closed ideals in certain Beurling algebras,
and synthesis of hyperdistributions

by
J. ESTERLE (Talence)

Abstract. We consider the ideal structure of two topological Beurling algebras which
arise naturally in the study of closed ideals of A™. Even in the case of closed ideals I such
that A(I) = B, Jor the perfect symmetric set of constant ratio 1/p, some questions remain

open, despite the fact that closed ideals J of AT such that )= Eq /o can be completely
described in terms of inner functions. The ideal theory of the topological Beurling algebras
considered in this paper is related to questions of synthesis for hyperdistributions such
that limsup,,_, o |B(n)| < oo and such that limsup,_,., (log® |B(n)])/v7 < co.

1. Introduction. Let C{I") be the algebra of all continuous, complex-
valued functions on the unit circle I', and let

ary={recn)|iflh =3 Ifm)i < oo}
nex
be the usual Wiener algebra. By identifying continuous functions on the
closed unit disc D which are analytic on D with their restrictions to I", we
can interpret AT, the algebra of absclutely convergent Taylor series, to be

the algebra N
{fe AN) | Fin) =0 (n< 0},
a closed subalgebra of A(I").

There was some recent progress [8], [11], [12] in the theory of closed ideals
of At. If I is a closed ideal of At, set h(I) ={z € D | f(z) =0 (f € I)}
and denote by I4(T) the set of elements of A" which belong to the closed
ideal generated by I in A(I").

Also, when I s {0}, denote by S; the inner factor of I (i.e. the G.C.D.
of the inner factors of all nonzero elements of I, see [15, p. 85]) and set
Stoy = 1. Bennett and Gilbert had conjectured in [3] (see also [17}) that all
closed ideals I of AT satisfy
(1) I =140 N8y . H(D),

where H>(D) is the algebra of bounded analytic functions on D.
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114 J. Esterle

Kahane and Bennett—Gilbert [3], [17] showed that (1) holds when h(I) is
finite or countable (then [407) = I+t (W(I)NT) = {f € AT | finnr = 0}).

The author [8] produced recently a counterexample to the conjecture,
which is a closed ideal I of AT such that Sy = 1 and such that h(I) Cc I’
is a Kronecker set (for the definition of Kronecker sets see for example [16,
p. 89]).

In the other direction, F. Strouse, F. Zouakia and the anthor [12] showed
that there exists a large class € of closed perfect subsets of I" such that (1)
holds whenever h(I) NI is contained in some element of C. The class C
‘contains in particular By /p for every integer p > 3, where

B, = {exp (inianqnhl(l — C)) 18, =00r 1}
n=1

for ¢ € (0,1/2).

During these recent works on the Bennett-Gilbert conjecture, some link
between closed ideals of AT and closed ideals in some Beurling algebras
on the unit circle was pointed out. Define a weight on Z to be a submul-
tiplicative map w : Z — [1,00] such that w(0) = 1. ¥ w is a weight on Z,
set

aun)={f ccm)|Iflo = 3 1Fmo(m) < oo},
ned
Then (Au{I), |- |l) is 2 Banach algebra. If 3 _,(logw(n))/(1+n?) < oo,
then A, (I") is a regular Banach algebra in the classical sense [19, p. 221]. For
z € I', denote by x. : C(I") — C the map f — f(2). If the above condition
Is satisfied, then the map z — x, is well known to be a homeomorphism

——

from I' into A,(I"), the character space of A, (I"). Weights w such that
(logw(n))/+/In] — 0 as n — —co, and w(n) = 1 for n > 0, will be called
Atzmon weights. Denote by A the set of all Atzmon weights on Z, and
set Bo = [V,e4 Au{l). Then (Bo, (|j - |lw)wea) is a locally multiplicatively
convex complete algebra (see [29]).

Now for p > 1set wp(n) =1 (n = 0), wy(n) = eIl (n < 0) and set
Bi = Vps1 Aw, (I'). Then (By, (|| - |lu,)pz1) is & Fréchet algebra.

Let 1 be a positive measure on I" which is singular with respect to the
Lebesgue measure on I7, and let

1 7 et 42
S N _—— e 1
H z_}exp[ zﬂ.jwezt__zdlu’()}
be the singular inner function defined by p. We will say that S, is nonatomic
when the measure 4 is nonatomic (i.e. u({z0}) = 0 for every z € I'). The

link between closed ideals of A* and closed ideals of By and B is given by
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the following theorem (the first assertion is implicitly contained in [12], and
the second is a slight reformulation of a result of [29]).

THEOREM 1.1. Let I be a closed ideal of A*, and fori =10 or 1 let ks
be the closure of I in B;.

(1) Ifh(I) C T, then I = I 1 A+
(2) If R(I) C T, and if the inner factor S; of I is nonatomic, then
=174t

We are interested here in the study of closed ideals J of B; such that
h(J)={z €| f(z) =0 (f € J)} is a set of Lebesgue measure zero. This
theory is not contained in the theory of closed ideals of A*. It follows from
a result of Zarrabi [27] that for every uncountable, proper closed subset F of
I" there exists a closed ideal .J of By such that A(J) = E and JNAT = {0};
we show by a similar method in Section 3 that for every nonempty, proper
closed subset E' of I' there exists a closed ideal J of By such that A(J) = E
and JN AT = {0}. Nevertheless the methods used in [8] and [12] to prove in
some special cases the Bennett—Gilbert conjecture lead o some information
on closed ideals .J of B; when h(J) satisfies suitable geometric conditions.
When B C I' is closed, denote by J*(E) the set of all f € At which satisfy
synthesis with respect to E in the classical sense [16, p. 59]. Also let A> (D)
be the algebra of C"*°-functions on I" which have a continuous extension to
D analytic on D, and set J£(E) = {f € A°(D)| f™|g =0 (n> 0)}. We
show in Section 2 that if J is a closed ideal of B;, and if J*(h(J)) is w*-dense
in AT with respect to the natural w*-topology on AT, then J = J4 N J°,
where J* is the set of elements of B; which belong to the closure of .J in
(A(T),]}-|l1) and where JO is the intersection of the kernels of the elements
¢ of J* such that a(n) — 0 asn — —oco (see Section 2 for the interpretation
of elements of B in terms of hyperdistributions).

Also we show in Section 4 that if JE(h{J)) is w*-dense in AT then
J = JANJ?, where J? is the intersection of the kernels of the elements ¢ of
Jt such that 3, .o |B(n}|? < co. In this situation, we always have J® = J2,
the notations being as above.

This result has an interpretation in terms of synthesis of hyperdistribu-
tions (see Remark 4.15). Elements of B} (resp. Bf) can be interpreted as
hyperdistributions on I” such that

sup|P(n)| <oo and
n<0

log* |@
< 00 (resp.w—vﬂ).

log™ | &
Jim sup 128 |@(n)|

n—oo N
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These hyperdistributions can be considered as analytic functions on Cye \ I
vanishing at infinity, where we denote by Coo the Riemann sphere. Denote
by Ji(y) the w*-closure, with respect to the w*-topology associated with
B, of the linear span of translates of ¢. The results of Section 4 show in
particular that if ¢ € B} satisfies @(n) — 0 as n — —o0, and if JI. (supp )
is w*-dense in AT then ¢ belongs to the w*-closure of the set

{4 €gie)| 2 )P < oo}.

n<d

In other words, the above geometric condition on supp ¢ allows one to “syn-
thetize o by £2”. These results hold in particular if ¢ is supported by the
perfect symmetric set E) /, of constant ratio 1 /p(peN, p>3).

Such results are never true if we consider a Carleson set of multiplicity
instead of Fyj, (for example By = {exp(2im 301 6n("(1 — () @ &n =
0 or 1}, ¢ € (0,1/2), when 1/¢ is not a Pisot number). There are also
Kronecker sets for which these results do not hold (see Remark 4.15).

We discuss in Section 5 the link between elements 1 of B} such that
S on<o |%(n}|? < co and inner functions. The condition Y on<o |q,/b\('n)|2 < oo

is equivalent to the fact that the function ¢~ : z — (1/2)%(1/Z) belongs
to H2(D). If suppy is a Carleson set, and if %™ = 1|p belongs to the
Nevanlinna class, then there exists a singular inner function S such that
Ti(p) = T:(5*), where S* is the element of B} defined by § (see Section 3).
But the fact that ¢t belongs to the Nevanlinna class, which is equivalent
to the fact that 4~ is a noncyclic vector for the adjoint of the shift operator
on H%(D) by the Douglas—Shapiro—Shields theorem [6], is also equivalent
to the fact that the restriction of 1) to AT is orthogonal to some nonzero
ideal of At if we assume that suppt is a Carleson set (Theorem 5.4}. So
the condition that ¢4™ belong to the Nevanlinna class seems to be a rather
strong condition, and we show in Theorem 5.6 that if £ C I is any closed,
infinite (resp. uncountable) set then there exists ¢ € B} (resp. Bf) such
that suppe C E, ¥~ € H*(D) and such that ¢ does not belong to the
Nevanlinna. class (when ¢ € B} and when supp ) is a finite set, 4% belongs
to the Nevanlinna class by a result of Atzmon [2]).

This leads to a question that seerms interesting: given ¢ € B} such that
1~ € H%(D) and such that supp is, say, a Carleson set, can we “syn-
thetize v by inner functions”, i.e. is it true that ¥ belongs to the w*-closure
of the linear span of the set of elements of Z;(¢) which are defined by
inner functions? We have only been able to answer this question for cle-
ments of B which are supported by a closed countable set (the problem
is trivial for elements 1 of Bf with countable support because in this case

lmsup,_, .. [#(n)] > 0 if 1 # 0).
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It would be interesting to consider similar questions for hyperdistribu-
tions 1), supported by a single point, satisfying ¢~ € H?(D) in the case
where the sequence (¥(n))n»o satisfies growth conditions weaker than the
condition limsup,,_, . (log® | (n)]) /v < co.

2. General description of closed ideals of By and Bj. A weight on
Z is & map w : Z — [1,00) such that w(n +m) < wln)w(m) (n,m € Z). We
will say that a weight w is reguler if

(2.1) Z logw(n) <o

1+n?

nE?

In this case, set A, () = {f € C(I) | |fllw = Tnez | f(n)|wln) < oo}
Then A,{I'} is a regular algebra in the usual sense [19, Chapter 8] and
the characters of A, (I") have the form x, : f — f(2), where z € I". For
[ € C(I'), denote by supp f the closed support of f, and for M € C(I") set
(M) ={z€eI'| flz) =0(f € M)}. If E C I is closed, set I,(E) =
{f € Au(I') | fig = 0}, and denote by J.,(F) the closure in A,(I") of the
set {f € Au(I") | supp f N E = 0}. Since A,(I") is regular, we have the
following standard properties:

22) MLL(B)) = h(Ju(B)) = ,
(2.3) if Iis a closed ideal of A, (I"), then J,,(A(I)) C I C L,(h(I)).

We will say that E satisfies w-synthesis, or that F is a set of w-synthesis,
when I,(E} = J,(E). Now consider the constant weight wp = 1. We write
A(I) {resp. I(F), resp. J(E), resp. || - ||1) instead of Au,(I") (resp. L, (E),
resp. Ju,(E), resp. ||« |lwy)- A set of synthesis is by definition a set of wp-
synbhesis {see for example [16, p. 59]).

An Aifzmon weight on Z is a weight which satisfies the conditions

log w(~n)
\/7_’1: 'n,H—To}o 0.

We denote by .4 the set of all Atzmon weights. Also for p > 1 we denote by
wp the weight defined by the conditions

(2.4) wn)=1 (n=>0),

(2.5) wp(n) =1 (n20), wpln)=erY (n<0).
As in the introduction, we set
(2'6) By == ﬂ AL,
weEA
(2.7) By =} Au, (D).

p>1
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We equip Bp (resp. Bi) with the topology defined by the family
(| l)wea (resp. (|| llw, tpz1) so that By is a locally multiplicatively convex
complete algebra (resp. a Fréchet algebra).

If I is a closed ideal of By (resp. By) and if w € A (resp. p > 1) let I¥
(resp. I#) be the closure of I in A,(I"} (resp. A, (I')). It was observed
in [29] that J* is a closed ideal of A, (I") (w € A) and that

(2.8) I= ﬂ I“  for every closed ideal I of By.
wEA

By using the same easy arguments, we see that I“» is a closed ideal of
A, (T} (p> 1) and that

(2.9) I= ﬂ I»  for every closed ideal I of By.

p2l
Let B < I" be a closed set. For i = 0,1 set L;{(E) = {f € B; | flg = 0} and
denote by J;(E) the closure in B; of the set {f € B; | supp f N E = 0}.

Now set 7(n) =1 (n > 0) and 7(n) = elnl? (n < 0).

For every closed set B C I', we have J.(E) C J1(E) ¢ Jo(E), and so
h(Jo(E)) = h(J1(E)) = E. Since h{I*) = h(I) for every closed ideal I of
By, and since Jo(E) C J,(E), we have J§(F) = J,(E) (w € A) and so
(2.10) Jo(B) = (] Ju(BE)

weA
Jo,(E} (p>1) and

(2.11) J(E) =

for every closed set B C I'.

Similarly J;*(F) =

ﬂ Ju,(E)  for every closed set B C I
pzl

Tt follows from the above properties that
(2.12) Ji(R(D)) c I C L;i(h(I)) for every closed ideal I of B; (i =0 or 1).

We will say that E is a set of B;-synthesis when J;(E) = L(E). It was
shown in [29], using results of [27], that every closed countable subset of
I is a set of By-synthesis. Also, since closed arcs with nonempty interior
are sets of synthesis in A, (") for every regular weight w [30], it follows
from (2.10) and (2.11) that they are also sets of B;~synthesis (¢ = 0 or 1).
Now set I*(E) = {f € AY | fig = 0}. We will say that F is a ZA*-
set if IT(E) # {0}. Clearly, a ZA%*-set has Lebesgue measure zero, but it
follows from an old result of Carleson 4] that some closed sets F of Lebesgue
measure zero are not % A"-sets. As we shall see in the next section, it follows
from results and methods of Zarrabi [27] that a nonempty Z A" -set is never
a set of Bi-synthesis, and that an uncountable ZAT-set is never a set of
By-synthesis.
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We now describe the dual spaces of By and Bj. Recall that a hyper-
distribution on I' is an analytic function ¢ on C\ I' such that ¢(z) — 0
as |z| — oo. Denote by HD(I') the set of all hyperdistributions on I'. For
@ € HD(I') we define the Fourier coefficients H(n) (n € Z) of ¢ by the
formulae

(2.13) o) = i )t (ze D),
(2.14) plz) = Z Fm)z""t  (zeC\ D).
n<l

If w is a regular weight, set
|B(—n)| }
HD,.(I) = e HD(! r =su < 00 ;.
(I {50 ( ) ‘ llell REE w(n)
Similarly set

HDo(I') = {tp e HD(J)

log™ |@
sup )| < oo, E L o}
TLSO n— o

VT
and
_ N : log™ [@(n)|
HD1(IM) = q ¢ € HD(I") | sup |F(n)] < oo, limsup ———=—= < o0 ¢.
n<0 n—oo vn

We can identify the dual of A,(I") with HD,, (I'} by using the formula

(2.15) (fr0) = F(n)@(—n),
neZ

and it is well known (see for example [8]) that
(2.16) (i) = lim o S () — (¢/mNF(C) d¢

For f € Au(I") and ¢ € HD,(I), deﬁne f-p by the formula

(2.17) (9, fod={fg.0) (g€ A(D)).
Then routine computations show that

(2.18) Fom) = f(m)dn-m) (nen)
meL

It follows immediately from the definition of the topology of By that we
can identify the dual of By with |J,¢ 4 HDw(I"), by using (2.15). It follows
from an elementary technical result of Zarrabi [27] that for every sequence
(An)ns1 such that (log™ |An|)/+/n — 0 there exists a submult1p11cat1ve map
7 : N — [1, 00) such that (log7{n))/+/n — 0 and [A;]| = O(7(n}) as n - oo
Hence we have the following result (which follows directly from the definition
of the topology of By fori=1). '
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PROPOSITION 2.19. Formula (2.15) implements an isomarphism between
HD;(I and the dual of B;, and (2.16)~(2.18) hold for f € B; and p €
HD,(IM) (i =0 or1).

We pow introduce two important subsets of HD(I").

DerFINrTION 2.20. HD*(I) = {p € HD(I) | ¥, ¢ [#(n)[* < oo} and
HDY(I) = {p € HD(I) | $(n) — 0 as n — —oo}. Similarly HD(I') =
HDY(I") N HD,,(I), ete.

Denote by « : z — z the identity map on I'. Clearly, af.¢ € HD (I
(p € Z) if w is a regular weight and ¢ € HD® (I). Hence if w(n) = 1
(n > 0), then f.p € HDS(I) for p € HDL(I) and f € A,(I). Since
HDS(I) = |, o DS (I") and HDY(I) = [,y HDY, (I'), we obtain

(2:21) fo € HDJ(I) (f € By, v € HDY(T)).

Now for ¢ € HD(I"), denote by supp ¢ the smallest closed subset £ of
I' such that @ has an analytic extension to C\ E, and set HD(F) = {¢ €
HD(T") | suppyw ¢ E}, HD(E) = HD,(I'y N HD(E), etc. It follows from
(2.16) and Gelfand theory (see for example [5]) that for every regular weight
w and every closed set E C I' we have

(2.22) HD,(E) = [J.(E)".
We now extend this result to the algebras B;.

PROPOSITION 2.23. For every closed set E C I', HDy(E) = [Ji(E)*
(t=0orl).

Proof. For i = 0 let ¢ € [Jo(E)]*, and let w € A be such that ¢ €
HD,(I"). Then ¢ L J§(E) = J,(E), and so suppy C E and ¢ € HDy(E).
Conversely, let ¢ € HDo{E) and let w € A be such that v € HD,(I"). Then
w L Ju(E) D Jo(E). A similar argument works for ¢ = 1.

If I is a closed ideal in the locally multiplicatively convex complete alge-
bra By, let 7 : By — Bg/I be the canonical surjection. Then the quotient
algebra By/I is a locally multiplicatively convex complete algebra with re-
spect to the family (|| - ||.)we.a, where

e = b if + gl (f € Bo, we A).

Similarly if I is a closed ideal of By then By/I is a Fréchet algebra with
respect to the family (|| - [lu, )pz1, Where |[77(f)lw, = infeer || f + gllw, (f €
By, p 2 1). According to the previous notations, we will set in both cases
(1 = infger [ f + gl

The following elementary lemma extends to the algebras B; a property

pointed out in [8, Lemma 2-6} for the algebras A, (I"), when w(n) = 1
{n>0).
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LeEMMA 2.24. Let I be o closed ideal of B; (i = 0 or 1) and denote by
I# the set of elements of B; which belong to the closure of I in A(I"). Then
TA = {f € B | mi(fo?) 0 as p— oo}.

Proof. We observe as in (8] that if w(n) = 1 (n > 0) and if f €
Ay (), then limy_o || foPlly = [f]l1. Now let I be a closed ideal of By.
If m7(faf) — 0 as p — oo then in particular ||m7(fo®)|ly — 0 as p — oo.
Since [[rr(fa™)i1 = ||7r{f)|l1 for every n € Z we obtain ||7;(f)|| = 0, and
f € I“. Conversely, if f € I let w € A and g € I. We have

lim sup {{7;(fof)||. < limsupl|fo? — go®|.
P50 P00
< limsup|[fof — go®1 = |If — gll1-
p—o0

Hence limsup,, ., {[m:(fof)|le < {7(f)]lh = 0 and so m(fa?) — 0 as

p —+ 00. A similar argument holds for the algebra B;.
DEFINITION 2.25. Let I be a closed ideal of B; (i = 0 or 1). For j =0
or 2, set (I1); = {p e HDI(I" | I ¢ Kery} and I¥ = Nee(rsy,; Kerp.
THEOREM 2.26. For every closed ideal of By (i = 0 or 1) we hove
. Pcrcrni®
Proof. Let v € I'* and let & be the linear functional on B;/I defined
by the formula

(2:27) (7:(f), @) = (fp (fEBi)

Let g € I* and h € I°. We have 3.5(—n) = (a", g.¢} = (x1(a™g),$) and so
it follows from Lemma 2.24 that g.@ € (I*-)°. Hence (g.h, ¢} = (h,g.¢) =0,
and g.h € I. The other inclusion is obvious.

i3

As a Banach space, AT is isomorphic to £*. So we can identify AT with
the dual of en(Z~) by using the formula

oo
(u, £y =Y fm)un  for u = (um)mso € co(Z7).
nz=0)
This duality induces a w*-topology on A™, and every ¢ € HD3(I") is w*-
continuous when restricted to A¥.

COROLLARY 2.27. Let B C I' be o closed set. Let J*(E) = J(E)N AT,
If J(E) is w*-dense in AT, then I = IAN IO for every closed ideal I of B;
such that h{(I) C E (i=0or1). _

Proof. Let f € T4 n I° Since h{(I) C E, the closure of I in A(I")
contains J(E), and so J*(E) C I4.

Let @ € I, and let g € J7(E). It follows from the theorem that fg € I,
and so f - L JT(F). But since f € I and ¢ € I*, we see as above that
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F ¢ € HDY(D). Hence f-@(—n) = 0 (n > 0), since J*(E) is w*-dense
in A*, and so f - vanishes on C\ D. Since J(E) C I, it follows from
Proposition 2.23 that suppf-¢ C E, and so f - = 0. In particular,
{f,o)={1,F ) =0for every o € I+, and so f € I.

There are many examples of closed sets E such that J*(E) is w*-dense
in At (of course, such sets must be ZAT-sets and sets of uniqueness). For
example, every “strong AAT-set” (i.e. every closed set B C I' such that
JT(E) + AT = A(I')) enjoys this property. So Corollary 2.27 is valid for
Dirichlet sets, for Helson sets of synthesis, for the sets

By = {exp (21’7( ignp]"n(]_ - 1/p)) ten=0o0r 1}
n==l

when p € N, p > 3, and for closed countable sets,

It is known that HDJ(E) = {0} when E is countable [27] (more precisely,
the support of every element of HDJ(I') is a perfect set, see [9]). Thus,
(J¥(E))? = By when E is countable. Since closed countable sets are sets of
synthesis, we also have in this case (J5 (E))4 = I(E) N By = Iy(E), and we
obtain, by a slightly different method, a result of Zerowuali:

COROLLARY 2.28 [29]. Every closed countable subset of I' 43 a set of
By-synthesis.

3. Singular inner functions, and closed ideals of B; that AT
cannot see. We now describe elements of HD?(I") ¢ HD?(I') associated
with singular inner functions. Recall that a singuler inner function is a
function

1 757 et + 2

S:z—>exp(———2; -E—R_:-—;
—-T

) (z<D)

where p is a positive measure on I which is singular, i.e. concentrated on a
set of Lebesgue measure zero (the notation du(t) has the same meaning as
in [24, Chapter 11)).

We can consider S as a function on €\ I', by using the same formula
for |2| > 1, and we will say that § is nonatomic when p is nonatomic (i.e.
t({z0}) = O for every zp € I'). We denate by Sy {resp. So) the set of all
singular (resp. nonatomic singular) inner functions.

Notice that S is analytic at infinity. In other words, if we set

S(e0) = exp [l = oxp [ S o)
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then 5 is analytic on C, \ I', where we denote by Cw the Riemann sphere.
Now, using a notation slightly different from the notations in [27], [28], set

1 1
3.1 S* ()= —— o+ —
Clearly, S* € HD(TI'), and if the singular measure p which defines § is
concentrated on a closed set F C I', then §* € HD(E). Set (2) = §%(1/z)

for 2] < L. Then (z) = 72,,4, 5 (n)2 ™. Also %(z) = S(0) — 5(2), by an
easy calculation, and so ¢y € H*(D) C H*(D). In particular, 2 om0 |5 (n)f?
< oo, and §* € HD*(I).

We have limsup,i ;- (1 — |2|)log" [§*(2)| < co by an immediate cal-
culation on the Poisson kernel. More precise standard estimates (see for
example [1, Lemma 5]) show that (1 —|z|)log |S*(2}| — O as |2| — 1~ if
is nonatomic.

Conversely, assume that p({zp}) > 0 for some 2y € I', and set s =

2mwp({20}). Denote by &, the Dirac measure at zg. Let S; be the singular

inner function defined by the positive, singular measure u - s8,,. Then
S(z) = S1(z)estzota)/(20=2) g5 that

(ze C\I).

1
S() - 5| 2 1TV (ze D),

(0
It follows immediately that limsup .- (1 — |2[} log™ [$*(2)| > 0.

Hence (1—|z|)log™ |S*(2)| — D as |2| — 17 if and only if S is nonatomic.
By using Cauchy’s inequalities in a standard way (see for example {1]) we
obtain the following result, implicitly contained in [1], [27].

PROPOSITION 3. 1 Fori=0,1set 5} = {8*}ses,. Then S; C HD2(I)
and 8§ NHDy(I') =

Let 5§ € &;, and let S* be the radial limit of S, defined almest everywhere
by the formula

(3.3) S.(e®) = lim S(re').

21—

We have S(1/z) = 1/5(2) for z # 0, |2| # 1 and so, since {{ = Lfor { € I,
we obtain by (2.16), for f € Bi,

(,5%) = 3 #0 (sm o c)) .

It follows from the dominated convergence theorem that

{10500y d — § (OB ¢
r

r
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We obtain, for S€ 8; and f € B;,i=00r1,

B9 (5= | HOB - lim i“ssf((fc)) *.
T I

2 r—1- 24

Now if f € AT, then the last integral is zero for » < 1, by Cauchy’s theorem,
and we have

(385) (LS =5 | FOSDK  (FeAr, Ses),
I

We obtain the following result (established in [27] in a slightly less general
situation):

PROPOSITION 3.6. Let § € S1, and let f € AT, Then £.6% = 0 if and
only if f € S.H®(D).

Proof. A standard characterization of the boundary values of ele-
ments of H*°(D) [24, p. 235] shows that f € S.H®(D) if and only i
{7 f(e®)S.(e®)el™ 1) dt = 0 for every n > 0, which is equivalent to the
condition f.S*(n) =0 (n < 0). So if £.5* = 0 then f € S.H>(D).

Conversely, assume that f € S H*®(D). If f = 0, then f.5* = 0. If
F# 0, let p be the positive singular measure on I" which defines S. Since
f/S is bounded on D, it follows from [15, p. 69] that if f(ee) # 0 then
pJtg — s, tg + s[) = 0 for some s 5 0. Hence p is concentrated on F = {z €
I'| f(z) = 0}. Since f.5%(n) = 0 for n < 0, £.5* vanishes on C \ D. But
supp f.8% C suppS* C F, and so f.5% = 0, which concludes the proof of
the proposition.

Notice that it follows from the above argument that if f € AT and
'S € 8y, then f.5% = 0 if and only if {&™.5, f) =0 (m > 0).

COROLLARY 3.7. Let § € & (i = 0 or 1) and set K*(S) = {f € S |
[.8%" =0} and K<(S) =, K™(S). Then K*(S)N AT = 0 for every
Ses;. -

Proof We have K°(S)NAT = (M,5, 5™ H=(D)) N A+ and it is well
known that (1,5, S™.H*®(D) = {0} ([27, Prop. 2.2}, but there should be
much earlier references).

The following result is essentially contained in [27] in the case where
=0,

COROLLARY 3.8. (i) For every closed nonempty set E C I', Ji(E) N AT
— fo}.
(ii) For every closed uncounteble set B C I', Jo(E) N A™ = {0}.
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Proof Let 2y € B, and set §(2) = el*0+2)/(20~2) Then (§*)" € HD; (E)
(n > 1) and so J1(E) C K°°(S), by Proposition 2.23. If & is uncountable,
then E contains a perfect closed set F, and it is well known that there exists
a singular nonatomic positive measure y1 concentrated on F. Let S be the
singular inner function defined by u. Then S™ € Sy, and so (§*)™ € HDg(E)
{n 2 1). It follows then again from Proposition 2.23 that Jy(E) C K°*(S).

Zarrabi’s paper [27] actually contains information more precise than
Corollary 3.8(ii): if S is the singular inner function associated with u as
above, Zarrabi shows that there exists an Atzmon weight w such that (S*)" &
HD,(I) (n > 1), and so J,,(E) N At = {0}.

Of course, as pointed out in [29], it follows from Corollary 3.8(ii) that
if Eis a ZAt-set (which means that [T(E) # {0}) and if F is uncount-
able, then E is not a set of By-synthesis (see [27]). Similarly it follows from
Corallary 3.8(i) that no ZA™-set is a set of B;-synthesis. In the other di-
rection, closed arcs not reduced to a single point are sets of w-synthesis for
every regular weight w [30] and so, by (2.10) and (2.11), they are sets of
Bi-synthesis (¢ =0 or 1).

4. HD(I") and HD(I'). We showed in Section 2 that if J*(E) is w*-
dense in A+, then I = I* N I for every closed ideal T of B; such that
h(I} C E. We now wish to prove that, for a significant class of closed sets
E, we have in fact T = 4N 12

We state as a lemma standard estimates due to Domar and Taylor—

Williams, which play a basic role in the theory of ideals of algebras of ana-
lytic functions on D.

Levmuma 4.1, Let B C I be a closed set, and let ¢ € HD,(E). Then there
exists M > 0 such that

(1) log™ |o(2)| < M dist(z, BE)~! (2 € D),
(2) lp(2)| < M dist(2,B)™* (1< |2] <2, z ¢ B).

Proof. Since log’ |(n)| = O(v/n) as n — oo, a standard computa-
tion shows that log™ |¢(z)] = O(1/(1 - |2])) as |z| — 17. Clearly, we have
SUp|,y51 (2] = Llp(2)] < 0o and the result follows then directly from [25,
Lemmas 5.8 and 5.9].

DEFINITION 4.2. A Caorleson set is a closed set F € I' such that

s

S 1o ....___.2_
& dst(e®, B)

dt < 00.
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Recall that the usual Nevanlinna class N consists of those functions f
holomorphic on D which satisfy the condition

Sup _75; log™ | f(re')| dt < oo.
If f € N, the radial limit f. is defined almost everywhere by the formula
(4.3 fle) = lim f(re)

Also, if § £ 0, then log|f.| € L*(I"), and there exists a unique ¢ € I', a

unique Blaschke product B and a unique real singular measure uy such that
the following decomposition holds:

™ it
(4.4) f(2) = c¢B(z) exp [— 2_1% S ’:}gf-l_——z dﬂf(t)]
T 6 + 2

1 it
X exp [E_S T, 10 fele )]dt] (z € D).
Recall that if 4 is a real measure on I', the Jordan decomposition of g
gives a unique pair (T, ™) of mutually singular positive measures on I’
such that p = ut — p~.

DEFINITION 4.5. Let f € A with f 5 0. The denominator of f, denoted
by S(f), is the singular inner function associated with by -

It follows from the definition of S{f) that for f € A with f % 0 we have

(16)  log|f(a)] +log|S(A)(R)] < 5= | P0 —t)log|fu(c™)] ds

-
for z=re® € D,r €[0,1), 8 € R (we denote by P.(t) = 5:5—7;1—}%!—73 the
usual Poisson kernel).

Let A®(D) = {f € H®(D) | f'» € H®(D) (n > 1)}. A standard ap-
plication of Cauchy’s inequalities shows that elements of A% (D) are char-
acterized in H({D) by the condition n?|f(™ (0 ) [t} - 0 as n — oo for every
p > 1; in particular, A°(D) = {f € AT | nP|f(n)| = 0asn — oo (p > 1)}.
Also, by identifying elements of A% (D) with their restrictions to I', we can
interpret A%(D) to be the algebra {f € C®°(I") | f{n) =0 (n < 0)}.

If f is analytic on D, continuous on D, and satisfies a Lipschitz condition,
then Z(f) NI is a Carleson set, where Z(f) = D | f(z) = 0} [4].
Conversely, an improvement of a construction of [4] shows that if £ is a
Carleson set there exists an outer function f € 4°°(D) such that B = Z(f),
and B C Z(§™) for every n > 1 (see [25]).
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Now for ¢ € HD(I"), we define ¢+ and ¢~ on D by the formulae

(4.7) ot = ¢lp,
(4.8) o (2) = gw(;) (0 < le] < 1).

Of course, since ¢(z) — 0 as [z] — oo, ¢~ has a removable singularity at
the origin, and we can consider ¢~ as an analytic function on D.

LEMMA 4.9. Let E C I be a Carleson set, and let f € A®(D) be such
that £ C Z(f)N Z(f"). Then fyu~ € H°°(D) for every w € HDy(E). In
particular, ¢~ € N and S(p~) = 1 for every nonzero ¢ € HD1(E).

Proof A routine computation shows that for v € [0,1) and t € R we

have

|1 — &2 4

[r— e = (14 r)2
Hence for zp,21 € I and = € [0,1) we have |zg — 21| < 2|rzg — 21| and
dist(re, E) > 1 dist(e, E). Tt follows then from Lemma 4.1 that there
exists M >0 such that |~ (z)| < M dist(z, E)™? (2 € D).

Now if f € A°(D) satisfies the conditions of the lemma, it follows eas-
ily from Taylor’s formula that |f(2)] < ||f® |l dist(z, E)2. Hence f.o~ &
H® (D). Since there exists an outer function f which satisfies the above
condition, ¢~ = (f.p7)/f € N, and S(p~) = 1.

Some versions of Lemma 4.9 exist in classical papers about ideals of
algebras of analytic functions in the disk. The following lemma, which we
prove in a very simple way, is also related to classical tools [12], [21], [22],
[25].

LeEMMA 4.10. Let f € A and let p € HD(I'). If 3222, n|f(n)] < oo,
and if imsup,_,_ |8(n)] < oo, then (f.o)T — fot € AT. If, further,
f € A=(D), then (F.¢)" — f € A(D).

Proof. Let a, be the nth Taylor coefficient of (f.)* —
origin. For n > 0 we have

Ffut at the

an = Fp(n+1) - Zf(p (n—p+1)
p=0
=Y fp)dn—p+1) =Y fp)gn —p+1)
P p=0

fo)p(n—p+1).

s 2

p=n-+1
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Hence
Sl <3 ( 3 1F0I B -+ 1))
n= n=0 p=nl
oo p—1
=S (X Ifw)l- et - p+ 1))

1A
e
=

Ry

®)) sup [B(n)| < co.

Assume that f ¢ A*(D) and let £ > 1. There exists m > 0 such

that |f{p)] < m/(p+ 1)**! (p > 0) and there exists M > 0 such that
Yogenet /(o + 1)F < M/(n+ 1)*. We obtain

(7 + 1)*|an| < mM sup |B(n)],

and so (f.p)* — f.ot € A%(D).

Lemma 411, Let E be a Carleson set, and let ¢ € HDy(E). If f €
A(DY, and if E C Z(f)N Z(f), then (f.9)~ € H*®(D). In particular,
f-p € HDI(B). If, further, E C\,5q Z(f™), then (f.p)~ € A%(D).

Proof. It follows from Lemma 4.10 that (f.@)* — f.pt € AT. Since
supp ¢ Usupp fi C E, the functions (f.0)~, f.¢™, (f)" and f.ot extend
continuously to D\ E. But f.~ is bounded on D (Lemma 4.9) so f.po™
and (f.@)" are bounded on I'\ E. Hence (f.¢)~ is bounded on I"\ B. But
(f0)” € N, and S[(f.)"] = L. It follows then from (4.6) that (f.0)~ &
H™(D). o

Now assume that B C ,5, Z(f™). It follows from Lemma 4.10 that
(f-0)" — Fo™ € A°(D). But f(Q)pi (¢) = f({)e(¢) = O(dist(¢, E)*) on
I'\ E for every k > 0 and so f.pf € C*=(I).

So (f)d € C2(T) and (f.p); & C®(I). Since (f.¢)~ € H>®(D), this
shows that (f.@)™ € A% (D).

DEFINITION 4.12. Let E be a Carleson set. We set JEL(E) = {f €
A=(D) | E C Z(§™) for all n > 0}.

THEOREM 4.13. Let E be o Carleson set such that JE(E) s w*-dense
in AT, and let I be a closed ideal of B; (3 = 0 or 1) such that h(I) C E.
Then I* =I°, and I = T4 N I2.

Proof. Let f & I?, and let ¢ € (I'*)y = I+ NHDY(I). Then o L Ji(E),
and $o suppy C H. So if g € JL(E), then g.o € HDZ(I"), and 50 g.p €
{I1)3. So if we set H = {gEA‘*"] {g.f, ) =0} we have JE(E) C H.

Since ¢ € HD(I'), f.p € HD?(I"), and so the restriction of Foto At
is w*-continuous. So H = {g € A+ | {9, ) = 0} is w*-closed in A*.
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Hence H = A%, and (f,0) = (1, f.0) = 0. So I2 < I°, and the other
inclusion is obvious. The other assertion follows then from Corollary. 2.27.

COROLLARY 4.14. Letp > 3 be an integer. Then I? = I8 and I =T14N12

for every closed ideal of B; (i = 0 or 1) such that h(I) C B . In particular,
I=Ii(Eyp) N 12 if B(I) = Ey .

Proof It was shown in [12] that JZ (E1 /p) is indeed w*-dense in AT.
If h(I) = Eysp, then I* = I(Ey;,) N By = Li(Eyy), since Eyp satisfies
synthesis, by a well known theorem of Herz [16, p. 60].

Remark 4.15. 1) Theorem 4.13 and Corollary 4.14 hold, with the same
proof, for closed ideals in the Beurling algebra A, (I'), where w is a weight
such that w(n) = 1 {n > 0) and limsup,, . {logw(n))/+/7 < occ.

2) We can interpret Theorem 4.13 in terms of spectral synthesis in
HD;(I"). We briefly recall the classical notion of synthesis of pseudomeasures.
Define PM(I") = {¢ ¢ HD(I") | |l¢llem = sup,cz|3(n)| < oo}. A charac-
ter is a pseudomeasure . with Fourier transform of the form {z "},ez,
where z € I', so that, according to formula (2.15), we have (f,p.) = f(2)
(f € A(I")). Denote by C the set of all characters. Also for M C PM(I")
denote by 7 (M) the w*-closure (according to the duality between A(I") and
PM(I")) of the linear span of the set {@™p}nez e For ¢ € PM(T) set
T(p) = T({e}), and I, = T(p)~ = {f € AT) | {f,%) =0 (¢ € T(¥))}.
Cleacly, o = {f & AL} | (f,070) =0 (n € B} = {5 € A(T) | Fplm) =

0(ne Z)} = {f € A(I')| f.o = 0}. Since T () is w*-closed, 7 (p) = [L,]*.

Let E = suppy. Then E = supp(a™y) (n € Z) and so J(E) C I, and
E = h{J(E)) D h(L,). Conversely, since J(h(I,)) C I, ¢ € J(R(I,))* =
PM(h(I,)), and so E h{I,).

Hence CNT(p)=CN {Irp]l = {¥z}zesupp v ‘

By definition (see for example [13], p. 69]) the pseudomeasure ¢ sat-
isfies synthesis if ¢ belongs to the w*-closure of the linear span of C N
T (), which is equivalent to the condition (f, ) = 0 for every f € [CN
T ()]t = I(suppi). In particular, if supp is a set of synthesis, then
w & [J(supp )]t = [I(supp )], and ¢ satisfies synthesis. We can extend
these notions to HD;(I") (¢ = 0 or 1). Since HD;(I") can be identified with
the dual of B;, the linear forms ¢ — {f, @) (f € B;) define the w*-topology
on HD;(I"). Denocte by T;(p) the w*-closure of the linear span of (a"¢)ner
and set I, = {f € B; | {f,¥) = 0 (¥ € Ti(p)}. We see as above that
L, ={f € Bi | fp =0}, that T;(p) = [Li,p]" and that h(l;,) = suppe.
Notice (this is also true for pseudomeasures) that Z;{p) is for every & > 0 the
w*-closure of the linear span of either of the/s_?ts (0"@)n>k and (@ ") n>k,
provided that supp G I': in this case if f.p(n) = 0 for n > k, then f.p
agrees with a polynomial on D, hence on C\ supp g, so'that f.¢ =0, since



130 J. Esterle

f-w vanishes at infinity, and if ﬁ(n) = 0 for n < —k, thenf.¢ agrees with
a rational function, with only possible pole at the origin, on C\ D, hence
on C\ supp ¢, which also implies that f € [;,.

We can then state Theorem 4.13 in the following way: if € HD?(I), if
supp ¢ is a Carleson set and if JJ, (supp ¢) is w*-dense in AT, then ¢ belongs
to the w*-closure of HD? (I") N 7T {¢) (this set is clearly a linear space stable
by multiplication by a®, n & Z). In other words, elements ¢ of HDY(I)
such that JI (supp ¢) is w*-dense in A" can be “synthetized” by elements
of HDZ(I'). Similar results hold also for elements of HDY (I'} if w is a weight
such that w(n) =1 (n > 0) and Umsup,,_(logw(—n))/v/n < cc (in fact
if @ € HD2 (1), and if J(suppe) is w*-dense in AT, then the elements
of T.,() N HDZ2 (I used to “synthetize” o belong to the norm-closure of
(@"¢)nzo in HD(I)).

3) Theorem 4.13 and Remark 4.15(2) do not extend to general closed
ideals I of B; (resp. to general elements ¢ &€ HDY(I")) for which E = h(I)
{resp. E = suppp) is a Carleson set, even in the case where J*(E) is w*-
dense in A First notice that if f € A™ is outer, and if f.¢ = 0 for some y €
HD2(IM), then ¢ = 0. To see this, set f = (f(n))nzo and § = (B(—n)In>0,
so that f and @ belong to £2, and denote by T' the standard shift operator
on £2, Since f.¢ = 0, we have 3 L T™(f) (n > 0). By Beurling’s theorem
[24, Chapter 17}, f is cyclic for T, sincé f is outer, and so @ = 0. Since
Fio =0, we have suppyp C Z(f) C I', and so ¢ = 0.

Now consider a set of multiplicity which is also a Carleson set (for exam-
ple E = E; when 1/( is not a Pisot number), and set [ = J(E) N B;. Then
J3(E) C I, and so I contains outer functions, (I+)s = 0 and I? = B;. But
there exists ¢ € HD(E) such that $(n) — 0 as |n| — oo and so (I*+)° # {0}
and I° C B;. We also see in this case that T;(p) N HDZ(I") = {0}, We
can also obtain a similar example where J*(E) is w*-dense in A+, The
author’s counterexample to the Bennett~Gilbert conjecture gives a nonzero
distribution ¢ supported by a Kronecker set E C E; such that $(n) — 0
as n — —oo, Then JE(E) C I, and we see as above that (I;,)% = Bi,
(1ip)° © Bj, and Ti(p) NHD(I) = {0}. Similar remarks are valid for the
algebras A,,(I") and the spaces HD? (I") for all weights w such that win)=1
(n > 0} and limsup,, _, .. (logw(—n))/v/7 < .

5. Closed ideals of By and B;, and inner functions. We saw in
the previous section that when JZ () is w*-dense in A*, then every closed
ideal I of B; such that h{I) ¢ FE has the form I = I4 N I2, where 2
is the closure of I with respect to the weak topology o(B;, HD?(I')). For
closed ideals J of AT such that A{(J) C E, a more precise result holds:
in this case J = J4 N §;.H*°(D), where J* is the closed ideal of A(I)
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generated by J, and where §; is the G.C.D. of the inner factors of all
nonzero elements of J. Since (S;. H®(D)) N AT = {f € At | f.5% = 0},
the notations being as in Section 3, it is natural to consider whether 12 =
Nseky(r) Ker S*, where ki(I) = {S € S; | I ¢ Ker§*} for T as above. In
other words, it is natural, given ¢ € HD?(I"), to consider whether ¢ belongs
to the w*-closure of the linear span of S} N 7;(ip), the notations being as in
Section 4. We have only been able to give a positive answer to this question
for elements of HD?(I') whose bull is countable (Corollary 5.18). We first
discuss elements of HD;(I') such that T;(p) = T;(5*) for some S € &;. This
implies that supp ¢ = h(I,) = h(Is+) = supp 8*, and supp S* is well known
to be the closed support (i.e. the support as a distribution) of the singular
positive measure u which defines S. So if supp is a Carleson set and if
f € J& (supp ¢), this implies that (f.5).¢ = 0 (the function f.5 belongs in
this case to A% (D) C AT, see [25]).

The following lemma uses the well known characterization in terms of
analytic quasiextensions of elements of the Hardy space H? which are not
cyclic for the adjoint T™ of the shift operator 7.

LeMMA 5.1. Let @ € HD1{I"), and assume that f.po = 0 for some nonzero
feAt. Then

limsup(1 = |2[)| (2)] - ™ (2)] < oo.

|2]—1-
If, further, v € BD3(I), or if supp ¢ is a Carleson set, then p € .

Proof. Denote by a, the nth Taylor coefficient of f.uT at the origin.
‘We have

Since f.p =0, we have

and so
an== Y fp)@n+1-p).
p=n-1

For z € D, we obtain

F@ et @I <Y > 1FEl e+ 1-p)- 2"
=0p«—~jr‘1.+1

T
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oo p—1

=33 1F @) [Bln+ 1 —p)| - 2]

p=1n=0
2]

< 7l < su m)| - || Flli———>
—;;%'W(m”;'f(f’)'1_|z| ms%lso( - 1£lhg F

which proves the first assertion.

Now assume that ¢ € HD?(I'), and set § = (go( n)}n>o and F=
( f(n))n>g Then f and @ belong to £2, and 1f we denote by T" the usual
unilateral shift we have

(F.T" (3 i (~n—p)=Fp(-p) =0 (p21).

Hence ¢ is not a cyclic vector for T*, and it follows from the Douglas-
Shapiro-Shields theorem [6] that there exists a meromorphic function ¢ on
D such that

Kid
sup S log™ [y (re)| dt < oo
O0<r<1 ~ .
and such that v, (") = lim,_,;— ¥ {re’*) agrees almost everywhere on I" with
(€)= lim,_,; - ufre®®), where u : z — 320 B(—n)z" is the clement of
the Hardy space H2(D) defined by .
We have

u(z) = 3"@(1) ~47(2) (zeD)

and so

w{() = (()=(B(() fo(e P\SUPW
Since f € I,, we have suppy C {z € I' | f(#) = 0} and so supp e has
Lebesgue measure zero.

The radial limit (¢¥).(¢) = lim,_;- @7 (r¢) = (¢) exists for every
¢ € I'\ supp, hence for almost every { € I', and we obtain 1.(¢) =
() = C(¢™){¢) for almost every ¢ € I'. It follows then from Privalov’s
theorem [23] that ¢(2) = z¢™(z) (z &€ D)} and s0 pT € V.

Now assume that f.p = 0 for some nonzero f € A%, and that supp e
is a Carleson set. Let g be any nonzero element of JI(E). Tt follows from
Lerumas 4.10 and 4.11 that g.o™—(g.¢)* € H*(D) and that g.p € HD(I").
Since f.(g.¢0) = g.(f.@) = 0, we have (g.0)t € N and s0 g.pt € N, Hence
et € N, since g is bounded on D.

Notice that we can apply Lemma 5.1 to any ¢ € HD(I') such that
SUp, <o [#(n)| < oo, since in this case we can define f. for every f € AT,
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Then
limsup(1 = o)|f (@) - |o* (=) < oo if fp =0,

|z|—1
But if f # 0, then [1, Lemma 5.1] gives limsup, ;- (1 — |2[) log™ |(2)]
< 00, and by Cauchy’s inequalities, imsup,,_, .. (log" |&(n))/ /7 < oo, so
that @ € HDy(I").
Recall that if f € AV # 0 we have the decomposition

F@)=cB(e) e 5 | 572

i o o log [fule™)] dt] exp [ - 2—; _Sw : £z duf(t)]

where fiy is a singular, real measure on I, |¢| = 1 and B(z) is the Blaschke
product defined by the zeroes of f in the disc.

LEMMA 5.2. Let p € HD(I"), and assume that ot € N. Then the singular

measure p,+ t8 concentrated on supp . Also the denominator (™) belongs
to Sp if ¢ € HDp(IM).

Proof. Let f € C(I') be such that supp f Nsuppy = §. Since ¢ is
analytic on a neighbocrhood of supp f, the set of zeroes of v on supp f,

repeated according to multiplicities, is a finite set {21,..., 2z} Set
D(2)=B(2) [[(z~#) and g(z) = p(2)/D(z) (z€ D).
i<k .

Denote by 2 the set of poles of B in €\ D. Then NI C suppy, and 50 g
extends analytically to C\ (£2Usupp ). Since the functions z — z — z; are
outer on D, it follows that g € A and g1y = pige. Set V = Uycpc; 75upp f-
Then g is continuous on V, and g(z) # 0 for every z € D. Hence log |g(r()| —
log|g+(¢) as 7 — 17 uniformly for ¢ € supp f. We obtain

m™ ™ w

| loglgu(e™)f () dt+ § f(e¥) dug(t) = lim_ | log |g(re™)|f(e™) dt

— il

{log [gu(e™)] (™) dt.

Hence

ki3 m

§ £ dugr (1) = § F(e®) dpy(t) = 0.

—r -
Since this holds for every f € C(I') such that supp f Nsuppy = B, p+ is
concentrated on the closed set supp .

Now assume that @ € HDg(I"), and let zp = €0 € supp . Let p,+ =

fhs — fi— be the Jordan decomposition of i+, s0 that §(¢™) is the singular
inner function defined by ., according to the notations of Section 4.
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If d = 2mp—({to}) > 0, set

U(z) = o (2)S(e")(2), V(z)=U(z)exp {dgtﬂ’ W(z)chB(é))’

where ¢ and B are the constant and the Blaschke product in the decompo-
sition of ™. Then |V (2)] < |¢*(2)| (z € D) and so limsup,._,;- (1 —r)m(r)
= 0, where m(r) = sup,eg log [V (re®)| for » € {0, 1).

Since ™ and p_ are mutually singular, we have pt({te}) = 0, and
v{{to}) = 0 if we set du(t) = log|T (e*)\dt — du. (). We have

1 7§ et o 2

W= 5 | St

so that log |W(z)| is harmonic on D. Set
h(z) = dRe (zo ”'”z) (z € D).
20— %
Then h + log |W| = log |V/(cB)] is harmonic on D.

Fix z € D and set p = (1 +|2|}/2, so that 1 — g = ¢ — |2| = (1 — |#])/2.
It follows from Poisson’s formula that

w 2 2
() + Tog W (2)] = 5- | m—'_lwmgwgeﬂ)w

n

dt.

s

1 ||

2 S ig — ze~H|2 log
T

We have

[ el

. | dt=1
2r J jo—zem®P2 T

by standard properties of Poisson kernels. Hence
(1—12|)[A(z) + log |W ()]
14 M) (e-rlel)(t=|2) 1%
< (L~ |z1)m + .
(== ( 2 e 27r_§10g

< (1_ 12|zl)m(1+lz1) 2 ’i -

dt

B(oe™)
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Since {”_log|1/B(re)jdt — 0 as r — 17, we see that (1 — |z[)[h(2) +
log |[W(z)|] > 0 as |2z — 1.
Now for r € {0,1) we have

: R G
—log |W(rag}| = “on S M= rme dv(t)
g
to+=
1 1-72
< — e ] .
~ 2r S |1 — rzpe—#|2 Vi)

Fix § € (0, x). We obtain

tp+6& 1 9

1—r -7
1—r)(—log|W <
(=) (= logWirzol) < =5 | =T ()
to—4
L—r 1-r2
+ 27 S |1 — rzpe—it|2 dvi(t)
S<|t—to|<n
1
< ;|VK[‘#0 — &t + 8])
1

JPRY
™ - WT) [7I([0, 27]) 1—2rcosb+r2’

Hence

limsup(1 — r)(—log [W (rzp)|) < —|u|([t0 — 8,10+ 8))
T—1-
for every § > 0. Since |v{{{to}) = v({to}) = 0, we have |v|([to — 7/n, %y +
7/n]) = 0 as n — co. Hence (1 — r}{—log|W(rzg)|) — Oasr — 17, and
o (1 —r)h{rzg) — 0 asr — 17. But h(rzg) = d(1+7)/(1 ), and we
obtain a contradiction. So x_ is nonatomic, and 8(¢ 1) is a nonatomic inner
function. This concludes the proof of the lemma.

LEMMA 5.3. Let @ € HD2(I") and let f € B; (i=0 or1). Then f.p €
2
HD? ().

Proof. Consider first the cagse where ¢ = 0. There exists an Atzmon
weight w such that ¢ € HDZ(I). Let 7(n) = w(n) =1 (n 2 0), 7(n) =
(1 + |n)w(n) {(n < 0). Then 7 is an Atzmon weight, and f € A-{I'). Let
P HDg(I) — £, 9 — (1 (~1))n>0. For m > 0 we have -

[Pl = (S 1p-n-mP) < 1P

n=>0
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For m < 0 we hawve

1P o)l = (S at-n-m ) < Pl + (@)
n>0 p=l1
<P + el ( 3 w@?) < IPE)s + e lirm).

q=mm

Hence
ST 1Fm) - 1P™ @)z < 1PNl -+ el fil- < oo,
mEZ

and the series 3, P[f(m)a™.] converges in £2 to some u € ¢2. But
P :HD,{IM) — £ is continuous, and so

P(fp)=lim 3 FmP(a™yp),
im|<p
with respect to the norm of £°°.

Hence P(f.¢) = u, and | P(f.@)ll2 < [|P(@)ll2/[flls+1ells || £]i-- A similar
argument holds for 7 = 1.

Atzmon [2] studied operators T' such that ||T™| = O(nF) for some k > 0
as n — oo which are annihilated by some f € A% (D). His results show in
particular that if SpT" C I' is a Carleson set the above condition is equivalent

to the condition
ki3

sup S logt (T~ re®) Y| di < c0.
0l 0

The following theorem is related to this property.

THEOREM 5.4. Let ¢ € HD1{I"), and assume that supp e is a Carleson
set. Then the following conditions are equivalent.

(1) There exists some nonzero f € AT such that f.p = 0.
(2) There exists some nonzero g € A% (D) such that g.p = 0.
(8) ot e N.

If, further, ¢ € HD2(I") (i =0 or 1) then (1)-(3) are equivalent to each of
the following conditions.

(4) There exists S € 8; such that T;(5*) = T;(i0).

(8) Tilw) = Ti(S(e™)").

Proof. Clearly, (2) implies (1), and it follows from Lemma 5.1 that (1)
implies (3}.

Now assume that ¢™ € A and set S = §(p™). Let g be any nonzero
element of J (supp ) and set & = g.5. Since o+ 18 concentrated on supp
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(Lemma 5.2), easy and well known verifications show that k € A® (DyY.
Then k@t € N, and S(h.¢™) = 1. It follows then from Lemma 4.10 that
(hp)T € N, and that S((h.¢)") = 1. Also it follows from Lemma 4.1
that (h.@)” € H*(D), and so (h.)f € L®(I'). Tt follows then from (4.4)
that (h.@)® € H*(D). Denote by £ the restriction of h.p to I’ \ supp ¢
so that £ € L*(I'). Then ¢ = (h.¢)f, and so (n) = 0 (n < 0). Also
£0¢) = C(hap)~(¢) (¢ € I'\ suppy) and so @(n) =0{n>0). Hence £ = 0
a.e. on I, and (h.@}{{) =0 ({ € I'\ supp ). So k.o =0, and (2) holds.

Now assume that ¢ € HD;{I'), i = 0 or 1, and that 7;(p) = Z;(S*) for
some § € S;. Let u be the singular positive measure on I which defines 5.
'Then p is concentrated on supp §* (this is well known, and follows anyway
from Lemma 5.2). We have supp S* = h(I; g+) = h(l;,) = suppy, and so p
is concentrated on supp i, which is a Carleson set. Let g be a nonzero element
of JI (supp¢). Then g.§ € 4°°(D), and (g.5).5* = 0, by Proposition 3.6.
Since I; 5= = I, it follows that (g.9).¢ = 0 and so ¢ satisfies the equivalent
conditions (1)-(3).

We only have to check that (5) implies (4) in the case 4 = 0, and this
follows from Lemma 5.2.

Clearly, if ¢ € HD;(I') and if f € By, then I;, C I; 7., and so f.@ €
7i(ip). Conversely, let f € At be outer, and let p € HD?(F). Then if 2 €
I 1., we have f.(h.p) = 0. It follows from Lemma 5.3 that h.p € ADI (1),
and so h.p = 0, since f Is outer (see Remark 4.15(3)). Hence in this case
Ti(f.e) = Tilyp)-

Now assume that € HD;(I'), that supp ¢ is a Carleson set and that
pt € N. Let g € JL(suppy) and let ¥ € T;(p). We showed above that
(g.5).0 = 0, 50 that (g.5).%y = 0, where § = S(p+). Now let g € JI (supp )
be outer. Since (g.5)4" = (g.9)¢T — [(g.8)4]T € H*(D), it follows
from the uniqueness of the inner-outer factorization in H> (D) that S(4*)
is a divisor of S(p*). Now assume that ¢ € HD?(I), that suppy is &
Carleson set and that ¢t € N. Let f € JI(suppy) be outer, and set
1 = f.p. Then T;() = T{w), and it follows from the discussion above that
S(y*) = 8, where we set § = S(pT). Also it follows from Lemma 4.11
that 1/~ € A% (D), so that (1*). € C®°(I"). Let U = S, It follows from
(4.6) that U & H®(D). Since supp S C supp ¢ = supp +, by Lemma 5.2, and
since |Si| = 1 on I'\supp ¢, it follows that U, € C>°(I") and so U € A> (D).

We have

U8 + 9t = L U/§ 4+t = Ly € A®(D).

5(c0) S{o0)

Hence (U.5)F + ¢t € A®(D), by Lemma 4.10. Let g € J(supp¢) be
outer. Then g.[U.5* +¢] = 0, since the denominator of U.5* + % is 1, and
so U5+ ) = 0, since U.S* + ¢ € HDZ(I"). Hence ¢ = —U.8* € T;(5%),
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and T; (@) = T(¢) € T;(S*). Now let h € B; such that haf = 0, and set
L ={u € A" | wh.8"} = 0. Then U.A* C L, and S.H®(D) N AT C L
by Proposition 3.6. Let P : HD?(I") — £2, § — (8(—n))n>0, be the map
introduced in the proof of Lemma 5.3, and for v € H*(D) set T = (3(n))nz0-
Then h.§* € HD?(I'), by Lemma 5.3, supp(h.S*) C supp(S*} C suppy G I’
and so L = {u € A% | (&, T*"(P(h.5*))) = 0 (n > 0)}, where we denote
by T the shift operator. But the set K = ﬂnzl[T*"(P(h.S*))'L] is a closed
subspace of £2 invariant for the shift operator. By Beurling’s theorem, K =
Q.Hﬁz_(’D) for some inner function ¢. So g i8 a divisor of 5, and it is also a
divisor of the inner factor of U. But U/ = S.9*, where S is the denominator
of 91, and so it follows from the unigueness of decomposition (4.4) that
0=1LSoK=H?D)=# L=A",1€Land h.5*=0.

Hence I; y C I g+, T,(S*) C T;(¢) and so T; () = T;(vp) = T;(S*), which
concludes the proof of the theorem.

Remark 5.5. (i} It follows from the above arguments that if S; and S
are singular inner functions defined by positive singular measures gy and
p2 supported by Carleson sets, and if p; < py then 7(S7) < T1(9%) (and
To(S3) € To(S3) if py and po are nonatomic).

(if) If J(suppy) is w-dense in AT, and if p € HDY(I") and " &
N then T(p) = T;(S(e™)*). This follows from the fact that ¢ can be
“synthetized” by elements of HD?(I') M 7 () of the form f.o, where f €
JE (supp ) is outer, and from Theorem 5.4. We leave the details to the
reader. Of course, it follows also from Remark 4.15(3) that there exists
nonzero ¢ € HDY(I") with supp a Carleson set (or even a Kronecker set),
for which S(¢™) =1, so that T;(S{¢+)*) = {0}.

It follows from aresult of Atzmon [2, Proposition 2.6] that if p € "D, (M,
and if supp ¢ is a finite set, then ™ € A. Another result of Atzmon [2,
Theorem 1.1] shows that if U is a bounded operator on a Banach space
such that |[U7|| = O(n*) for some k > 0, then f(U) = 0 for some nonzero
f € A= if and only if

™

sup S log™ (U — re®)~1| dt < oo
0<r<1 “r

(which implies that SpU NI is a Carleson set).

Now let E C I' be an uncountable closed set. By a result of Zarrabi 127]
rentioned in Section 3, there exists an Atzmon weight w such that J, (EYn
AT = {0}. Let 7 : A,(I") — A,(I')/J,(E) be the canonical map, and let
U be the map w(f) — w(af). Clearly, f(U)[x(1)] = m(f) for every f € A+,
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and it follows from Atzmon’s thecrem that
T

sup | log||((er) — re®*)™1| dt = co.
0<rl 7

Now if ¢ € HD,(F), then there exists a continuous linear form L on
Au(T)/Jo(E) such that (g,0) = (n(g), L) (g & A,(T), so that p(z) =
{(a=2)""¢) = ((n(a) — 2)~1, L) for z € D (here we use formula (2.13)).
This suggests that in this sitnation there exists ¢ € HD,(F) € HDy(E) such
that ™ ¢ V. The following theorem shows that this is indeed true, and that
the fact that T € A for every @ € HD;(E) holds only for finite sets E.

THEOREM 5.6. Let E C I be o closed set.

(1) If E is infinite, there ezists ¢ € HD1(E) such that ™ ¢ N and
@~ € H®(D).

(2) If E is uncountable, there ezists ¢ € HDo(E) such that ¢t ¢ N and
pT e He(D).

Proof. Assume that F is infinite. Then E has a nonisolated element z;,
and there exists a sequence z, of distinct elements of F such that z, — zg

as n — 00,
Let ¢ > 0 and set wy(n) =1 (n > 0), we(n) = V™ (n <0). For A el

and £ > 0 set
Z4 A
Sie(2) = exp (EZ — )\),

so that S) . is inner. We have

log(|Sx:(z)|™1) < {(z ¢ D)

1—|z]
and applying Cauchy’s inequalities as in [1] we see that there exists £ > 0,
independent of A, such that S5, € HD,, (I"). Since Sx . is inner, [S5 |7 €
H=(D}.

Set HD (I") = {¢ € HD.,(I'} | v~ € H*®(D)}. Then HDZ(I) is a
Banach space with respect to the norm [il = max(||||L,, [l¢ " [jec)- Also
since HD,,(F) is a closed subspace of (HD,,(I'),| - ||,), it follows that
HD (F) = HDZ (') N HD,,(F) is a closed subspace of (HDZ (1), | - |)
for every closed set F' C I'. Now set g, = 55 _ (n > 1). Clearly, ¢, €
HDZ ({zn}), and |l@nll = llooll (n = 1). Hence the series 357,27 "¢,
converges in HDJ (I'), and if we set p = S 12 ™o, we see that ¢ €

For m > 1 set 1, = E;‘;m 27" Then supp¥m C {#n},zy, and so
Zm @ SUPP YPm. Hence P, (r2y) has a limit as r — 17, and

liril (1 —7)log |p(rem)| = liI]lfl_(l ~7)log|S, " (rzm)| = 2¢.
[ r— .
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Let 4 be a positive, singular measure on I, let R be the singular inner
function defined by p and assume that R.¢™ is bounded on D. For m >
1 set 8y = u{{zZm}), and let §,, be the Dirac measure at {z,}. Then
= 3o Smbs,, is positive for every n > 1, and w(D) = Yo 1 Sm.

Now let R, be the singular inner function defined by u — smds,,. Since
(1t — 8m8, ) ({zm}) = 0, the decompositions of Poisson integrals given in
the proof of Lemma 5.2 show that (1 —r)log(|[Rm(r2m)|™}) — 0asr — 17,
Since

R = oy (1 222)

oy
we obtain lim,_,;- (1 — 7) log(| R(rem)| 1) = 28m (m > 1). But
limsup(log |(z)] + log [R(2)|] < oo

r—1=

and so
linln_(l —r)log(|R(rzm)| ™) = 111{1_(1 —7)log l¢(rzm)|.

Hence s > € (m > 1) and u(I") = ne for every n > 1. This contradiction
shows that ™ & N, which proves the first assertion of the theorem.

Now assume that E is uncountable. By a result of Zarrabi [27] mentioned
in Section 3, there exists an Atzmon weight w and § € & such that (S™)* €
HD,(E) for every n > 1.

Let HDX(E) = {¢ € HD,(E) | ¢~ € H*(D)). We then see as above
that HD’(E) is a Banach space with respect to the norm flef| =
max([[@]lZ, 7 {loo)-

Denote by 12, the set of all ¢ € HDZ®(F) for which there exists a positive,
singular measure pon I', with u(I") < p, such that S,.0™ € H®(D), where
we denote by S, the singular inner function defined by p. Notice that in
this situation we have ||5,.07 e = |07 [0 = [0} oo < [@]l- Let (@m)mp1
be a sequence of elements of (2, such that |lign, — @] — 0 as m — oo for
some ¢ ¢ HDY(E), and for m > 1 let uy, be a positive singular measure on
I, with g (I") < p, such that S, .ot € H=(D).

We can identify M(I™), the space of all complex measures on I', with
the dual space of C(I'). Since ||pm|| = pm (1) < p (m = 1), and since C(I")
is separable, we can assume without loss of generality that there exists v €
M(I") such that §, f dp = lixtnoo § p f dem (f € C(I)). Then § . fdp 2 0
(f € C{I"), f > 0) and so u is a positive measure.

Set

1§ et4y
R(z) = exp [— 5 _SW - du(t)] (z € D).

Then R(z) = liMuo0 8y, {2). Also @}t (2} — ¢t (2) as m — oo uniformly
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on compact subsets of IJ, and we obtain
B2 ()] = lim_ |5, (2)oh(2)] < Imsup gl = lell (= € D).
mMm—o0

Let du(t) = h(e™)dt + dv(t) be the Radon-Nikodym decomposition of 4,
where kb € L1(I'), h(e®) > 0 a.e. and where v > 0 is singular with respect
to Lebesgue measure. Then

Iy < u(l) = S dy = lim S i, = lim (1) < p.
r M—+D0 T Th—00
Let F(z) = 5,(2)[R(2)]™! (z € D) so that F is outer. Then |S,(z)p*(2)| <
lleli - 1F(2)| (z € D). So S,.0T € A, and the denominator of S,.¢% is 1.
Since |(Sv.91)«(e®)] = |pF(e™)] = |7 (e%)] < ||#)lco a-e., it follows from
(4.4) that S,.0" is bounded. Hence {2, is closed for every p > 1.

Now fix p > 1, let 1) € §2;, let £ > 0 and let g be the positive, singular
measure on I which defines the singular inner function § introduced above.
Let n > 1 be an integer such that ne(I") > 2p and set 5 = /(2]/(5™)*|). The
denominator of [s{S™)*]t being clearly equal to S™, s(S™)* & (2, Also it
follows from the definitions that the difference of two elements of 12, belongs
to f22,. We thus see that § = ¢ + s(§™)* & (2, and || — 0]} < £. Hence
the interior of (2, is empty for every p > 1, and it follows from the category
theorem that | )5, 2, € HDZ(E). This concludes the proof of the theorem.

Remark 5.7. 1) It follows from recent computations by M. Rajo-
elina, M. Zarrabi and the author [10] that if { € (0,1/2) and if E, =
{exp(2in Yoo €. (1 =()) : &, = 0 or 1} is the perfect symmetric set of
constant ratio ¢, then for every Atzmon weight w such that

lim inf n (B ¢—108 2)/(2Iog C—1082) [n0 () = 0o

there exists an inner function S such that (S™)* ¢ HD(E;) (n > 1). It
follows from the proof of the theorem that if w is such a weight then there
exists ¢ € HDZ (E,) such that * & A, In the other direction, using the
methods of {8, Section 7, it is possible to show [20] that HDZ(E.) = 0
for every Atzmon weight w such that logw(—n) = O(n®) for some o <
(log ¢ — log2)/(2log ¢ —log2) (when p € N, p > 3 this result extends to
HDJ (B /). It would be of interest to characterize completely the Atzmon
weights w such that p* € A for every ¢ € HD?(B;) (and also the Atzmon
weights w such that HDZ(E,) = {0}).

Notice also in this direction that for every Atzmon weight w there exists a
closed, perfect, Kronecker subset F,, of F such that HDC (F., ) = {0} (see [8]).

2) The notations being as in. the proof of Theorem 5.6(2), it is not difficult
to see that the category argument used there produces in fact some elements
=732 £,(5P)* withe, > 0 and p, € N (n > 1) such that ¢ € HD,(E),
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o~ € H®(D) and ¢t ¢ N. For such elements, it is possible to prove that
To(ip) is the w*-closure of the linear span of &5 N To(¢), the notations being
as at the beginning of this section (see [20]). The author has not been able
so far to produce any element of HDj3(I"), with support of Lebesgue measure
zero, for which this “synthesis by inner functions” does not hold.

3) It follows in particular from the proof of Theorem 5.6(2) that if w is
any Atzmon weight then the set {¢ € HDY(E) | ¥ € N} is an Fy-set.
Now let {2 be the set of elements of H2(D) which are noncyclic for the
backward shift. We observed above that if ¢ € HD?(I"), and if supp ¢ has
Lebesgue measure 0, then ¢ € A if and only if ¢~ € 2. Douglas, Shapiro
and Shields showed in [6] that (2 is an Fj-set by using interesting results of
Tumarkin [26] about rational approximation. In fact, if T is any bounded
operator on a Banach space X, then the set I of elements of X which are
noncyclic for T is an Fy-set: if I = X, this is obvious, and if & & X then

U=JleeX| inf lloo=PT)@) 2 1/p),
p2l

where g is any fixed cyclic vector for T

We conclude this paper with a complete description of closed ideals of By
with countable hull, which shows that elements of HDY(I") with countable
support can be “synthetized” by inner functions in the sense of Remark 4.15
(since any closed countable subset F of I' is a set of By-synthesis and satisfies
HD3(E) = {0}, no such questions arise for Bp). When ¢ € HDI(I) is
supported by a finite set the fact that ¢ can be “synthetized” by inner
functions follows immediately from Theorems 4.13 and 5.4 since in this case
J (supp ) is w*-dense in AT and ¢ € A. In the other direction, it follows
from Theorem 5.6(1) that the “synthetization by inner functions” given by
Corollary 5.18 holds for some ¢ € HDI{(I") for which ¢™ ¢ A/

DEFINITION 5.8. For A € I' and t > 0 we denote by Sp, the inner
function

z — exp (tz+§) (z € D).

We set San = {Sia}es0, Sa = UAGP San and S = {8"}ges,. Also if I
is a closed ideal of By, we set ka(f) = {S € & | §* € Il} and I* =
ﬂSEka(I) Ker 5*.

Clearly, &, is the set of “atomic” inner functions, i.e. the set of inner
functions defined by a scalar multiple of a Dirac measure on I', and I? C
I? ¢ I for every closed ideal of B;. Notice also that if f € S, » then the
derivative of (o — A)2.5 is bounded on D, so that (o — A)2.9 ‘e At (see

5 —
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for example [16, p. 56]). For A € I' we now write J1(A), 11(A\), HD1(A) for
JU{AY), Li({A}), HD1({A}), ete., and we set Sp x = 1, so that 55 , = 0.

LEMMA 5.9. For every A € T, the following properties hold:

(3) £ = i oo fla— \Vo(e— A= An) ™ (F € H(N), & 2 ).
(i) The map t — (a— A)2.S; s continuous from [0, 00) into AT,
(iil) The map t — 8, is w*-continuous from [0, co} into HD; (A).
(iv) (@ - )\)Q.St,A.S’;’A =0 fort>s, and
(o — A)E.St,)\.S:’A A C )\)2.5’:41)\ for0 <t <s.
(v) The formula

(=N {a = N (a—u)t=2x | AT/ O (0 — 2)2.5, 5 dt
o]

holds in AT for |u| > 1.

Proof As in Section 2 set wy(n) = 0 (n = 0) and wyp(n) = epyVInl
(n< O forp>1Lete, =(a—A)a—-A- 1/n)"t. A direct well known
computation shows that the sequence (e,)n>1 is bounded in A™ and that
llo — A — (& — Nenlly = 0 as n — oo,

Now let f € L, (A). For m 2> 1 set fin = 3 ki<m F(k)(a® — AF). Then
fm € (00 = N A, (1), |f = Fullw, — 0 88 m — 00 and, since {en)n>1 18
pounded in AT, ||fek — fllo, — 0 as n — oo (k > 1). This proves (i).

Now set g5 = (o — A)2.Sen. Then gi € H®(D) (and |giliec = O(2)
as ¢t — oc). It follows from Lebesgue’s convergence theorem that the map
t — g} is continuous from [0, 00 into H 2(D). Using again the Cauchy-
Schwarz inequality as in [16, p. 56] we obtain (ii).

Now fx a > 0. It follows from formula (3.1) that there exists M > 0
such that

IS;",\(z)! < Me2/-#)  (ze D, te[0,a])

and |§¥,(2)| < M (|2l z L z# At e [0,a]). Hence |Sta(n)| < M for
0<t S g and n < 0, and it follows from Cauchy’s inequalities that there
exist p > 1 and K > 0 such that [S¥a(n)| < KerVifor0<t<oandn > 0.
So the family (S}, )ogt<a is bounded in the Banach space HD.,, (I).

It follows from Cauchy’s formula and from Lebesgue’s convergence the-
orem that the map t — §§,A(n) is continuous on [0,a] for every n € Z
Since the topology of pointwise convergence of Fourier coefficients and the
w*-topology o(HDu, (I"), Au, (")) agree on bounded sets, the map { — 87 ,
is w*-continuous from [0, a] into HDy,, (I} (a > 0), and (iii) follows.

Now set @, = (@—X)2.5e.555 (£ 20, 52 0) and 4psp =0 (t=s>0),
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T/)s,t = (O! - )\)2 S*
(Frpan) = = U O - A8 A(Q)Sep (O d  for f e AT

A (0 <t <s). Since

(formula. (3.5}), and since
Sea (950 (0) = Sesn(C) (62520, (e I\ {A})

and

Sea(Q)8ea(Q) = Semea(() (05t <s, (e I\{A)),
we see that (f,@ss) = (fithes) (f € AT, £ 20, s > 0). Hence 3, 4(n) =
ts,1(n) for n < 0. Since supp et C {A} and suppf,: C {A} we obtain
st =Ygz (t 20, s > 0), which proves (iv).
We have Re (A +u)/(A —u) < 0 for {u| > 1. The argument given in
the proof of (ii) shows that [|(a — A)2.9;,]] = O(+/%) as t — oo, and so the
Bochner integral

S et(A+u)/(A—u)(a — )\)Z.St,,\ dt
0
defines an element f of A*. Let g = (u — A) (o — A)3 (e~ u) ™.

Since characters commute with Bochner integrals a direct computation
shows that 2Af(z) = g(z) (2 € D), which concludes the proof of the lemma.
Notice that formula (v) is a variant of the resclvent formula for semigroups
(a similar formula was established in [7, Lemma 9-9]).

Remark 5.10. 1) We can define the product Top = S¢,5.5; 5 by using
formula (2.18). We obtain

ITe.e(n)? < [Z 5% (k) J [i Ssa(n

k=0 k=0
It follows immediately that T, € HI,, ( ) for some p > 0 depending on
s and £. Clearly, (a — A)2.Ts; = [(a — ) -8¢,3].55 - Hence (ax — A)2.T,; =
(a—~X)2.8%_ —¢,» for 8 > ¢. Tt follows then from Lemma 5.9(}) that 7, 4O €
[[1(M]*. Hence Tyy — S%_ ¢x = 0wy for some § € C, where $y(n) = A~"
(n € Z). Since Ty, — S7_,, € HDIY, we obtain Top = S5y (5 2 1),
Similarly T = 0 if ¢ > s.

2) Using the same method as in the proof of the lemma, it is casy to

check that the map (£,A) — Sy is in fact w*-continuous from [0,00) x I
into HD, (I}

PROPOSITION 5.11. Let A€ I and t > 0. Then
T1(550) = span{(5}  Jo<e<st

} (neZ).
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Proof For £ < s we have (o — M\)?2.8, ;.87 = (o — A)2.5¢. Hence if
f.58% =0 with f € B;, then (04 A2 £.5F = 0. It follows from Lemma 5.9(i)
that £.87 € [I1(A)]*NEDY(I) = {0}, and s0 S € T(S* ) (this also follows
from the results obtained at the beginning of this sectlon).

It also follows from Lemma 5.9 that for f € By and |u| > 1 we have

{fi(w=N){a~ A a~u)t :J\)

2,\§ MW= (f (0 — N)2.8,.87,) dt

0
= 2 [ OO (0 - NS, ) i
¢]

There exists p > 1 such that S;‘, » € HDo, (') (0 €t < s). The Bochner
integral

et()\-i—u)/().-—'u.) 'S:—t,)\ di

L2 e

defines a hyperdistribution ,, € I-IDEJp (I'}, and we have
Mt — Ay = (w— A (e — AP (e —u) .52,

By using Lemma 5.9(i) as above, we see that '

20, = (u— Ao = A) (e —u)"".8; .

Now let f & By be such that {f, ;) = 0 (0 < ¢ < s). We obtain
{{o—w)™ (a=NFf55a0 =0 (ul>1)

Hence (o — A)f.87, =0, since supp 55 , = {A} & I'. It follows again from
Lemma 5.9(i) that f.57, € [Z1(A Nt n HDD(F) = {0}. This concludes the
proof of the proposition.

COROLLARY 5.12. Let I be a closed ideal of By, Then f.5% =0 for every
f eI and every S € ky(I).

Proof Let S = Sy € ka(J). Then g.5* = 0 for every g € I, since [
is an ideal of By, and so g € J1,¢« = {T1(S*)]*". S0 8¢, € Za(S*) NSy, and
Ss.a € kall) for every s < t. N

Now if f € I*, then {f, ST, ) = 0 for s < ¢. It follows from the proposition
that f € [71(8*)]*, so that f.5% = 0.

Let § = S;» € S, and let f € AT. Then f.5* =0 iff f € S.H>(D).
Since (o — A)2.5 € A(T ), and since @ — A is outer, it is easy to see that
f & S.H>(D) iff (o = N*f = (@ — A)%.8.g for some g € A*. The following
lemma extends this criterion to the algebra B;.



146 I. Esterle

LEMMA 5.13. Let 5 € S, and let f € By. Then the following conditions
are equivalent.

(i) £.9% =0.
(ii) (e ~ A4 f= (@ — X)2.5.g for some g € By.

Proof. We can assume without loss of generality that S = &y for some
t > 0. Assume that (i) holds, and set b = f(a — 1)?, so that 7.5* = 0. Set
un = S*(n) (n € Z), and set g = h.5. Then g € C(I"). Since (o — 1)2.5 &
A(I) and f € By, it follows that g € A().

We have S(k) = 0 for k > 0. For k < 0 we have

2T

8(k)= o { e # 5y dt =
a

= {1 8 = 5" (k+ 1) = upy

o | I e
I

(formula (3.5)). Set @ = 5(0).
For n < 0, we obtain

F(n) = Zﬁ(kﬁ(n — k) = ah(n) + i h(k)S(n - k)

ke —l
- i Ea
=ah(n)+ Y h(k)un_ks1.
k=n+1

Since h.5* = 0, we have

Z ??‘,(k)‘unu_kg_l -+ Z R(k)un_k_\.]_ = ﬁ*(n + 1) = [.
k=mt1 k<n

Hence

3(n) = ah(n) — Z Bk 1.

k<n

For p > 1, set as before wy(n) = 0 (n > 0) and wy(n) = ery/Inl (n < 0).
There exists ¢ > 1 such that §* ¢ HD,,, (I).

For p > ¢ there exists K, > 0 such that
[ur—k+1] € Kpwp(k—-n—1) (k€ Z).

We have wy(n)wp(m) < wap{n +m) (n <0, m < 0). Hence
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| S A®E (- k= 1) < Kpr - BB)epsa(k —n— 1)

k<n k<n
< Kppawpya (—1) D [A(k) lwpia (k — )
k<n
K, —1 -
< Tt i) 3 B orpa®
M
B w;o+1;En) n<0)

where M, = Kpp1wp1(~1)||A]|ug,,. < oo Hence

g |wp(n) < laj - ||k, + M, wp(n) > q).
5 alayln) < il + 34, 32 T <0 (020
But g € A(I'), and so g € By.

We have f(a—1)* = (@ — 1)2.9.g, and so (ii) holds.

Now assume that (i) holds. Then (@ — A)*. £.5* = (@ — A\)%.4.5.5* = 0.
It follows again from Lemma 5.9(1) that f.5* € [[1(A)]*, so that f.8* =0,
since f.5* € HDY(I).

The following lemma is a reformulation of well-known results.

LEMMA 5.14. Let p > 1 be an integer, and let A € I'. Then there exists
q > 1 such that (o ~ X)%.Sgx € Ju, (A).

Proof Let w : A, (I") = Au,(I')/Ju,{)) be the canonical map. Since
R{(J.s, (X)) = {A}, it follows that Sp(m{a)) = {A}. Let T : Ay, {1}/ Ju,(A) —
A, (1)/Ju,(X) be the map w(f) — n(af). Then 5pT = Spr(a) = {A},
IT| = (@)l = 1 and T = (@)= < VI (n < 0). Set fo =
(a—X)2.S; » for t > 0, so that f; € AT, It follows from a result of Atzmon [1]
that f,(7) = 0 for some g > 1. Hence m((a — A)2.8,,0) = fo(T)7(1) = 0,
which proves the lemma.

A way to obtain Atzmon's result consists in observing, by using Lem-
ma 4.1 and a suitable application of the Phragmén-Lindeldf principle, that
for every p > 1 there exists an integer ¢ > 1 such that (& — A)%.5,x.¢™ €
H*(D) for every ¢ € HD,, ()}, so that p¥ € A [2, Proposition 2.6] and
S(i™) = §,.» for some s < ¢. Since (o — A)?.p € HDZ (I') C HD? (I) (use
Lemmas 4.9 and 4.10), it follows from Theorem 5.4 that {a—X)*.5,,.0 =0,
hence (a—A)2.8;,1.¢ = 0 for every ¢ € Dy, (A). Another approach consists
in applying the usual Paley—~Wiener Theorem [24, Theorem 19.2] to the
entire vector-valued map 2z — [(z + 1)m(a) — Alz — 1)]™%, by using the
formula of Theorem 5.9(v) with z = (X + u)/(\ — ). The details can be
found in [7, pp. 150-158]. Related results were obtained by Gurarit [14].
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We now deduce from Lemma 5.14 a complete classification of closed
ideals I of By such that A(I) = {\}.

COROLLARY 5.15. Let I be a closed ideal of By. For A€ I, set mp(A) =
sup{t > 0| S}, € It} so that S* 2 € It for every 8 < m;()\). Then the
Following class'z,ﬁcatzon holds in the case where R(I) = {A}.

(1} If my(A) =0, then I = I1(A).
(2) If 0 <mp(X) < oo, then I ={f € By | .57,y =0}
(3) Ifm[()\) = 00, then I = J]_()\)

Proof. The fact that 57 , € I+ for every s < my{)) follows from Propo-
gition 5.11 and Lemma 5. 9(111) Now assume that A(I) = {A}, and that
myz(A} = co. Let f € I, and let p > 1 be an integer. There exists g > 1 such
that (o ~ A)Z.Sq,)\ € Jw (A). Since f.87 , = 0, it follows from Lemma 5.13
that (o - A4 f = (o —/\) Sg,5-g for some g € By. Hence f € J,,(A) (p 2 1)
and it foliows from (2.11) that f € Ji(A). So I € J1(A), and in fact T = Jy(A)
since A(1} = {A}.

_ Now assume that § = my(A) < oo. If f € I, then f. S5 5 = 0. Conversely,
assume that f.57, = 0if § > 0. If § = 0, assume that f € Ij()) (the
condition f.55, = 0 implies that f € Il()\) it § > 0 since in this case
h(L,s;,) = {A}). Let € I'*. Since J1(A) € I we have supp o C {A}. Set
P = (a—A)2.. It follows from Lemma 4.11 that ¢ € HD?()). Also it follows
from Lemma 5.14 and Theorem 5.4 that 1+ € A (this follows also from [2,
Proposition 2.6]). Set S = S("). It follows from Lemma 5.2 that S = Sy »
for some ¢ > 0, and it follows from Theorem 5.4 that 77(4) = 71(S*). Hence
S* eI+ and t < 6.

There exists g € By such that (& — A}L.f = (@ — A)%.55.9, and so
(a = N f.5" = gla— X)2951.57, = 0. Hence (o — N\)0.f.p = (@ — )5 f.0)
= 0, since 7;(¢) = T;(S*). But f € I;()), and it follows then from Lemma
5. 9(1) that f.o = 0. So f € I, which concludes the proof of the corollary.

The following lemma, plays a crucial role in the description of closed ideals
I of By such that h(I) is countable. It shows that Ji()\) enjoys a property
analogous to the classical Ditkin condition for regular Banach algebras [19].

LeMMA 5.16. For every f € Ji(N), there exists a sequence (ep)ps1 of
elements of Ji(A) such that f = limy_.oo f €.

~ Proof Fix p> 1. There exists ¢ > 1 such that (a— ))2.5;, € Ju, (A)-
Since J1(A) is dense in (J,, (A), |-, ) (see Section 2), there exists a sequence
(ui)k>1 of elements of Jl(A) such that || (a—A)2.8, x — x|, — 0 as k — oo,
so that

o= 2550 = (o= ), = 0.
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Since vk € J1(A), we have u. S5, =0, and there exists v, € By such that
(@~ A)? Sognvr = (o = A .
‘We obtain
(O! el }\)B.uk = [(Oﬁ - A)zsq,)\.'uk].(or — /\)Z.Sq,)\.
We have (a— )25, .05 € J,,, (}), and so there exists wy, € J1(}) such that
[[(e = X)2.855-vk — Wi, < 1/k. Hence
< Mo = 2% 8o
5 .
So [{{e = A28, 5 — (@ — X)2.8g . wp |, — 0 as k — oo.
Let f € J1(X) C I1{}). It follows from Lemma 5.9 that
7 = Fla= 2. (2~ A= M), —s 0.

Choose n > 1 such that

o = )%k = (o = A)2.Sg il

I = o= 2P0 = 2 = A2, < o
Since f € J1(A), we have f.5; | = 0 and it follows from Lemma 5.13 that
(=N f=(a— V28,9 forsomege B.

Hence

(=10 — A= 2/m)710F = (o — N)B.5,5.9(a — A= A/n)" 10,
and
(o= N2 = X = A/n)720.f = (o = X)*(a = A= M) "X Fanp

< llg-(a = A= A/n) 10l e = N850 = (@ = N)%.Spa gl — 0.

If we set e, = (a—M)*(a—A=X/n)" ., with k sufficiently large, we obtain
If — fepllw, < 1/p. Hence f = limy_..oc fep with respect to the topology of
B,. Since e, € J1(A) (p > 1), this concludes the proof of the lemma.

THEOREM 5.17. Let I be o closed ideal of By. If h(I) is countable, then
I’ =T and I = I;(h(I))NI%.

Proof Let f € J*and let J = {g € By | f.9 € I'}. Assume, if
possible, that h{J) has an isolated point A. Since B; is a regular algebra
(see Section 2), there exists u € By such that A & supp(1 - u) and such that
suppu N [A(J)\ {A}] = 0. Then w(1l —u) € J1(h(I)), and so u(l—u) € J.

Let H={g&€ By |gu€ J} = {g € By | guf € I°}. Then h(H) C A({J)
and 1 —u € J, so that h(H) ¢ {A}.

If my(A) = oo, then Sy5 € ka(f) and so f.57, = 0 for every ¢ > 0
(Corollary 5.12). It follows then from Corollary 5.15 that f € Ji(A), and it
follows from Lemma 5.16 that there exists a sequence (ep)p>1 of elements
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of Ji(A) such that f = limy o fep. Since A{(H) C {A}, we have J1(A) C H
and so epuf € I° (p 2 1). So uf € I,

If mz(A) < oo, set § = myz(A) and let € > 0. There exists g € I such
that .57, . , # 0. We have ¢.55, = 0, and f.5;5, = 0 since f € 1"EL So
there exist h,! € By such that {& — \)*f = (a — )25'5 a-hoand (@ — Mg =
(e—A)2.85.5.L. We have (a— AL f = (a—A)2.Ssp.hl = (= A)*hy. IIcnce
(-4l JDH.

We have A € h{J) C h(I), and it follows from Lemma 5.9(i) that

g= lim (&~ X5(a-X- M/m)—¢

—+ 00

So

L{a = MA80 5 =L{a— A .85 Shuon = (= A)°.9.5%,, # 0.
Hence my (M) = 0, and it follows from Corollary 5.15 that [y (A) C H.

Now let ¢ € (I—'—)g It A HDY(I) and set K = {v € AT | vou.f.p = 0}
Since u.f.p € HDI(I"), K is w*-closed in A*. But IT(\) ¢ K and the
sequence (o — A)(o ~ A — A/n)"1pz1 s w'-convergent to 1 in AT, Hence
1€ K, ufep =0and uf € I°. Since u(A) = 1, this contradicts the fact that
A € h(J}. We see that h({J) is a countable closed set without isolated points.
So h(J)=0,J = By,and f =1 f € I°. This shows that IY = I*. It then
follows from Corollary 2.27 that I = I 1 J®. But countable sets are sets of

synthesis, and so I4 = Iy (h(I)) and I = Iy (k(I)) N I?, which concludes the
proof of the theorem.

COROLLARY 5.18. Let ¢ € HDY(I'"). If supp o is countable, then

Ti(y) = pan(G (@) P8

Proof. Denote by U the w*-closure of span(7;(p) N &*). We have U C
T1{p). Conversely, let f € UL, and set I = I, = [T1()]*. Then [ = {g e
By | g.p = 0} (see Remark 4.15) and so I = IO, But T1(p) N 8 = ka(I)*,
the notations being as in Definition 5.8, and so f € I* = I® = I = [T3(p)]*.
This shows that Ti(p)} = I

We conclude the paper by a few remarks.

Remark 5.19. 1) If ¢ € HD1([I"), and if supp ¢ is countable, it follows
from the theorem that 71(¢) is the w*-closure of span(7y () N (SF UR(I)*)),
where we denote by A(1}" the set {¢a}aenry with @x(n) = A™" (n € Z) (so
that {f, s} = () for f € By). In other words, elements of HD, (1) with
countable support can be synthetized by “inner functions and chayacters”.

2) Let 1 be a closed ideal of By, and define my()) as in Corollary 5.15 for
Ael.For feByset Ly ={(t,A) € [0,c0)xI"]| f. Si 5 = 0}. It follows from
Remark 5.10(2) that Ly is closed Algo it follows from the first assertion of
Corollary 5.15 that {A € I' | m(A) > to} = Mg {A € I' | (to, ) € Ly} for
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to = 0. So the set {A & I' | my(X) = to} is closed, which shows that the map
X — my()) is upper semicontinuous on I" [24, p. 37].

3) Let ¢ € HD ('), and set my(X) = myp(A) (A€ I'), where I = I , =
{f € By | fp = 0}. Let A € I' \ supp . Since B; is regular, there exists
u € By such that u(A) = 1 and suppu Nsuppy = 0. Now if ¢ > 0 and
if S = 5 then I s C By, and so h(l1,5) = {A}. Hence u.5 # 0. Since
u.ip = 0, we see that m,(\) = 0. Hence m,, is concentrated on supp . Now
if L is an open arc contained in suppy, let f € By such that f.o = 0. Set
BE={ el | f(X) = 0}. Since By is regular, J1(E) C f.B; by (2.12), and
0 ¢ € Ji(E)t = HD(E), so that L C E. In particular, f € Jy(}), so that
£.5¢5 = 0 for every t > 0 and for every A € L. We thus see that my(A) =0
for A € I'\ supp ¢, and that M, (A) = oo for every interior point of supp .

In particular, we can consider ¢ = Y7 . 27", , where z, is a dense
sequence in I" and where 6, is the Dirac measure at z,. It is easily checked
that suppy = I" and so mr(}) = oo for every A € I', despite the fact that
o7 (2)] = O(1/(1 — |2])) as jz] — 17, so that (1 — [2]}log|pT(z)] — 0 as
|z} — 17,

In the other direction, assume that supp ¢ = {A}. Then ™ € A, and it
follows from Lemrna 5.2 that S(p™) = S » for some ¢ > 0.

The computations on Peisson kernels given in the proof of Lemma 5.2
show in fact that

t = Llimsup(l — r)log |p(r)].
1=

Set 9 = (@ — A2 If f.p = 0, then f.9p = 0. Conversely, if f» = 0, and
if i 5£ 0, then F(A) = 0 so that f = limymee (@ — A)2(a— A — A/n)~2f and
fao=0. Also it followa from the results of Section 4 that S{p™) = S(%™),
since %" — (@ —~ A)%.pT € H*(D) and since (o — X)? is outer. Since 73 () =
T1(S(¥T)*) (Theorem 5.4) there are two pOSSlblhtleS

(a) ¢ > 0. In this case ¢ 3 0, Ti(p) = T1(8},) and Iy = 1y = {f €
By | (a - )‘1.f € (o~ A)2Sa.Bi}. Then Ti(p) N S; = {5} y}ogsxs and
Mg (A) ==
(b) 1= 0 In this case 9 = 0, and » L I1(}) (use Lemma 5.9(i)). Then

Ix

@ = ey for some ¢ 5% 0, and I, = I1(A). In this case, we obtain again
Mp(A) = 0 == L

So if supp @ = {A}, then
mp(A) = & limsup(L ~ ) log [p(rA)|.
et L
Now agsume that A is an isolated point of supp ¢ and let u € B; be such

that [bupptp \ {A} Nsuppu = 0 and A & supp(l — u). Set @y = u.p and
g = (1 — u)p g0 that @ = 1 + @z, We have Ti(p1) C Ti(p). Now if
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Syy € Ta(w), let f € Iy, We have (1-u)Sy, = 0so that .57, = fu.5},.
But fu € I, and so f.9;, = 0. This shows that My (A) = my, (A). Also
up = — {1 —wyp, and A & supp(1l — u}p. Hence
limsup(l — r}log |p(rA)] = Limsup(l — r) log [w1(rA)| = my(A).
r—l=

r—s1

So we have the following situation:

(a) If A & supp g, then my(A) = 0.
(b) If A is an interior point of supp ¢, then me{A) = co.
(c) If X is an isolated point of supp ¢ then

me(A) = 1 lim Sllfp(l —r)log |p(rA)].

One would like to get more information, in particular in the case where
supp @ is countable. Also it would be probably interesting to get more “con-
crete” versions of Theorem 5.17 and Corollary 5.18, in particular when h{T),
Or Supp (5, is given by a convergent sequence.
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