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Absolute continuity for elliptic-caloric measures
by

CAROLINE SWEEZY (Las Cruces, N.Mex.)

Abstract. A Carleson condition on the difference function for the coefficients of two
elliptic-caloric operators is shown to give absolute continuity of one measure with respect
to the other on the latersl houndary. The elliptic operators can have time dependent
coefficients and only one of them is assumed to have a measure which is doubling. This
theorem is an extension of a result of B. Dahlberg [4] on absolute continuity for elliptic
measures to the case of the heat equation. The method of proof is an adaptation of
Fefferman, Kenig and Pipher’s proof of Dahlberg’s result [8].

The purpose of this paper is to prove the following Theorem 1 on condi-
tions for elliptic-caloric measures to be absolutely continnous on the lateral
boundary of a cylinder domain in R*!, After determining that B. Dahl-
berg’s condition for two elliptic measures to be absolutely continuous 4]
adapted readily to elliptic-caloric measures under the conditions of Theo-
rem 1, it seemed highly probable that the same result should be valid on
the entire parabolic boundary of a cylinder domain. This extension of The-
orem 1 is indeed true: A Carleson-type condition can be defined across the
bottom of the cylinder, as well as on the side, for the coeflicients of two
operators Lg, L, (thus obviating the condition a;; = by; if ¢ < 52) and again
using the method of proof of Fefferman, Kenig and Pipher [8], the absolute
continuity of the associated measures can be deduced on the whole bound-
ary. This extension of Theorem 1 appears in a later paper, along with the
technical adjustments to its proof [12].

Also the center-doubling condition assumed for the measure wg in The-
orem 1 needs some comment. A measure wy, satisfies a center-doubling con-
dition if

wr, (A (@, 8)) € Cwr(4:(Q,8))

where

for all r < rg, A.(Q,s) S 87 Dr,

42:0Q,8) = {(z, ) ||z - Q] <, t—s] <r?}N 8D,
1091 Mathematics Subject Clessification: 35K20, 42825,

fos]



96 C. Sweezy

and C is independent of r and (@, s}. The doubling condition for an elliptic-
caloric measure has been shown to be crucial 7] for proving the existence
and uniqueness of a kernel function, geomestric decay for the kernel and the
comparison of the non-tangential maximal function of a solution with the
Hardy-Littlewood maximal function (see also [9]).

Since this paper was written I have been informed that M. Safonov has
shown all elliptic-parabolic measures to be center-doubling measures. If his
result holds for the measures associated with operators 8/8t — L where
L’s coefficients are only assumed to be bounded and measurable, then the
assumption in Theorem 1 of wy being a doubling measure is, of course,
unnecessary. Also since wy would automatically be doubling, the conclusion
of the theorem is strengthened: the two measures are A with respect to
each other. The A% condition is stronger than absclute continuity. (See the
end of Section 1 for what follows only from the Carleson condition.) It may
be of some interest, however, that the proof of Theorem 1 only uses the
doubling condition for one measure.

1. Background. Let Dy = B{(0) x [0, T] be a domain in K™+, where
B1(0) is the unit ball in R™. Let 8/8t — Ly and 8/8t — Ly be two operators,
where

n

=8 8 5] b3
Lo= ) gm—i[aij(m,t)a—%} Li=) a—mi[bz'j(wat)—]

Oz ;
ij=1 i,5=1 J

are strictly elliptic operators in divergence form with time dependent coef-
ficients and ellipticity constant A. Denote by v; sclutions of

(3/6t o L-g)’u..,; =0 n DT,
uiprDT == f: 1= 0:13
and by wg and wy the associated caloric measures. Fix (Xp,T) € Dy and

take w; = ng"’T). The Green'’s functions are Go(z,t;y, 3) and Gq1(=,t; ¥, s).

Here ug and u; are weak solutions; they lie in the Banach spaces L2[0, T;
WLE(D)] N L*°[0,T; L3(D)), so that Vyu; and dF/dt ete. exist as distribu-
tions, Almost all arguments involving these functions as Scbolev space func-
tions have been omitted; expressions such as LoF and div([e;;]Vuz) are to
be understood in the appropriate sense, using integration by parts formoulas
and/or as limits of smooth approximations in the local L? norms.

Set

sij(m,t) = (Iij(:c,t) - b

'ij(x:t):
e(@,t) = suplay;(z, 1) - biy(z, 1),  aly,s) =
ij

sup ez, )],
(m:t)epﬁ(y,s)/E(yas)

where d(z,%;y,5) = |z — y| + |t — 5|*/? is a parabolic metric, |z — y/| is the
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Euclidean metric in R® and
pDr = {(z,t) |z € 8D and t > 0} U{(z,t) |z € D and t == 0}
= 8 Dy U(D x {0}),
§(z,t) = d(z,t;8,Dr),
Py, s) = {{z,t) | |zi —wi| <r, [s—1] < r*}.
If {Q, s) € Op Dy then we set A(Q, s) = 9, D N Pr(Q, 5) and
A(Q,8)=(Q+rs+2r2), A(Q,s)=(Q+rs—2r7).
For the purpose of localization take ry > 0 fixed and define
Ta(@Q8) = {(1,t) | d(y. £ Q,8) < 0b(y, 1), |y~ Q <o, [s 1| < rE},

F(z,t) = ui(m,t) — up(z,t), Na(u)(@,s)= sup u{z, )|
(z,t)Ela(Q,s)

Then

~ 1
Rn@a)= s (e

@aera@a \Faea/a@ il ﬂx,@(m,ﬂ
1

oy wonl( ALY V 38 d&.l , 8
(w,t)EpAv wo(Ar) AS,| (y,8)| dwo(y, s)

2

P}

1/
|E'(y, 7) {2 dy dr) ,

ng (V) (:L‘, t) =

and

1/2
S |Vu(z, t)?6(z,t) " d dt)

T (@,8)

are the averaged non-tangential maximal function, the Hardy-Littlewood

maximal function and the Lusin area integral.

Let I'(Q, s} = I1(Q, 8), Su)(Q, s) = $1(w)(Q, 5), N(F) = N1(F), etc.

THEOREM 1 [8, 10]. With L1, Ly and a(z,t) as above, assume that
aij(z,t) = by(z,t) for t < &3, = € D, and there is a constant gy > 0,
where g can be taken sufficiently small, so that forr < ro,

Sa(u)(@,8) = (

1
O @R, o (wdm(cz,s))

Go(Xo,T;z,1t) 172
2 5 <
X S a{z, 1) A dx dt < eg-
Pr(le)nDT

Then if wy satisfies o doubling condition, then wy is absolutely continuous
with respect to wo on 8F Dr ().

() The condition that as(x,t) = bi(z,t) for ¢ < 62 can be removed and a similar
result proved on the entire parabolic boundary [12].
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Proof. The theorem is proved by obtaining the inequality
(D) “N(“1)||L2(dwo,a;rDT) s

(see Section 2). Then the absolute continuity of wy with respect to wg follows
from writing

O||f||L2(dw0:8pDT)

IV () 2o, 5 Do)

= 1 s ful)Pdei™0(Qs)

5'3"-9? (= t)el'(Q,s)

= [ e

B;—DT (m,t)Gf‘(Q,s) apDT

70,9 du™(0,9)] ™ (@, )

v

[ up G

A(Qouso) HENET(@) 5 DAL (Qo,s0)

(m,t)
b —WW(XD,T) (Q )d (Xo, 2 (Q, )] dw((,XmT)(Q, S) —

for any A, 50) C BF‘,'“ Dy, where dwgm’t) / dw%X"’T) is the Radon-Nikodym
derivative. This exists by results of Besicovitch [2] even though the kernel
function for 8/3t — Ly may not be uniquely defined unless w; is known to
be doubling.

For (Q,s) € A(Qo, s0) and I' = I'y a cone of sufficiently wide aperture
one can pick (z,t} ~ 4,(Qo, s0) so that (z,1) € (@.8) €A Qo,e0) L (@) 8).
The parabolic measure w; is an additive set functmn which satisfies the
necessary conditions to cbtain the existence of the Radon—Nikodym deriva-

tive (dwgm‘t) / dw%X""T))(Q, 3) as the limit of ratios of measures of boundary
disks

o 7 (A:(Q, )

lim XouT) .

O™ A(Q, )
These conditions were first established by Besicovitch [2]. The fact that Har-
nack’s inequality holds for wi™" (A,) means that wl® *(.) and w0 T () are
absolutely continuous with respect to each other, so

Aot A ) o i A (8(Q,5))

~

— m
dw:(lXO,T) e—0 (Xog (A (Q,E))

L T W0(A,(,3))
"“"”(A 4,9)
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Hence for any points (@,'s‘), (@,8) € A{Qo, s0),

sup dw(m £) (Q 5> o Ar(Qo.50) (AE(@’ )
(z,)€la(Q,5) duwy Do = ng’T) (4. (Qa 5))
C

WAL (Qo, 50))

The second inequality follows by applying Corollary 1.2 to Theorem 1.1 in
Fabes, Garofalo and Salsa [7).

For E any measurable subset of A.(Qg,sq) this gives

I> | [ | #7839

An(Qo.80) " An{Qn,50)
o
Wi (Awr(Qo, 50))

> Cwi™ T AQo, So))[

2
dwi’fc,T(Q, E):l dw(()XO’T) (Q: S)

TN E N A Qo Su)r
WFOTN Ak (Qo, 50))
when f is taken to be yxg. Then using

[N () |13

X, T
HLz(dwu,S{,"DT) = Cwl() ° )(E n Ar)

2
S H‘fﬂLz(dwo,agDT)
gives the A® type condition
w1 E) < G( wo(E) )1/2
wl(A4'r) o wO(Ar) ’

where E C center quarter of A4, (Qq, s0). This restriction prevents obtaining
wy € A%®{w;) unless wy is a center-doubling measure. 3o wy doubling is not
sufficient to give a doubling condition for w;.

2. Proof of (D). The proofis an adaptation to the elliptic-heat equation
of the proof of Theorem 2.5 in [8], so details of the argument will frequently
be omitted.

From the results in Doob one can write
Fz,t) = ui{x,t) — up(z,t) = S V,Gole, ty, 5) - [6i5(y, 8)Vyua(y, s) dy ds

Dp
by using the Riesz decomposition for the parabolic operator 8/8t — Ly in
Dy (see [6]).

The integral form for the difference function u; — up can be used to
prove the following two lemmas (these are parabolic versions of Lemmas 2.9
and 2.10 of [8]).
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Lemma 1 [8, 101 We have N(F)(@, s} < CreoMa, (S(w)) (@, 5) and
Hﬁ(‘st)llLﬂ(dugﬁ;‘DT) < 0350||5(“1)||L2(dwu,B§DT)‘
LEMMA 2 [8, 10]. We have
”S(F)HLﬂ(dwaﬁ;DT)

< C4(HJA\';(F)“L2(dwg,Bg‘DT) + 1NV EVF) oo 08 D2y T 11123 (0,0, D7)

Here C; = C; (A, n,T,&), © = 1,3,4. Then using Lemmas 1 and 2 in
addition to the inequalities

(1) 115 (10) | L2(dwo,8,00) < ClIF |12 (di,85 D)
(2) [N (uo) | 22 (dwo,8,D2) S C'lI Fll 22 (do 8, D7)
the result

HN(”I)”Lz(duo,a;DT) < CH”fHL?(dwo,BpDT)
follows by the same argument as in Fefferman, Kenig and Pipher [8, p. 78],
and the fact that N,{u;)}(Q,s) < ﬁﬁ (u;)(@, 8) since u; are solutions, i =0, 1,
B > a, B sufficiently large.

To prove (1) use Green'’s theorem and a standard argument on the area
integral in a bounded domain [5]. It is necessary to use the doubling condi-
tion for wq here,

To prove (2) use N{ug)(@,3) < CM.(f){Q,s), which follows by the
argument in [7] and a standard argument for the Hardy-Littlewood maximal
function [11]. Again wg must satisfy a doubling condition to obtain the
comparison of N(ug) with Mu,(f).

Proof of Lemma 1. Fix (Q,s) € 8 Dr, and (z,?) € I'(Q, ), and
break F(z,7) into two parts when (z,7) € Py(a,)/4(2,t):
F(z,7) = Fy(z,7) + Falz, 1)
= S VyGo(z: 75 9, 8) - g3 (w, 8)|Vyu (y, 8) dy ds
Pra, ) 72(2,t)
+ S VyGo . [Eiﬂvyul.
Dr\Pyq, 3 /5(Est)
The second integral is further broken into integrals over the regions
29 = Pz /202" t"),
28 = (Pyi-15(2,8) (2%, ")\ Pas-25(0 1y (2", 1))
N [Dr \ (I(Q,8) U Psgz 1y/2(2, )],
02} = (Pain1g(a,e) (2%, " N\ Pas-ag(z,8y (2", £*))
NI(Q,8) N (Dr \ Ps(a)/2{z: 1)),
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for j=1,...,N and Né(z,t) ~ 1/8, and the region

N
2
2° = (DT\ U .Qj) M (Pg{m’t)/z(w,t))c.
J=0
Here (z*,1*) is the projection of (z, ) onto 85 Dy (sot =1*). Set RYUN} =
§2;. As can be seen, D \ Pszyja(m,t) = U;];\;o 02; U022,
To estimate N(F)((, s) the averages

( 1 S . 1/2

P t r , ) y &
l E(W:t)/4($’ )I Pﬁ(m,t)/‘lcm’t)
are used.

Lemma 1 is proved by essentially the same argument as the proof of
Lemma 2.9 in [8]. First the Fy(z,7) term can be estimated by the following
adaptation of their argument.

For (z,7) € By na(2: ) with |e(z,7)} < €0, let éo(z,v";y,s) be the

Green’s function of the domain Py, 4 /0(,t) and let -

K(z,'r;y,s) = GD(Z: Y, 5) - é(](z17—;y> S)
and

Filz,7) = S V,Golz, 759, 8) - [e43(v, 8)|Vyui(y, s) dy ds
Fs(z,vy2(@:t)
and

Fu(z,7) = Fi(z,7) - Fi(z,7).
If (y,5) € BpPy, 1y /2 (5:t) then Fi(y,s) = 0, and
LoFy(z,7) = + div({ess (2, 7)] Vyua (2,7)xp

e s BTN+ (BF1L/88)(2,7),
for (z’T) € Pﬁ(m,t)/‘ll (z,1).

Using the argument on p. 82 of [8] one can obtain

5(2.2) - )
N (Wm g |wr1|) < CeoS(mQ, 5)

s (i, t) 4 (52)
since

o .\
(IPﬁ(w,t)M(w,tﬂ b ‘ | FY) )

s34 (58)

| 1 o\ W/2
<0tte) (g, 3 AP)

8o,y /4 (F18)
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by the Sobolev inequality and since
S IVF1|2 ﬁ A S Vfl ' [G;gﬂVﬁl
Pso 374 (2:t) Pssa
= )\[ S div(ﬁl[aij]Vﬁl) - ﬁlLoﬁl}
Psya
= -x | RLF
Frra

using strict ellipticity and integration by parts on { Ps/a div(f’l [aij]Vf'l).
S0 it suffices to estimate —A S Pasa l?ngﬁl. Using the identity for Lok the
estimate becomes

RN = A ¢ OF}
—A S FiLoF = — A S Fy div([ei;[Vuixes,,) — 3 S e
Pssa Byy Pﬁf-'l
= = )\ S div(ﬁl - [E,;j]vul)(psn)
Psja
+ A S VF1 . [eij]Vulxpm
Pga
A ~
D) Fy(y,50)" dy

Psjan{s=t+67/d=30}
<A | VR[5 Ve,

Fs4

§CEU( S |v1}“‘l|2)1/2( S |Vu1|2)1/2

By ja Pssa

Dividing by (SPa/a IV§1‘2)1/2 gives

1 ~ 1/2 1 1/2
— VF 2) < Ce ( Vu 2)
(1P5/4LP§MI ll 0 |P l ‘ \ 1l

Psya
or

1 ~ 1/2
(m P}ﬂ IF1I2) < CegS{1 )(Q, 3).

Now

Fi(zry= | VE(z,759,8)[e5(, )] Vualy, s) dy ds,
Pote,iy/2lz,t)

Elliptic-caloric measures 103

80

|F1(z,7)| < &0 S [Vy K| - [Vyuil
Ps;2

< s (1 ey taas) (| wasp)”

Pygra Pysn

using Cauchy—Schwarz and the energy estimate on ({ Py s |V, K& |?)1/2. This

is legitimate since (8/0¢ + Lo) K (2, 7;y,s) = 0 for (y,8) € Ps(z 4)/4(z,t) and
(‘:z, 7) fixed. Now using Harnack as in [8] and Aronson’s estimates on Gy and
Gg, the above is

Ce 1/
§ 5( 0)|P5(mt /2(1" t | 1/2 S \K(Z!T;yas)ldyds : ( S lvullz)
P35(m,t)/4 Ps/z
£ 1/2
< 0 5—(n+2)/2 s I 2
<C5y 525 (PL Vaa!) " < CeoS(un)(Qs5).
Altogether

N(F)(Q,s) < CeoS(u)(Q, 9).

Next Fa(z,7) is estimated pointwise by estimating the integrals over (2,
22,025, and (2* separately. The regions 29,2}, and £2? are handled by
the stopping time argument of [8] adapted to parabolic functions, likewise
the estimates for the regions (2} inside I'(Q, s) follow from the same proof
as in [8]. The adaptation to Dr and elliptic-caloric operators, their solu-
tions and Green’s functions is routine. The stopping time argument for
S V,Goei Vyuy is included in an appendix to this paper for the sake of
completeness Otherwise the arguments are omitted. The tools used in the
parabolic case are the Carleson condition (C) of Theorem 1, the energy
estimate in place of Caccioppoli’s inequality, Aronson’s estimates on the
Green’s function Gy [1], Holder continuity for solutions vanishing at 6; Dr,
local comparison for solutions vanishing on the boundary and the estimate
in Theorem 1.4 of [7]. All these results hold for time dependent operators;
it is necessary, however, to use the doubling property of the measure w?“’T
and backwards Harnack on Gp in several places [1, 7}. For example, to obtain

g | S)(@3) dwi"(@,8) < CaoM o, m (S(w2))(Q, 5)
22N, D °

in estimating Fy(z,7) one needs to have geometric decay on the kernel func-
tion for the operator 8/t — Lp, only known to hold for the associated
measure wq being a doubling measure.
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In short, it is impossible to use the proof of [8] unless one measure is
assurned to satisfy a doubling condition.
The dyadic surface “intervals” in 8, Dy are always taken to be parabolic
“cubes” of dimension ¢ X2 in space X time as is usual for the heat equation.
The estimate for N(§VE) can be obtained using the same averaging
technique in the space variable used in [8, pp. 87-88]. For the V, terms,
averaging in the space variable is all that is needed. However, an identity
for FLoF brings in a time derivative which must be estimated in time and
space. Specifically, if r = §(z,t) and Br(z, 1} = {(y,1) | |2 — y| < r}, then
1 |
P t
I 6(2’”/2(1', )l Prim,eyp2{mit)
82 =3
6(3}, t)2 t+84/4 1 p=3r/4

N g e
3 e |
&(z, t)m* z—63/4T o=r/% By(w,s)

16(y, 8)VyF(y, 5)|* dyds

1 96% /16 g=3r/4 t+a

< ol 52 S S S S |V F(y, 8)|? dy ds do de
§2/4 p=r/2 t—a By(z,s)

Q

C

< 5ors Wi (ZoF? —2FLoF).

The integral of LoF? can be bounded by CN,(F)(Q,s)NL(6VF)(Q,s) by
the same argument as in [8].

Since
—QFLoF = Fdiv(eVu,) — 8F? /8¢,
again the integral of F div(sVu,) can be shown to be < Ceg(Na(F)(Q, s)

No(§VEF)(Q, 8))S4(11)(Q, ) as in [8]; the only new term is

c 952 /16 g=3r /4 t1ox

) 1|

62/4  g=r/2 t—a By(=,s)
962 /16 g=3r /4
c /16 g=3r/

T

§2/4 p=rj/2 By(ztta)

———dydsdoda

DF?
) &

(Fly,t— )’ — F(y,t+ a)’| dy dodo

4562716
o'

— §n+2

< J |
t—962/16 Bg,./4(m,a)

F(y,s)? dyds = C(NL(F)(Q, 8))?,

where r = &(z, ).

icm
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Altogether

(F)  (N(EVF)Q,9) < ClNL(F)(Q,5))”
+ Na(F)(Q.9) - Na(BVF)(@, )
+ e0Na(F)(Q, 5) + Salu1)(@Q; 8)
+20Na(6VF)(Q, 5) - Sa(m)(Q, 5)].
Then a standard argument allows one to remove the larger cone Iy in
taking L2 norms. Also N,(6VF)(Q,s) < oo a.e. duwo.
By the first part of the lemma ]V(F)(Q, 5) < eoMu, (S(11))(Q, s) so (F)
gives
Hﬁ(‘SVF)HLz(duo,a;DT) < 50||S(“1)HL2(dwo,a;fDT)-

The proof of Lemma 2 follows from an adaptation to the heat equation of
the proof of Lemma 2.10 in Fefferman, Kenig and Pipher [8,10]. Once again
there is an extra term involving a time derivative which is easily handled by
averaging.

Proof of Lemma 2. Fix 8 > 0 (to be chosen as indicated below)
and remove the core By, (Xo) x [62,T] = Ds,,7 from Dr:

| (S(F)@, 80 ™ (@)
8 Dy
= S S |VE(y,7)26(y, ™) " dy dr duwo(Q, 5)

BS'DT I(Qs)

< | IVF@, )6y, 7) " wo(As(em (v", 7)) dy dr
Dy

- § e

Dr\Dgy,r  Dsg,r

< | |IVF@7)Go(Xo,T; y,r)dydr
Dr\Dsy,r
+ S |VF(yaT)|26(y=T)‘nwﬂ(Aﬁ(y,T)(y*:T*)) dydr.
Dsgr

It is easy to see that the second integral is bounded above by
CIN(EVF)Ea (o)
The first integral is
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(%) | IVFy,m)PGo(X0, T; y,7) dydr
Dr\Ds,,T
<C) | (GoVF [A]VF)dydr
DT\DEQXT
1
=c(ny | §GOLO(FZ)-GOM,DF),
Dr\Dsyr

which equals, using the identity LoF = — div([e;;]Vu;) + 8F /8t and inte-
gration by parts,

1 1 -
"—T— S {C(A) S §GUL0(F2) = S GoF - [Eij]V'Lu -n
oy Dr\Dsy,r 8Dg 7
aF
= | V(GoF) [V — | GOFE].
Dp\Dgg, De\Dsg,m

The middle two integrals are bounded above by

e

Dr\Dsy,

(IVGal - [F[-|e] - [Vua| + [Gof - [VF| - le] - [Vus])

+ |

BF Dsy

|Gol - |1F| - le} - [Vuz - 7.

These integrals can be estimated as follows (see {10]):

J 1Gol- 1P| Jel- [Vur -7l < Ceo | N(F)NQ,5)S(u1)(Q, ) dwo(Q, )
8 Dsy 7 8F Dr
by averaging and an argument similar to the one estimating the boundary

integral in the proof of Lemma 2.9 in [8], and

| IVGoFeVuy|
Dr\Dsy,r

1/2
<Ceo | | | FlumIVuly, )%y, 7) M dydr|  dwo(Q,s)
afpr I(Q:s)
by using the stopping time argument on the first integral with F'Vu; in
place of Vu;.
Then using the fact that -

No(F)(@,8)=  sup
(z,tyela(Q,s)

|F(z,2)]
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and for 8 > o fixed,
[F (2, )] < [z, )] + lug (2, 1)
c(____l 5 2 VR
< |1 (y, 8)| dyds)
P H
| Ps(a,2y 2 (2, £)] Paerspolent)
+ CNa(uo)(Q, 5)
< C(Ns(F)(Q, 9) + Np(uo)(@Q, ))
plus the inequality (2) we get

1/2
Ceo | iS F(y, 7 Vua(y, 7)*6(y, 7y " dydr|  dwo(Q, s)
o Dr T(Q:s)

<Ceo | [Na(F)Q )+ Na(uo)(Q, 5)]S(u @, 8) duo(Q, 5)
8F D
< CeoliN () pagaun, o by + 1511 22d0,8, 0] - [18(1)] 220 08 Dy
For { Dr\Dsgr Go|VF|. le| - |Vu| a slight variation of the stopping time
argument (Cauchy-Schwarz is used on {,. |VF|-|Vu |6~ instead of being
used at the beginning on {,. Go|VF| - |g| - [Vuy|; see Appendix) gives an
upper bound of ’
o | NEVF)(Q,9)5()(Q,s) dwo(Q; )
3t Dy
< Ceal NV ) 12 a5 Dy 1511} 220 80D -

Finally, the first and last integrals in (%) can be combined to give

1 AF?
cy | 5Go [LDFQ—W}
DT\DISB,'I‘
=O(A)( | GolAdvE® - | [AD]VGD-nFZ)
B} Dy, 7 8 Dsy

8

+ ((§+L0)GO)F2

De\Dsy,1

+ ( |
DgU'Tﬂ{txé'g}

-(

(D\Ds,,r)N{t=T}

Go(Xo, T v, 63)F(y, 63)° dy)

Go(Xo, T3, T)F(y, T dy) ).
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The first three boundary integrals can be estimated as before to obtain
upper bounds of

I () 12ty |V 6V F) 3y + IV 2y

using averaging in the space variable and the time variable. The remaining
two integrals are < 0 since (8/8¢ + Lo)Go(Xo, Tsy,8) = 0 if (y,8) € Dr \
Do

Note. &y must be chosen so that

So-+m
| Gg[Ag]VFlﬁ‘gC% S( | Go[Ao]vpz.ﬁ)dﬁ

ag—DED,T bo—mn ‘SITD,G.T

VGD[AO]F2 and Saﬂa |G{) |Fi l | [V'LL1| to
allow averaging in the space variable—or averagmg can be done when the
time average is introduced as in (%), in which case no restrictions on §y are
necessary.

Altogether
IS (E) 173 dws)
< Ceo[| N(EVEY 12wy + I N () n2¢dwe) + 1122 awny] - 1502l 22 (dwe)
+ IRV ) 220 |V (F) |2 ) + 18P 122 (-
Writing

and likewise for { 84 Ds,

18 (sl 22 (o) < ISF)|2atauwo) + 1S (o)l 23(dws)
< IS(F) zatawey + Cll Fll 22¢duwo)
by (1), for ¢ sufficiently small the conclusion of Lemma 2 follows.

Appendix. The basic stopping time argument for parabolic
functions [8]. Let (Qo,s0) € OFf Dr, Ar(Qo,50) C 6"'DT and (x,t) €
To(Qo, 50), let (z*,£*) = the pro;|ect10n of (z,t) onto 8 DT (see Section 1
for deﬁmtlons) Define

20 = {(y,8) | d{y, s;2", ") < 8(z,8)/2} N Dy,

Ag= 1N 6};"DT ={(Q,s) ¢ 8;’DT | (@, sz, t*) < 8(z,1)/2}.
Then {2; can be covered by parabolic boxes whose dimension compares with
their distance from 8; Dp and so that the projection of such a box cnto
83 Dr is a dyadic surface “cube” contained in 2A¢. Let |, , Ik # = umnion of
all dyadic cubes in 24y and Uj,k Tjk = union of all corresponding boxes in
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D7, that is,

={(@,9) € & Dr ||Q; — @I*| < 2%y and |s — 57| < 2742,
TP ={(wm) € Dr|2*r < |y
and |1 — 77| < 27%)),  i=1,...,m,

where @ € 8D, Q = (Q1,...,Qn-1), ¥ € D,y = (y1,.-., ), (Q*,87*) is
the center of I; 3 , (y9*,77*) is the center of TF and (Q7*, 33*) is the projection
of (y7*, 79%) onto OF Dy .

So A C UN(}“) I for each k and 2y C | 5o, UN(k TF. Now write

~ylf g2y

| § V(e . 9): [esi(y, ] Tus(y, ) dy |
29

=’ZSVGD ey V1| SO | 196l -[e] - [Vl

ik TJ. Bk TH

_ 1
<CY sup |E(y=5)l(§‘:ﬁ;ﬁ

,k (’U;S)ET | D( 4 ’y’ E)EZ )

(+mTf

< (§ 1Vualy, o dyds)

k
T;

using Cauchy—Schwarz and the energy estimate on ({4 [VGo[*)*/2. The
inequality of Theorem 1.4 of [7] applied to the Green’s function, doubling
for wy and a local comparison theorem (see Theorem 2.5 of {7]) gives
CG(XU: T: Y, S)
Golz, tyy, 8} € ————memilenls
‘ ﬂ( Y )| WO(A(])

50 the last sum is bounded above by

% Go(Xo, Ty )I* 12 )”2
OZm( s G,(‘y,S) dde

3.k (1+”’J)Tjh (ﬁ(y, 3))2
1/2
X ( S | Vg (, 8)|% dy ds)
T;‘
Let
= {(Q,S) €24 : S(ul)(Q, S) > 21},

= {(Qv S) € 240 : Mwo (X@:)(Q’S) > 1/2}:
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where

Maa(x0)(@:5) = stp 575 Lxou(@ ) don(@ ).
I3(Q.9)

Also let 7 = {I¥}, where I¥ € n if wo(I¥ N O)) > Jwo(IF) but wo(If N
Orp1) < Lwo(IF). Then I¥ € 7 = IF C Oy (see [8, p. 84).

Two facts:

W IFen= wo(I¥) < 2wolIf N (Or\ O111)) and

(i) wo(O1) < 2w0(On),
which will be used below, follow easily from the definitions.

The estimate in Theorem 1.4 of [7] in addition to backwards Harnack on

Gy gives
S Go(Xo, Ty, 8
5{y,s)*

)lz 1/2
| a{y, 8)* dy ds)
(14n)T¥

$C( wp o (m) /( S Go(XOnTW)a(y,s)zdyds)m,

Ty e B

where [(IF) =side length of I}.
Using this inequality and rewriting the sum over 2, j as > ; En gives

4 S VG- [Eij]V'lL]_‘
{2

< en (1 )Y )

T (14+m)TF Tk

C |Gola®\*/* wo(If)
SwO(AO)Z(Z S gz ) (Zl(ol”';”

I;-“E’Pz (l-l-"r])TJ!"' IJ’."'G‘F'!

< ool Ao Z(Zceowo )1/2
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Zw‘] @z 1/2
><( D (] Vel oPsw ) dydr) duo(@,9))
ON\O14y T(Q8)

CEQ
~ wo(Ao) Z"J (O 22 wg (O \ Oy )t

(11) GEO

(11) CED
= wo(Ag)

Z 2H*1w0((91

SCEDM S S(u1)(Q, ) dwo(@Q, 5)

2Ap

< ClegMuy (S (1)) (G, s0)-

Notice that the center doubling property of wg has heen used several times.
The constant € varies from line to line, but depends only on A, n, Ty, g, but
not on (s,t),%; or r, (Qo, s0)-
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Closed ideals in certain Beurling algebras,
and synthesis of hyperdistributions

by
J. ESTERLE (Talence)

Abstract. We consider the ideal structure of two topological Beurling algebras which
arise naturally in the study of closed ideals of A™. Even in the case of closed ideals I such
that A(I) = B, Jor the perfect symmetric set of constant ratio 1/p, some questions remain

open, despite the fact that closed ideals J of AT such that )= Eq /o can be completely
described in terms of inner functions. The ideal theory of the topological Beurling algebras
considered in this paper is related to questions of synthesis for hyperdistributions such
that limsup,,_, o |B(n)| < oo and such that limsup,_,., (log® |B(n)])/v7 < co.

1. Introduction. Let C{I") be the algebra of all continuous, complex-
valued functions on the unit circle I', and let

ary={recn)|iflh =3 Ifm)i < oo}
nex
be the usual Wiener algebra. By identifying continuous functions on the
closed unit disc D which are analytic on D with their restrictions to I", we
can interpret AT, the algebra of absclutely convergent Taylor series, to be

the algebra N
{fe AN) | Fin) =0 (n< 0},
a closed subalgebra of A(I").

There was some recent progress [8], [11], [12] in the theory of closed ideals
of At. If I is a closed ideal of At, set h(I) ={z € D | f(z) =0 (f € I)}
and denote by I4(T) the set of elements of A" which belong to the closed
ideal generated by I in A(I").

Also, when I s {0}, denote by S; the inner factor of I (i.e. the G.C.D.
of the inner factors of all nonzero elements of I, see [15, p. 85]) and set
Stoy = 1. Bennett and Gilbert had conjectured in [3] (see also [17}) that all
closed ideals I of AT satisfy
(1) I =140 N8y . H(D),

where H>(D) is the algebra of bounded analytic functions on D.
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