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But the points ¥, do not 7-converge to z since 2 ¢ ¥ and

—T ———weak
{ynt C{yn} cY.
Thus we close with the following.

4.6. OPEN PROBLEM. Let X be ¢ nonreflexive space that conteins o 7-
LUR body for a linear topology T finer than the weak topology. Does then X
contain two T-LUR bodies C, D such thot C + D is not rotund?
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Operators preserving orthogonality of polynomials
by

FRANCISCO MARCELLAN (Leganés)
and FRANCISZEK HUGON SZAFRANIEC (Krakéw)

Abstract. Let § be a degree preserving linear operator of R[X| into itself. The ques-
tion is if, preserving orthogonality of some orthogonal polynomial sequences, S must neces-
sarily be an operator of composition with some affine function of R. In [2] this problem was
considered for S mapping sequences of Laguerre polynomials onto sequences of orthogonal
polynomials. Here we improve substantially the theorems of (2] as well as disprove the con-
jecture proposed there. We also consider the same questions for polynorials orthogonal
on the unit circle.

Introduction. Call {p,}32, C P where P is either R[X] or C[Z] a
polynomial system (for short: PS) if degp, =n, n=0,1,... A PS which is
orthogonal with respect to a positive measure is here referred to as QGPS;
if it is orthonormal the abbrevation is ONPS.

1. Let o € R. Then, setting

(3) L (2) m__a(a—l)..g;;!(a—k+1)7

the (generalized) Laguerre polynomials Lga), n = 0,1,..., are defined as
usual by N o o
L (z) = g(—l)k (n N k) i YER
They satisfy the three-term recurrence relation
XL = ~(n+ DL + @n+ 14+ )L - (n+ o)L,
=0, n=0,1,...
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For o > —1 the PS {Lg")};’f:o is orthogonal with respect tc a positive
measure and its orthonormalization is given by

Tt _ Pln4+a+1)

S(LﬁL Na))YPe 2 do = — -

0
For ¢ < —1, a & {...,~2,—1}, they are orthogonal with respect to a
quasi-definite inner product while for & € {..., -2, —1} they are orthogonal

with respect to a Sobolev type inner product (cf. [5], Proposition 3.3, and
also [6]).

2. For c,d € R define
Tealz) =cx+d, z&R,
and
L%C!,c,d) = L')('i.a) 0 To,ds n = 0: 1: e
Thus LY = L&HY,

Now let § be a linear operator of R[X] into itself preserving the degree
of polynomials. The question is if preserving orthogonality of pelynomials
forces § to be of the form
(1) Sp=spotap, pERKX]
with some s, a,b € R. The results of [2] can be stated as follows.

THEOREM I (the orthonormal case). If there is o € R not a negafive
integer (*) such that

I 1/2 oo
v S (eetd)
I'n+a+i+1) "

n=0
s an ONPS for anyi=0,1,..., then S is of the form (1).
THEOREM IT (the orthogonal case). If there are oy < —1 not o negative
integer (2) and ag > —1 such that {SL&“Y1  is an orthogonal PS jor

a=a;+4,t=01,...,75=1,2 and for any ¢,d € R, ¢ # 0, then 8 15 of
the form (1).

CONJECTURE, If there is o not a negative integer such that {SL%D‘M)}?&U
is an orthogonal PS for any i =0,1,..., then S is of the form (1).

Our aim is to improve substantially Theorems I and II of Allaway (by
the way, providing alternative proofs of those theorems as well as clarifying

(1) It should have been o > —1 so as to speak of orthonormality of the Laguerre
polynomials in the commonly acceptable sense.

{*) Though the way in which orthogonality was defined in [2] might suggest that o
would rather be greater than —1, of. the previous footnote as well.
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their circumstances) and to disprove the Conjecture. More precisely, both
Theorems I and II require S to preserve orthonormality or orthogonality
of an infinite number of ONPS’s or, respectively, OGPS’s. We are able to
show that preserving orthonormality of 4 ONPS’s is enough while in the
the orthogonal case 16 of them do the job. In addition, we also bring the
question over to the unit cirele case (this question was raised in [1])} where
the situation appears to be slightly different.

The real line case

3. In this section, as in the whole paper, S is a degree preserving linear
operator of R[X] into itself. The observation which follows is the key to
solving the problem.

PROPOSITION. Let s,a,b be real numbers and {pn}2.q be a PS. Then

the following conditions are equivalent:
(i) s5(Xpn) = S(X)S(pn), n 20,

(11) 38(pmpn) = S(pm)S(pn), m,n 20,

(iii) s5(pg) = 5(p)S(q), p, ¢ € RIX],

(iv) s5(Xp) = S(X)S(p), p € RIX],

(v) SX*"=s{(aX +b)", n=0,1,2,...,

(vi) if {pn}2eg satisfies the three-term recurrence relation

Xp'n = ®nPn+1 + )6’npn + YnPn—1,

then {Spa}22., satisfies the three-term recurrence relation with coefficients
an =a " Yo, by = a7 (B, — b) and ¢, = a1y, respectively.

Under the above circumstances s = S1 and Sp = spo 1., p € R[X].

Proof The implications (i)=-(ii)=-(iii)=>{iv)=(v) follow straightfor-
wardly. To prove the implication (v)=>(vi) one has to notice that (v) implies
Sp = sp o 7o The proof of (vi)=-(i) goes as follows: first we get

S(Xpg) =(aX +b5)8p,, n=0,1,...,

from this we get SX = s(aX + b) where s = ST and finally (i). =

The Proposition shows us that

1° each operator S defined by

Sp=potap sabeR,

preserves orthogenality of all orthogonal PS’s,

2° instead of thinking of preserving orthogonality of PS’s we can consider
preserving (in the sense of {vi)) the three-term recurrence relation.

4. According to what the Proposition suggests we are going to find, for at
least one a, the coefficients aﬁfd, b,({*) and cS:") in the three-term recurrence
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relation of {SL(Q)} 2 and compare them with those of L. First we do
this for the coefficients a{®*®, (> and (%

(2) XSL%a,c,d) om a%’a,c,d) SL,(,LQ’?CE) + b%a,c,d)SL'&a,c,d) + c%oz,c,d) SL,,(,LO:?d),

which is the three-term recurrence relation of {SL i)

formula (cf. [7, p. 102])

}nzo. The simple
o +1
ng ) = L,(r,,a+1) " L?(‘Loc_g )
implies immediately
(3) SLieed) _ grletied _ grlathed

and this turns out to be essential in what follows.
We will also need the explicit forms of the first four Laguerre polynomials:

=1, I®¥=-X+a+1,
L =1X% - (a+2)X + {a+2)(a +1),
L{=—31X%4 Lo+ 3)X?~ La+3)(a+ 2)X + Lo +8)(a + 2)(a+ 1),
LEMMA. Let.
SX =aX+b and SX®=5X%+ 513X + soa.

Fiz ¢ and d and suppose {SL DY satisfies the three-term recurrence
relation with the coefficients at™>® %% and §8%D for o = ag — 1, ayg,

ap + 1,00 + 2 with some g €R. Then

(4) 8o = a2

and, for o = ag,ap+ a0+ 2 and n > 0,

(5 a2 = ~(ae) -+ 1),

(6) bl o) = (ae) ™ (=be ~ d+ 1+ (1 +7)n +a),
(7) o5 = —(ac) B+ (n + @)9),

where § and v are real parameters such that

(8) cs12 = 2abe + a - avy,

(9} ‘;2502 =0 tbe+d— bey —dvy - 3.

Proof. First notice that, because of the convention L( ) =0, céa’c’d) is
unimportant. Suppose S1= 1. Put (3) in {2) to get
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XSL{ped
__a(acd SL&Cd +b(o:cd)SL(acd)+c(a cd)SLaCd
— G’Eza,c,a’, SLS.LO_z:il,c,d) _ C[,,Ela’c’d)SL%a_}'l’c’d) + bq(ma,c,d)SLE"a+1,c,dj
_ ba('za’c’d)SL-,(q,ajil’c}d) + C£&+1,c,d) SL-,(mEi__]il’c’d) _ c?(’:z,c,cl)SLiO:Zl,c,d)‘
Doing the same in reverse order we get
X S L)
— XSL{C:!+1,C,££) . XSL(&"i‘l:C»d)
— a(a+1 c d)SL(a+1 c,d} + b(cx-l—l c d)SL(a+1 c,d) +e a+l e d)SL cx+1 [ d)

N a;‘f_"ql‘c’d)SL;"“"l’c’d) _ bsi-lil,c, SLE:"_“:I’C"’:) + cEf‘_';l’c’d)SLEf_gl’c’d).
Comparing the coefficients of SL{®>%’s (preserving degree!) we come to the
following relations:

(10) alese W) a(cx+1 c d) n> 0,

(
n

(11) b’(’,‘a+1,c,d) _ bﬂa,c,d) — (r:e+l ed) a)sla,c,d)’ n> 0,
(12) Ci(la—kl,c,d) _ C(a e,d) _ b(a+1 c,d} b(a’c’d), n>0

n ;
(13) £L01+1 od) csla,c,d)’ n> 1.
Set

Ap = al®9% _glaed) and @ =pleed) pleed) 4o,
Then (11) and ( 12) imply

(14) bzt = b2 + (& — o) An, |
(15) cgla,c,d) _ cglozo,c,d) + (a _ an)(bi“fi“’d) _ bgozo,c,d) + A4,).

Putting (15) into (13) and using the fact that the resulting equality is sat-
isfied for (at least) two different o’s (namely o = ¢, op + 1) we infer that,
for n > 1,

(16) plecod) _ plovend) 4 g, = plooed _plooed) 4 g4,
(17) eipond = 2D Y —peond 1 4,
Now {16) implies immediately

(18) pieoe® _ ploaed) 4 A, = pied) —p{*ed L4 = €.

Consequently, (17) implies c®% = cg““’“’d) + {n— 1} and then (15) takes
the form

(19) cfeoe® = of®0o D 4 (n — 1)0 + (a - 0g)C.
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Inserting (14) into (12), using (18) and then (19), and comparing the
coefficients of o we get
(20) Ap_1 =4, n>Ll
Thus, from (18), we have
peoed) _pleved) = 0 — 4y, pleoed) < pleeed g4y — )

and, finally, (14) can be written as
(21) pleod) = pleoed) 4 nid — O) + (@~ ag)d1, 03 0.

Now writing the three-term recurrence relation for {SL%“‘”’d)};;O in the
case n = 0 we get

X = al()a’c’d)("-acX —be—d+a+l)+ b[(,a’c’d).
Comparing the coefficients of X we get
a{®* = (ac)™.
Comparing the coefficients of X? and then those of a® we get
b5 = (ac) ™ (~cb— d + 1+ ap).
Thus, after setting
8 = ae(—c{™* 4+ (1 + ag)C), v=—acC,

the formula (21) takes the form
(22) (% = (ac) ™ {(~cb — d+ 1 + ag + nlacd; + v) + achi (o — ap)),
while (19) becomes precisely (7). The only thing we have to do is to show

(4)(6), (8) and (9).
Now write the three-term recurrence relation for {SL&“’”*""};&O in. the
case n = 1. It leads to

X[~acX —be—d+ a+ 1]
= a{** [%62(322)52 + 812X + 502) + cd(aX + b)
+ 34" — (e +2)(0cX + be -+ d) + L+ 2) (o + 1)]
+ (acy ™ (=be ~ d+ 1+ ap + acdy -+ v + acA; (o ~ ag))
X [-aeX —be—d+a+1] - (ac) B+ (1 + a)yl.

Comparing the coefficients of X° and then of a2 we get 0 = %al -+ A; and,
invoking the definition of A;, we get immediately a; = 2ay = ~2(ac)™*
and A; = (ac)™*. Consequently, by (20), we get (5) and (4). Then also (22)
becomes (6). Now comparing the coefficients of X° and then of o we get
(9) while comparing the coefficients of X and then of a? we get (8). w
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5. Now we are ready to prove our “orthonormal® result:

THEOREM 1. Let § : R[X] — R[X] be a degree preserving linear opera-
tor SX = aX + b. Suppose {SLSLa)};‘;‘D satisfies the three-term recurrence

relation for a = ag — 1, ap, 00 + 1,09 + 2 for some oy € R and, moreover,
for (at least) two of {ap, 00+ 1,9 + 2}

cga) =1+ a.
Then S is of the form (1).

Proof By (7) of the Lemma, 8+ (1+4a)y = 14a. Allowing two different
o’s we infer that 8 = 0 and v = 1. Consequently,

(23) ) = —aM(n+1),
(24) B = a1(=b+ 1+ 2n +a),
(25) ™ = —g7(n + ).

According to the Proposition, (vi) implies (iv), and this completes the
proof. m

The following is immediate:

COROLLARY 1. Let S : R{X]| — R[X] be a degree preserving linear
operator with SX = aX + b. Suppose {SL{V}2., is an OGPS for o =
o — 1, 00,0+ 1, ap + 2 with some ap > 0 and, moreover,

ISP /ST |2 =1+ @
for (at least) two of {ag, g + 1, e + 2}. Then § is of the form (1).
The norm in the above is the image norm of L,(rf‘)’s under S.

Proof. Since, what is easy to verify, | SL{™)?/||SL{™)12 = ) fal),
the conclusion follows from Theorem 1.

Our Corollary 1 improves substantially Theorem I which is, due to noz-
malization of {Lf)},‘f’:o, precisely Theorem (3.1) of [2]. Now we pass to
extending Theorem II.

THEOREM 2. Let S : R[X] — R[X] be a degree preserving linear op-
erator with SX = aX + b. Suppose {SLDV2  satisfies the three-term
recurrence relation for oo = op ~ 1, cog, g + 1, aep + 2 with some o € R, two
different nonzero ¢’s and two different d’s. Then S is of the form (1).

Proof Set SX? = 533X3 +323X2 + 813X + 5p3 and write the three-term
recurrence relation for {Li*“%}2  in the case n = 2:
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X[1(®X? + 519X + 502) + cd(aX + b) + 3d?
— (a+2)(acX + b+ d) + F(a+2)(a +1)]
= — 3(ac) ™[ — (P (s3a X% + 823X % + 513X + 503)
+ 3c2d(6®X? + 812X + 5g2) + 3cd*(aX +b) + d?)
+ 1o +3)(*(a® X2 + 512X + s02) + 2cd(aX + b) + d?)
— Lo+ 3) (o + 2)(acX + be+d) + Fa+ 3)(a + 2){a+ 1)]
+ (ae) Y (~be - d+ 3 + 2y + o)
x [3¢*(a"X? + 812X + s02) + cd(aX + b) + 1d°?
— {a+ 2){acX +be+d) + 2{a+2)(a+1)]
— {ae) Y B+ 2y + vo)[—ac — be —d + o -+ 1],
Comparing the coefficients of X° and then of o we get
0 = Les0s + cPdsoz — 3cP 802 — SbcPsge — 2bod — d2
4 2be + 2d — b2cd® 4 282 ¢% + cPsgyy + 2bedy
+ d’y — 2bey — 2dy + bef + df - B.
Inserting 8 from (9) into the above we simplify it as
0= LcPs03 — 3bc®s0p — 2c2s0p + B3P - 2b%¢2
+be+d+ elsgay — b2y — bey — doy.

Comparing the coefficients of d we get v = 1, and from those of d°, after
d1v1d1ng by c?, we get spp = b? and, consequently, 8 = 0. Thus {bgfz)}ﬁ":o

and {c{® baro satisfy (24) and (25). Finally, due to the Lemma again, we
come to the conclusion. =

Again our result betters significantly Theorem (4.1) of [2] (here reported
as Theorem II). '

6. The result which follows is related to Allaway’s Conjecture.
THEOREM 3. For any 8 € R the operator Sg defined as
SsLE = L or 5 n=0,1,...,
is independent of .
Proof. Fixing 8 we define a linear operator 5§ as

SQ (X) '_L(a+ﬁ)07-l,ﬁ1 ?1,20, 1,--
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We show that for o, o/ € R,
(26) S§LW = SgL{, n=0,1,...
This will follow from the formula (cf. [3, p. 57])

LO+6+1) o ZAS’ JLJE'S where Agg) = (”f";;k)

J=0
Indeed, using this formula, we have

gL = ZA(”““ e 1) = ZA(“ TILE P o
j=
_ L(a—c! —l+al+8+1) 4 T8 = S‘*L(”‘).

This is (26) and, because {L }n o is a basis of R[X], we infer that
which gives us the conclusion.

It is a matter of direct verification to check that SgL,(f")’s satisfy the
three-term recurrence relation

XSpLi) = —(n+ 1)sﬁL,(:31 +(2n+1+a)SsL) — (n+ o+ B)SsL,
SpL% =0, n=01,...

Soc for any a, {Snga)},?f:O is an orthogonal PS (cf. Introduction, Sec. 2).
On the other hand,

SpLE = L, 8pL{™ = L{* while SL{® = L{ — /2.
This gives us immediately

COROLLARY 2. The operator Sy of Theorem. 3 preserves orthogonality of
all PS’s {LEY22. ) o € B, and it is not of the form (1) if B#0.

This disproves Allaway’s Conjecture.

The unit circle case

7. For ¢ € C[Z] of the form ¢ = } i s a; 2%, a, # 0, define " as

w* —ZQIZ“ : Zan_z

=0

The following classical charactenzatlon (which is implicit in [4, pp. 3-5]) of
polynomials orthogonal on the unit circle will be used:
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(x)  The sequence {pn}2 4 C C[Z] of monic polynomials is orthogonal
with respect to a real (positive resp.y measure u supported on the unit
circle, thot is,

27

S wm(eit)@n(eﬂ) n”'(dt) = Cmbmn,
a
em#0 (cm >0resp), mn=0,1,...,

if and only if, forn=0,1,..., it satisfies the recurrence relation
Pnt1 = Zipn + Pni1(0)],

and |en+1(0)] # 1 (lens1(0)] < 1 resp.).
Notice that the above recurrence relation for not necessarily monic poly-
nomials reads as
*

[
(2n UnPrtl = Cnt1ZPn + 90n+1(0)§n'%

n

where an, is the leading coefficient of ¢, allowed to be complex. For a € C
set

To=aZ and Syp=gpor,, ¢eC[Z].
Let, in what follows, |w| < 1. Define

o6 = (1 - w2, oV = 2Nz —w), n=1,2,...,

and
(w,2) _ 1 (w2) _ o __g..m_,,
®o yoPl Z-7 Tl

ngw12)tzn—2(z_w)2’ n=2,3,...

Then the sequence {pi*" }2lo is an ONPS on the unit circle with respect
to the measure

1, .
:2—7?|e"t —w| "2 dt

{w,

while {5, 2)};';’:0 is an OGPS on the unit circle with respect to the measure

1. .
ﬂ-|e” - wl“" dt.

8. Let S be a degree preserving linear operator of C[Z] into itself. Then
we have the following

LEMMA 2. Suppose we are given three different real numbers Wy, Wa, W3,
with |wg| < 1, k = 1,2,3. If, for any k = 1,2,3, {S’goﬁ,w")}"" satisfies the

=0
recurrence relation (27), then S = sS4, for some s,a € C. "
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Proof. There is no loss of generality if we assume S(1) = 1. Set

§z" = Zn:si,nzi.
i=0

Then, with the notation s, n..1 = 0, we have

n
S‘sz,w,l) = Z(si,n - wsi,n—l)Z‘iﬂ nxl,

frme(}
(595 )(0) = 80,0 — ws0,u-1 and
n
(S(P'gz.w’l))* = Z(gn—i,n - 'wgﬂ.wi,nwl)zi-
i=0
. 1
If w is any of wy, wa, w3, the recurrence relation (27) for {Scpgf’ N % o leads
to
n+1 )
Sn.n Z(si,n-l—l - 'L'Usi,'tz)zz
i=()
i .
= Sp4l,m+1 Z(Si,n — wsi,n—l)ZH_l
=0
~ s
- Snim — Win—in_1) Zi—
+ (30,n+1 wsO,'n) ;(Sn—t,n WSn—in l) Tttt
Cormparing the coefficients of Z%, i = 1,...,n, we get

sn,n(si,n.,.l - wsi,n) = 3n+1,n+1(51‘,—-1,n - ws‘i-—l,n—l)

-+ (50 n+1 — WS n)(gﬂ.—i n wgn—i,n—-l) - Sn.m .
! ' ’ Snt1,m41

Now comparing the coefficients of w?, becanse always s, 7 0, we get
$o,nfn—in-1=0, 1Li<m,
and putting ¢ = 1 implies
80,=0, n=>1
After comparing the coefficients of w, we have
(28) Sp,ndi,n = $n+lnt+18i-1,n-1
+ 80m8n—in + S0n+18n—in-1, 1< 1ZN.
Putting ¢ = n and using sp, = 0 this gives us

2
(Sn}n) = Sp+1,n+18n—1,n—1
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and, consequently, since spp = 1, we get $p,, = o™ where a = 81,1. Now
(28) simplifies to
Sim = Q8i—1,n—1, n>1,

and, since so,, = 0, this leads to sg ik =0, k = 0,1,... Thus we finally
obtain § = S,. Removing the assumption S1 =1 we get s = S1. w

Because the operator S, does not affect the numbers goif_ﬁ)((]), n =0,
it preserves the kind of orthogonality of {p{} o (cf. (¥)). In particular,
invoking the characterization (*), we get immediately

THEOREM 4. Suppose we are given three different real numbers Wy, W,
ws, with jwg| < 1, k = 1,2,3. If, for any k = 1,2, 3, {S(pf({‘"’“)}?;;o is an
OGPS, then S = 58, with |a| > max{jwy |, jwe}, jws}.

In order to get more information about « we have to allow § to preserve
orthogonality of more ONPS’s. For instance we have

COROLLARY 3. Suppose W = {wy} is a sequence such that lwg| < 1,
k=1,2,..., and sup, |we| = 1. Suppose that among wy s there are at least

three different real numbers. If for any w € W, {18p¥ 2, is an OGPS,
then lo| > 1. .

On the other hand, for any w with jw| < 1 and o with || > 1 we have
Sapltl = ameleT ), =12, St = o),

which means that, while {ap%w’l)} is an QNPS, {Sacpgf”’l)}n is an OGPS.
However, it is not an ONPS unless |a| = 1. This is reflected in the following

THEOREM 5. Suppose we are given three different real numbers w,, ws,
wy, with wx| < 1, k = 1,2,3. If for any k = 1,2,3, {Sgpq(lw’“)}ﬁ‘;o is an
OGPS and if for at least one w = Wi,

1508 = lise{*),
then § = 58, for some s,a € C with || = 1.
In the above the norm is the image norm of {gog”'lj} under 9.
Proof. Again §1=1. Since 0 = (Stpgw’l), 1) ={0Z —w,1) = a(Z,1) -
W], we get -
150171 = a2 — w|* = Jof? 1] - 2R(ew(Z, 1)) + ju|?[1]?
= (|l — [wi)|1).

On the other hand, we have || |12 = (1 — |w|®)[[1]|2. This provides the
argument in the proof of || == 1. »
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9. Consider now the sequence {(,ogw’z)},;";g. We get the following

LEMMA 3. Suppose we are given five different real numbers w1, . .., ws,
with lwp| <1, k=1,...,5. If, forany k =1,...,5, {Scpﬁf"*‘)},‘f;o satisfies
the recurrence relation (27), then § = S, for some s,a € C.

Proof. The proof is much the same as that of Lemma 2. Here we point
out the major steps. Assume again S(1) = 1 and set
mn
SZ" = ZSWZ“‘.
i=0

Then, the recurrence relation (27) for {Scpslw’z))}f___o leads to (n > 2)

n+1
2 ,
Snon Z(Si,n-f-l — 2wsipn + wsipn-1)2"
i=0
n

2 ]
= Snil,ntl Z(Si,n — 2W8; n1 + WS n2} T
i=0
P
+ (80,n41 — 2WS0,n + W S0,n—1)

T

.S
= = 2z i 2,1
X E (S'n—i,n —Z’lUSn_,;’n_j_ + w Sn_i,n_z)z - .
‘ Srpeb-1,m41
i=0
Comparing the coefficients of Z%, i = 1,...,n, and then of w* we get

so,n = 0, n > 1. Then comparing the coefficients of w we come to
gtk =0, kE=01,..., n=12...,
and (8p,n)% = Sn41,n+150—1,n—1- Consequently, we get the final conclusion. =

Once we know that § = S, we can apply S to (27) and compare this
with the recurrence relation for {Spn}32, to get

(Pn-l-l(o)(wn(ﬁ_lz)_gp(az))=0! n=0,1,..., z€ (o8

While for {(,og“’l)}g":ﬂ this condition provides no additional information,
for the sequence {zp%w’z) o o it implies immediately (putting » = 1) that
|| = 1. Thus we arrive at the following

THEOREM 6. Suppose we are given five different real numbers wy, ..., ws,
with |wg| < 1, k=1,...,5. If, forany k=1,...,5, the PS {Szpﬁ“”“” oty
satisfies the recurrence relation (27), then S = $S, with |o| =1,

Remark. Assuming in all the above that wy’s are real is & matter of
convenience, not of necessity.
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On Dragilev type power Kéthe spaces
by

P. B. DJAKOV (Sofia)
and V. P. ZAHARIUTA (Rostov-na-Donu and Gebaze)

Abstract. A complete isomorphic classification is obtained for Kéthe spaces X =

d
K(exp[x(p — x(8)) — i/pla;) such that X % X?; here x is the characteristic function of
the interval [0, o0), the function & : N — N repeats its values infinitely many times, and
a; — co. Any of these spaces has the quasi-equivalence property.

1. Introduction. For any matrix (aip)ier pen of positive numbers (with
countable index set I) we denote by K(asp) (or K(aip,i € I)) the Kothe
space generated by the matrix {asy).

M. M. Dragilev {1] proved that there exist Kothe spaces with regular
bases which are not distinguished by the diametral dimension

D(X) ={y={(7n): ¥p g mdn(Up,Uy) — 0},
considering the power Kdthe spaces
(1) D(k,a) = K(exp[x{p — x(i)) — 1/plas),
where (k(i)) = (1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6,.. ), ¢ = (a),
a; 7 oo, x(t) = 0for t <0, x(¢) = 1 for £ > 0. We investigate here an
analogous class of power Kéthe spaces given by (1) for an arbitrary function
%' N — N that repeats its values infinitely many times and an arbitrary
sequence of positive numbers a; — o (not necessarily increasing).

Our aim is to study the structure and isomorphic classification of D(x, a)
spaces for different x and a. In order to distinguish non-isomorphic spaces of
this class we first construct appropriate invariant characteristics (generalized
linear topological invariants). The method of generalized linear topological
invariants was developed in [6], [7], [9]-[11] (see the survey [12] for more
details).
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