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On approach regions for the conjugate Poisson integral
and singular integrals

by

5 FERRANDO {Mardel Plata), R. L. JONES (Chicage, IIl.)
and K. REINHOLD (Albany, N.Y.)

Abstract. Let i denote the conjugate Poisson integral of a function f € LP(R). We
give conditivns on & region §2 so that
lim e+ wv,e) = Hf(x),

(’"!EJ“"’(ILO)
(me)e 2

the Hilbert transform of f at ®, for a.e. @. We also consider more general Calderén—
Zyemund singular inbegrals and give conditions on a set {2 so that

BUP i S k{z + v — ) f(t) dt
{um,r}ed? e

is o hounded operator on L7, 1 < p < 00, and is weak (1,1).

Let f e LP(R?) and let u(z,y) denote the Poisson integral of f. Then
a classical theorem of Fatou [3] asserts that « has non-tangential limits a.e.
on R, In 1984, Nagel and Stein [5] considered more general convergence than
the classical non~-tangential convergence and gave necessary and sufficient
conditions for au approach region 2 so that convergence occurs if u(x,y)
approaches the boundary through the region £2.

In this paper we congider the associated problem for the conjugate Pois-
son integral of a function f, as well ag for more general Calderén-Zygmund
singuldar integrals,

Let k() be a Calderén Zygmund kernel on IR, that is, k(z) = w(z) /|24,
where:
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(k1) w is homogeneous of degree 0 and w € L*°(541),

(k2) its integral over the sphere 54~ vanishes, and

(k3) [k(z+y) - k(z)| < Clyl/|=|* if |a| > 2Jy].

Let k1 (z) = k(z) if |z| > 1 and 0 otherwise, and define k.(2) = r =%k (z/7).
Consider the d-dimensional singular integral defined by this kernel, i.e.

Hi(g)= | fO)hz—1t)dt=F*k(a).

le—t|>r
Given a set §2 C R? x B, consider the maximal transform
HEf(z)= sup |Hf(z+v)l.
v,rE

We will also use the notation
B f(a) = sup |H,f (@), Hf(a) = lim Hof(a),
T
and the standard Hardy—Littlewood maximal function

1
Mf(z) = i‘ilg [B(0,r)] B(é,'f’)

Fo+ 1)l dt

In this paper we find necessary and sufficient conditions on the sets 2
for which H3 f is a weak (1,1) and strong (p,p) operator, 1 < p < ce.
It turns out that such sets coincide with those 2’s for which the moved
Hardy-Littlewood maximal operator

Mpf(z)= su

(u,T)En |B(v,7)] S e+ 1) de

B(v,r)
is a weak (1,1) and strong (p,p) operator, 1 < p < co. Nagel and Stein [5]
showed that a necessary and sufficient condition for Mp £ to be weak (1, 1)

and strong (p,p), 1 < p < oo, is that the set 2 satisfies the following
condition, known as the cone condition.

DeEFNITION 1. We say that a set 2 ¢ R x R+ satisfies the cone
condition if for any «, the set

Qo= {(z,y) e BRI x R™ : (v, r) € 2 such that |z — ¢| < a(y —r)}

has the property that there exists a constant & = ¢ (@) such that the cross-
section set

2a(N) ={z € R*: (z,)) € 2,}
satisfies
|2.(M)f < CA4,
for all A > Q.
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In the first section we show that if 2 satisfies the cone condition then
H }f fand supgy e |Qr # f(z 4+ v)|, the maxima) function associated with
the conjugate Poisson kernel, are weak (1, 1) and strong (p, p) operators,
1 < p < 0. The sufficiency of the cone condition in the one-dimensional
case was already proved in S. Ferrando’s Ph.D. thesis [4]. Ferrando reduced
the problem to the case in which 2 is a discrete set and proved the result
using a covering argument plus a discrete version of the Hilbert transform. In
the present work, we extend the result to R? by using an argument involving
atomic decompositions for functions in I[Q{'frl.

In Section 2, we show that the cone condition is also necessary for H:
to be weak (p,p), 1 < p < o0, when k{x) is any of the Riesz kernels. In
Section 3, we show the existence of the limit of H, f{x +v) as (v, r) approach
(0,0} on a region satisfying the cone condition. We apply this result to the
couvergence of @y f(ir 4 v), the conjugate Poisson integral of f, when (v,9)
tends to (0,0) on an approach region (2 satisfying the cone condition. Lastly,
in Section 4, we apply the results to the ergodic theory setting,

1. Maximal estimates. The proof that the maximal operator Hﬁ is
weak (1,1) and strong (p,p), for 1 < p < oo, will make use of the atomic
decomposition for operators in BEM. This approach was suggested to us by
E. M. Stein, greatly simplifying our original proof.

The atewic decomposition allows us to reduce the problem of showing
that Hﬁ Jis weak (1,1) and strong (p,p), 1 < p < oo, to showing that a
shmpler operator is of the same type.

Let 2 == {(x,y) : (2,90) € 2forsomeyy < y}. Then H}‘ff(:z:) >
H?f f(z), and if 12 satisfies the cone condition, so does {2 because ﬁa = {2,
(see Definition 1). Therefore, there is no harm in working with the extended
st (2 instead, which sitmplifies the proof,

Let I's= {(v,t) ¢ REM o] < £} That is, I is a single cone positioned
at (0,0). Then HE f(u) = 8Py per | Hef (2 + v)| s the standard non-
tangential maxinal fonction for the associated singular integral operator.

TrOREM 2. If £2 sabisfics the cone condition, then

() S 1 FC)P i <2 0, Sy [HE F ()P iz, Jor 0 < p < o0,

(b) [{e ¢ W A fe) > A < el{e € RE HE f(2) > A},

() HiLf(w) < ¥ fla) + Cd)Mf{w), and

() 1 fﬁ I is a weak (L, 1) and strong (p,p) operator, for 1 < p < co.

Proof. Parls (a) and (b) are an application of the results contained
in Stein’s “Harmonie Analysis” [7], pages 68 and 69. For completeness, we
include his argument,
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(a) An atom associated to a ball B C R? is a measurable function o(z,t)
supported in the tent T(B} = {(z,t) : |z| < r —t} C R‘j_'”‘, such that
flalloo < 1/1B].

If H}‘f f(z) € LP(R?*) then we can apply the atomic decomposition to the
function |H, f{z)/?. Hence, to prove (a}, it will be enough to consider the
case where p == 1 and H, f{z) = a(z,y) is an atom. Further, by translation,
we can assume that the atom is supported in T(B) for B a ball of radius »
centered at the origin.

By the properties of the atom a, we clearly have supg, yeq la{z-+v,y)| <
1/|B|. If sup, yyen le(z + v, ¥)| # 0 then there is a (v,yl ¢ {7 such that
(z +v,y) € T(B); that is, [z +v| < r —y. Since (v,y) € £2, it follows that
—z € 1(r) = {4 (r). Hence

{z: sup la(z+wv,y)| 0} < [f4(r)],

GRS

and by assumption, |2, ()| < ¢r?. From this we get

(1) S sup |a,(:c—i-1,1,y)|a?:c5i

[2:(r)| <e.
pe (BVIERN 1B

Since (1) holds for atoms, (a) holds in general (by Theorem 3.2.3 in [7]).
(k) To prove (b) we repeat the same proof, but replace the function
Hy, f(z) by the characteristic function of the set where |H, f(z}| > A.

(c) Tt is easy to see that the operator H# f can be compared with the
maximal operator H# f. Indeed,

|Hofle+v) - Hofl@)l < |fl@—t)] - h(t = v) — k(2)] dt
|i.']>2r
+ | - |kt - )l at

[t—v|>r
[t|L2r

+ b Af@=0)- k)bt

r< ¢ <2r

By property (k1), [k(z)| < ¢/|x|%, thus the last two terms are majorized by

1 .
C(d) W B(Os,zr) |f(93 - t){ dt.

To handle the first term, recall that by (k3), [k(t — v) — k()| < Clu|/|¢[¢*+
if [¢| > 2|v|. Thus, if [v| < r, then

(4~ ) — k(t)] < CWZTI = C®,(t), for |t| > 2r,
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where @,(t) = r=¢$,(t/r), and B1(8) = [¢|7¢7* for [t| > 2. Thus

sup [H,f(z +v) - H, f(z)| < C'sup | f| * &,(z) + e(d) M f(z).
{v,r)el r>0

Since @) is an integrable function on R? which radially decreases at
infinity with an appropriate rate, it follows that SUP,ug | f| * @ (z) is also
dominated by M f(z). Hence

sup |Hy f(z +v)| < sup |H, f(z)] + C(d)M £ (z),
(vir)erl r>0

finishing the proof of (c).
(d) The proof of (d) is a straightforward application of (a), (b)
and (c). w

Let
w_1 T
T w4yl

Qy{w)

denote the conjugate Poisson kernel in R3 . For aset £2 C R%, let Q% f(z) =
BUD(y ey | Qe * f(2 + v)|. With this notation, the corresponding version of
Theorem. 2 also holds for this maximal operator.

‘THEOREM 3. If 2 satisfies the cone condition, then

(8) §ie [QBF (@) d2 < cp o [QF f(2)I? dz, for 0 < p < 0,

(b) He € RY : QF£(a) > M} < ol{z € RE : Q¥ () > A},

(¢) QFf(2) < n 2 [H} F(z) + c(d) M f(2)], and

(d) H#f is a weak (1,1) and strong (p,p) operator, for 1 < p < oo.

Proof. The proof is exactly the same as the proof of Theorem 2. m
2. Necessity of the cone condition. The Riesz kernels in R¢ are
defined by the jth coordinate in the following way:
ki () = wy(z)/|el?, where w;(2) = x;/|z;].

PROPOSITION 4. Let k be a Riesz kernel in RS, If HEf is weak (p,p)
for some 1 < p < oc then £2 setisfies the cone condition.

Proof Recall that
20 = {(z,t) : I(v,r) € 2 such that |z —v| < a(t—~r)}.
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Without loss of generality we can assume k(z) = k1
need to estimate the measure of 2,(A\) = {z : (z, )

Let & > 2ah to be determined and

(z). For a fixed o, we Case 2! r > ol
€ f2,} for any A > 0.

(va —mg) +r+ ————
_J1 f0<p <band |z <arforal2<i<d, |
f(m) - . 1
0 otherwise. :
[ I
Let z € £2,(A) and (v,r) € 2 such that |z — v| < a(A —r). Then / \
t |
‘Hrf('u_m)’: S f(t_("‘]_ ) ;(d)dt \ er b—r
[t>r i
= J _tl—i dt (v ~w2) rp >
[t{>r g
vy —z [ <ty <b4H{v1—31)
It?l*(”i-mi)E(O"\v il
by the symmetry of the kernel. Fig. 2
Case 1: r < al.
Now we will use also the fact that |z —v| € a(A—7), so in particular, r < A
and « € 1. We have
(vg — z3) + X )
Hoflv - )| 2 | Tt
rity <b-ad
[t — (vi—ms )| <ed, i3
(b—aX—r)ar)?!
>
' 2 d) = Tnd
NS e (b — 2))(aX)d-1 1
= _ d-1
(2 —m2) — ar | zdd) =T gyd AT G
if b= 3\
Let
d .
Fig. 1 _ [ e(d)/(8+4d) ifa>1,
. Aler) {c(d at1/(34+d)F f0<a<l
In this case, since |z — v| < al, Then, if H”f is a weak (p,p) operator, we have
' 2, = {2 : Aw,r) € 2 such that |m—-v{<a(/\-r)}‘
Hef(v—a)| > i L [2a(M)} = [{z: 3o, 7)
FE <lHz: swp Hnf(v—z)> Al)}
GALt1<h—ad {u,r)ef?
it~ (v —zi ) <aed, i5l r<A
(b~ 2a2)(ar)? 1 d
>eld = e . 4 — D o O d O A
2 e~ D Ta S o HEf(-a) > Al < g5 /18 = Cldse)

if b =30 Hence {2 satisfies the cone condition. =
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3. Almost everywhere convergence along (2. Let {2 satisfy the cone
condition. In this section we prove pointwise convergence of

im H.f(z+4+v
{v,r)—=(0,0) # )
(v.r)efn

for any f € LP(R%)}, 1 < p < 0.

THEOREM 5. Let §2 C R* x RY satisfy the cone condition, such that
(0,0) € 2. Then, for any f € LP(R?), 1 < p < 0o, we have

lim H.f(z+v)=Hf(z a.e.
(v,r)=+(0,0) oflotv)=Hflz)
(v,r)enr

Proof. Let C1(R?) be the set of functions with compact support and
continuous partial derivatives. Let f € C}{R¢). Then

Hf(z+v)=fehlz+v)+ | fly+o)k(—y)dy

{r<|oe—y|<1}
= I{z,v,7) + Uz, v, 7).
By continuity of f and compactness of its support, I{z,v,7) — f* ki(x) as
{v,r} — (0,0). For the second term, notice that by (k2),
k(z —y)dy =0,
{r<|z—y|<1}

thus

(z,v,7) S[f(y+v)

Since the differential of f is continuous of compact support, the integrand
is majorized by

o+ )k(z — Y)xir<pu <1} (e — v) dy.

el — y| M X qocu <y (z — 1),
which is integrable. And, as (v,r) — (0,0), the integrand converges to

[F(y) — f{=)]k(

From these two estimations,

H.f(z+v)=Hf(z) forallz.

X{n<|ui<1}(Z -~y

lim
(v,r)—(0,0)
(v,r)eR

Now let f € LP(R4). Given £ > 0 choose g & Cl(]Rd) such that
If — allp <e. Let

icm
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Af(x) == limsup H,f(z +v llmmf H T+
(v,7)—={0,0} f )= {v,r)—(0,0 K -
(v,r)EN (v, r)eﬂ

Then, Af = A(f — g) and, by Theorem 2,

a2 4f@) > o}l = [{z: AF ~ g)(o) > o} < S5 g < T,
Since € 13 arbitrary, the limit

lim H.f(z++
(v,r)—{0,0) o)
(v,r)ER
exists for almost every .
Similar arguments show that
lim . H.flz+v)=Hf(z) ae m

(v,r)—(0,0)
(v,r)E02

THEOREM 6. Recall that
1 T

Qy(z) = ~

L -+ .y2

denotes the conjugate Poisson kernel in R%. If 2 satisfies the cone condi-
tion, then

lim Qe flz+v) exists for a.e. z,
(n,e)=(0,0)
(v,e)EN
and is equed to H f(x).
Proof. This follows from Theorem 3 and the fact that
lir Qe * () = H f(z)

(by argunents similar to those in Theorem. 3). m

4. Hilbert transform for measurable flows. Let (X,8,m) be a
a-tinite weasure space and {7 }yepe 8 weasure preserving action of R¥ acting
on X, which is jolntly measurable from R x X to X. We will now consider
the truneatod ergodic singular integrals

Hif(z)= | flna)k(t)dt, feIP(X),
re|t]<L/r
and the related moving maximal operator

HY = sup [HLf(r2)l.

(w,r)ef?
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The singular integral results obtained in Section 1 can be translated to
this setting by means of a Calderén transfer principle. However, we first need
to establish a modified version of the results in Section 1, for the truncated
singular integrals.

Since we are interested in the limit as (v,r) — (0,0), in this section we
will assume that for all (v,7) € {2, we have r < 1.

COROLLARY 7. Let 2 C R x RT satisfy the cone condition. Then

sup ‘ | fla+vo+ok(t)de

W€ et <afr
is a week (1,1) and strong (p, p) operator for 1 < p < 00,
Proof. The result follows from Theorem 2 because
| fa+o+ k() dt| < | Hofa+v)| + [Hyef(@ o),
r<lt|<1/r
and {(v,1/r) : {v,r) € §2} satisfies the cone condition if r < 1. m
PROPOSITION 8 (Transfer principle). Let {2 C R x R* gnd 1 < p < oo,
If
sup | o+ +ik@)d
)&l i< /r
is a weak (p,p)} operetor in LP(R), then Hb# [ is a weak (p,p) operator in
IP(X).
Proof Fix M > 0 and let N = 3M. Given f € LP(X) define
palt) = {f(’ftl') if |¢] < N,

0 otherwise.
Then, for almost every x, we ¢, € LP{R?). Indeed,
§ VeI dtde= | {|f(ra)Pdodt = c(d) N9 £]2,
X g |t<N X
because the flow is measure preserving.
Let 2n = {(v,r) € 12:|v| <M, 1/M <r < M}. Then

Jg{ |{|s| <M s ‘ r<|s+u§—t|<l/r 0o (1)E(s +v — 1) dt\ > A}‘ dir

c , o
<% }S{ lsll? < cl@N 11l

Let

A={(z,s) € X xR¥: sup |
()8 T apy—t| <1/

o (t)k(s+v — 1) dt‘ > A}

icm
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Notice that if (v,7) € {4, |s| < M and |t| < 1/r, then f(rypepsz) =
@y (v + 84 t) because 3M = N. Thus,

el
pe (1,r)ELn r<|stu—t|<l/r

2 S S Xa{Z: 8)X{|u<pry(s) dz ds
R X

Z S m(m ¢ Bup lH:"f(Tv-!-.sm)i 2 }‘) ds
<M (v,r)ENRM

Ve (B k(s +v ~1t) dtl > A}ldm

=co(d)Mm(z: sup |H!f(mz)| = N).

('Uv"")e M
Since N = 3M, we obtain
. ; 34¢C »
m{z:  sup |Huf(ma) > A) < ——|If]5.
{w,r)eR P
The proposition follows by letting M — co.

ConroLrary 9. If 12 satisfies the cone condition, then H ;f f is a weak
(1,1) and strong (p,p) operator for 1 < p < co.

Proof. This follows from Corollary 7 and Proposition 8. m

TueorEM 10. Let £2 ¢ REXRY satisfy the cone condition and (0,0) € £2.
Then

1i H. fry
(1) {0,0) f(72)
(v,r)ef2

exists a.c. for all f ¢ LP(X), 1 < p < 0.

Proof, It suflices to prove that

Ry, (1) 1o S

re|t| <l /r

couverges in LY (RY) ag (u,7) — (0,0), (v,7) € Q, for any ¢ € CF(RY)
satisfying {, ddy = 0. Indeed, let

k() p{u —v —t) di

0= {he LX) : hiz) = {g(ra)plt) b g€ IX), p € CAR") .
Then

Hyh(rz) = SQ(Tem)kv,r¢(3) ds.
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The orthogonal complement of ONL?(X) consists of the invariant functions
under the action (see [2]). Thus the theorem would hold for a dense class of
functions and then the result would follow for all functions by an application
of Corollary 9.

Let us introdiuce some notation:

_fkls—v) ifr<]s—ul
Kry(s) = {0 otherwise,
o [k(s=v) ifr<]s—v<1/r,
o,ns) 1= {0 otherwise.
Hence
S f(u—v—s)k(s)ds’z | S F(s)k{u —v — 8) ds‘
r<|s|<1/r r<lu—v—8|<l/r

= [ ko = )7 ds| = [y = £00)|-

The L*-convergence of k,, .y *¢ follows from the following two properties:

(A) K(y, * ¢ converges in L*, and
(B) ”k(u,r) * ¢’ - K('u,'r) * d’”l —+0asr—0.

Property (A) follows from Lebesgue’s Dominated Convergence Theorem.
By Theorem 8, K, » * ¢ converges a.e. Assume that supp(¢) € {|y| £ L}.
Then

e(d, L
| K g,y * P (0| < (CX{y.::zL}(u) + "‘““(T;!“E_Jr—l)xkd\{wmu,}(u)) e L'(RY).

First consider |u{ > 2L. Then, using the basic properties of ¢ and Kivr
(recall (k2)), we can compute (for (v,r) small enough)

[ % 300 = | | Uy (0= ) = Koy (w)]6(5) s

< S |K(v,r)(u ~§) - K(v,v')(u)l - |¢(s)| ds

8|S K
< | Iklu—v—8) =k —v)|- |¢(s)] ds
lsl<K
d41
<o | pdimleias el o,

|s|< &

by (k3). Here ¢ = ¢(¢).
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Consider now |u| < 2L. Taking (v, r) small enough we get
‘K(’ur)*‘i’ | - ’ (v,r) s)¢(ﬂ—8) dSl

““ ur)S—v¢>(u+’u—s}ds‘

Tl §| Ts(ld)qs(u“v_s)ds
4L>|s| 2w

< S #M(uhwws)—qb(u—u)ldsgc
4L 8| Zr

(where ¢ = ¢(¢)) because the differential of ¢ is continuous of compact
support. This ends the proof of (4).

To prove (B), assume supp(¢) € {ly| < K}. By definition of Ky, and
k(v,» we have

k(u,'r') * (/.‘)('U,) - K('u.r) * qb(“) = kl/’r * ¢(u - 'U)'
Now Ky xp{u—v) = 0if u € Sy = R*\ {u: ju| < 1/r— o — L}
We cau choose (u,v) small enough such that u € S,y implies |u| > 2L.

Then a similar computation to that in (A) gives [k, * ¢(u)| < ¢/|u[**. In
summary,

C
|k(1r,*r') * ¢(u) - -K('u,r) * (/)('U‘)i < X8um (u)]kl/v- * ¢(u - 'UH < X5 (u,r) (u) luld_l-l .

Hence
“k(v,r) * ¢ — K(«u,r) * ¢)Hl —2 (0. m
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On invariant measures for power bounded positive operators
by

RYOTARO SATO (Okayama)

To the memory of Hisao Tominaga

Abstract, We give a counterexample showing that (J —T™)Leo N LY = {0} does
not imply the existence of a strictly positive function » in Ly with T = u, where T is a
power bounded positive linear operator on Ly of a o-finite measure space. This settles a
conjecture by Brunel, Horowitz, and Lin.

1. Introduction. Let (X, X', m) be a o-finite measure space and T a
positive linear operator in Ly = Ly(X,Z,m). T is called a contraction
if |7 € 1, power bounded if sup, |T"| < oo, and Cesdro bounded if
sup,, |[n~t 305, TF|| < co. Many ergodic theorems for positive Ly contrac-
tions require the existence of a finite invariant measure equivalent to the
original one, i.e., a strictly positive v € Ly with Tu = . This problem has
attracted many top researchers, and one of the conditions equivalent to the
existence of such a w € Ly, obtained by Brune! 1], is that
(1) (I =T") Lo NLE, = {0}.

For any T positive and Cesdro bounded, condition (1) is seen, by using the

known fact that n~"||T"| — 0 as n — oo, to be equivalent to the following

condition;
(3

L rpmk
- g T 4
Sucheston {7] started a systewatic study of power bounded positive linear
operators in Ly, and Fong [4] studied the problem of existence of strictly
positive fixed points under an additional assumption of a null disappearing
part. The problem in general was studied by Derriennic and Lin (3] (see
also Sato [61), who proved that for any T' positive and Cesaro bounded, an

(2)  limsap >0 for any A € I with m(4) > 0.

H.
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