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where E(j) = (i(j)) and @; = a;(;). Since the spaces D(x,a) and D(%, )
are isomorphic it follows by Theorem 1 that they are quasi-diagonally iso-
morphic. This proves the theorem.
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A non-regular Toeplitz flow with preset pure point spectrum
by

T. DOWNAROWICZ (Wroctaw) and Y. LACROIX (Brest)

Abstract. Given an arbitrary countable subgronp op of the torus, containing in-
finitely many rationals, we construct a strictly ergodic 0-1 Toeplitz low with pure poing
spectrum equal to oo, For a large class of Toeplitz flows certain eigenvalues are induced
by eigenvalues of the flow ¥ which can be seen along the aperiodic parts.

Introduction. In this paper we continue the study of Toeplitz flows ini-
tiated in 1984 by S. Williams in her work [W]. Toeplitz sequences have been
known earlier {e.g. [O], [G-H], [J-K]), but it is the construction of Williams
that is exploited in most of later works on Toeplitz sequences (e.g. [B-K1],
[D], [B-K2], [I-L], [D-K-L], [I]). Spectral properties of Toeplitz flows have
been studied in [I-L] and [I]. In this note we develop the method introduced
by A. Iwanik in [I]. Each eigenvalue v obtained there satisfies a certain
equation formulated in Section I of this paper as (3). In [I], however, this
equation remains unsolved, and an irrational v is obtained by constructing
uncountably many Toeplitz flows with different eigenvalues.

We have succeeded in solving the equation (3) simuitaneously for an
arbitrary countable set of v’s. This enables us to prove the existence of
strictly ergodic Toeplitz flows with an arbitrarily preset pure point spectrum
containing infinitely many rationals.

Section I contains slightly modified formulations of the results of [I]. We
rid the constructions of technical details used in [I] to produce uncountably
many sequences. For a large class of Toeplitz flows we identify certain eigen-
values not arising from the maximal uniformly continuous factor. We also
adapt the cohomology statement of [I} to the countable product of tori.
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Section II is devoted to presenting how equation (3} can be solved for an
arbitrary countable set of +’s.

In Section ITI we put the previous theorems together to obtain the desired
Toeplitz fow with the preset spectrum. Attention is paid to strict exgodicity.

Preliminaries. Let (X, p, T') be a standard probability measure preserv-
ing dynamical system. The point spectrum oo(T) is the set of all eigenvalues
of the induced unitary operator Uy on L*(u). We say that the dynamical
system has pure point spectrum if oo(T) supports the entire spectral mea-
sure of Up. If in addition p is ergodic, then ao(T) is a countable subgroup
of the torus and (X, p,T) is measure-theoretically isomorphic to (G, A, ¢},
where @ is the dual comnpact monothetic group to og(T') with Haar measure
A and rotation by a generator g. '

A Toeplitz sequence is a non-periodic element 5 € X% (3 a finite set)
such that

(VreZ)Tp eN)(Vm e Z) n(mp+n)=nin)

(see [W] for a general reference on Toeplitz sequences). For each Toeplitz
sequence there exists a sequence of periods (p;);en with p; | pj.1 for each 4,
defining a partition of Z into p;-periodic sets Z; along which 7 is p;-periodic
but not periodic with any smaller period. Every such sequence (p;) is called
a period structure for n. Each subsequence of (p;) is again a period structure
for n. A Toeplitz sequence is called regular if the sum d of the densities in
Z of Zj equals 1.

It is known that the orbit closure O(n) of a Toeplitz sequence 7 is min-
imal for the shift transformation S. Now, if % is regular, then (O(n),S) is
strictly ergodic, i.e., in addition to minimality it carries a unique invariant
(probability) measure. In this case, almost all elements of O(n) are also
Toeplitz sequences. In the non-regular case each of the (possibly many) in-
variant measures is carried by the set W{(n) of (non-Toeplitz) elements with
doubly infinite aperiodic part. We define

Y(n) ={ylw): we W},

where y{w) is the sequence to be read along the aperiodic part of w (posttion
zero of y(w) is defined by the smallest positive position in the aperiodic part
of w). Of course, Y {n) C T% ig shift-invariant. Since W(n) is not closed, in
the general case we have no guarantee that {y(w) : w € W(n)} is itself a
closed set. However, in the further constructions of this paper this is the
case, 50 the closure in the above definition can as well be omitted.

The maximal uniformly continuous factor of (O(x), S) is known to be
topologically isomorphic to the unit-rotation on the group of p-adic inte-
gers, where p stands for (p;), a period structure of 7. If G, is viewed as a
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compactification of Z, then by C; we denote the closure of Z;. The sets C;
are disjoint and each of them is a union of some number l; of cosets of the
form Hj +k, where H; = p;Gy, 0 < k < p;. We define

(1) C = ch .
izl
Note that

d = li = nu'P(C) ?
iz
where pp is the Haar measure on Gy. (Practically, we construct Toeplitz
sequences by induction, filling in step j some I; yet unfilled positions of the
interval [0,p;), and repeating the pattern with the period P;.)

There is a natural Borel measurable mapping 7 from W(n) into the prod-
uct Gp x Y (n) sending w to (k,y), where h is the image of w by the maximal
uniformly continuous factor, and y = y(w). The shift S then corresponds to
a piecewise power skew product transformation

So(h,y) = (h+1, S"¥Cy),

where “h ¢ C” denotes the logical 0-1-value, S = § and S® = Id (the
identity map). If i is a Toeplitz sequence “constructed from a subshift ¥,
then Y (n) = Y, and for each invariant measure v on ¥, there exists an
invariant measure A on (O(n), §) such that ¢ becomes a measure-theoretic
isomorphism between (O(n), A, 8) and (Gp x Y, up x v, 8¢) (see [W, Theo-
rem 4.5]). In the strictly ergodic case we need not refer to [W). Sufficient is
the following easy observation:

Lemwma 1. If the piecewise power skew product (G, xY (n), Sc) is strictly
ergodic then (O(n), S) is strictly ergodic and ¢ is a measure-theoretic iso-
morphism between these flows.

Proof. The set W(n) carrying all invariant measures of (O(n),S) is
mapped by ¢ in a 1-1 way onto an invariant subset of G, x Y (). By strict
ergodicity, this must be a full measure subset for the unique invariant mea-
sure. Thus W(n) also carries a unique invariant measure. =

Inspired by [f], we will assume that for each j € N,
either C; CH; U(H; +DU...U(H;+7;—1)
or C; C(H;~ri}U(H;—r;+1)U.. U(H;~1)
for a sequence (r;) such that

@) Y <

izl P
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As is not difficult to see, (2) already implies non-regularity of 7. Nevertheless,
we need the flow (O(n), ) to be strictly ergodic, in order to insure that
the measure-theoretic notions do not depend on the chaice of the invariant
measure {except for Theorem 1, which holds separately for each invariant
measure ¥ on Y (n)).

I. Twanik’s equation. We will view the torus T additively, as param-
eterized by the interval [—1/2,1/2). It has to be noted that in this setting
the expression £ for z € T (m > n, some positive integers) does not have
a definite meaning, so we shall use

(nz)T
m

to indicate that dividing by m is applied to the element of T arising from
nz. Observe that then the above function of z is linear on each interval
along which (nz)r € (~1/2,1/2). In other expressions we can safely skip the
indicator “{ )1”. The absolute value function is also applied to the element of
T in the above parameterization. In other words, |nz| denotes the distance of
the real number na from the nearest integer. In our constructions elements
of the torus (viewed as eigenvalues) belonging to the following set (for a
given Toeplitz sequence) will play the crucial role:

A:{me’ﬁ‘ :lejm|<oo},

izl

where (I;) is as described earlier for Toeplitz sequences. It is worth noticing
(and not hard to see) that the set 4 always has Lebesgue measure zero.
It can be countable (e.g. for (I;) a geometric sequence), but if I; increases
sufficiently quickly then A contains a Cantor set.

Note that now a T-valued function f is an eigenfunction pertaining to
an eigenvalue o € T if f{Sw) = flw) + o

THEOREM 1. Let (O(n), ), 8) be a Toeplitz flow measure-theoretically
isomorphic via the map v to the skew product (Gp x Y (n), up x v, Sg) for
some invariant measure v on Y(n). Assume also (2). Let o« € A be an
eigenvalue for (Y (n),v, ) corresponding to an eigenfunction f : Y (n) — T.
Then

3 HORTEPItL:
jiz1

is an eigenvalue for (O(n), A, S). The corresponding eigenfunction has the

form F(w) = g(k) + £(y), where (h,y) = Y(w) and g : Gy — T.
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Proof. We need to construct the function g : G, — T. Fix j € N. Recall
that C; is a union of I; cosets H; + k. Now, for h € H; we define

(4) gj(h)ﬂo
and

G I CLL SN
(5)  gi(h+k+1)= U%h

gilh+k)—~ 1" +a fh+kedC,

b

for k= 0,1,...,p; — 1. Observe that the formula (5) applied to k = p; — 1
yields

lia

9;(h +p5) = g; () “Pjﬂ—( ;‘)T + e =0,
7

which agrees with (4), since H; + p; = H;. Also note that h+ & ¢ C; for
p;j — r; consecutive values of k either ending with p; — 1 or starting with 0,
and hence g; differs from zerc at the corresponding cosets by at most

(lio)r

(p; — rs) 228
Ly

which is summable over j since & € A. The remaining part of Gp has measure

7;/p;, also assumed in (2) to be a summable sequence. It is now obvious that

the function
g(h) =" g; ()
jz1
is well defined as a convergent series on a set of measure 1 in G,. On the
same set, by (5),

< |G,

sy -2 B g

(6) (h+1)= sz
’ mm—§:@§E+a ifheC,

TES

hecause in the second case i € C; for exactly one j.

Finally, as announced, we define f(w) = g(h) + f(y) and we check
F(Sw) = g(h+1) + F(8"¥%)

oty - Y B2+ sy

FES

if bt C,

mmw§:@3@+a+ﬂw if heC,

iz
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~ Lo
= flw)+a - Z w,
=1 bj
almost everywhere for the product measure, as desired. n

Note that if o is rational then o € A implies ([;o)r = 0 starting from
some jp. Thus ~v(e) is also rational.

The equation (3) along with the function g of Theorem 1 can also be
used to produce measure-theoretic isomorphisms between group extensions
over G, by T%, where T* denotes the product of countably many tori. This
will be used later for further investigations of Toeplitz flows.

We fix the sequence (p;) (and hence the group Gy} and an open set
C C Gy represented by the formula (1) and satisfying (2). The sequence
(I;) and the set A are therefore also determined. We do not need to further
specify the Toeplitz sequence 7.

THEOREM 2. Let ¢ = (0y)ien with oy € A for each i. Let y = v(ey),
and let 7y = (v;)iew. If 1,71, 72, - .. ave rationally independent then the group
extension (Gp x T, T¢), where

To(hyx) = (h+1,% + a"€7),
is stricily ergodic and measure-theoretically isomorphic to the rotation of
Gy x T by the generator 1 x .

Proof. As in [I], we show that the cocycle @"¥% is cohomologous to
the constant cocycle . To this end we check that the cohomology function
g: Gy — T is given by

g(h) = (gi{h))ien,

where g; now denotes the function g constructed as in the proof of Theoremn 1
for a; and «;. In fact, by the property (6) of each g;, we have

L0
ai—Z—(fo‘ T ghec,

- i

(@M +g(hr1)-am)i=q B
SN ke

=
= Vi,
pp-almost everywhere, which is the cohomology equation.

Since the rotation on Gp x T* is ergodic, so is the group extension Tz,
hence, by a theorem of Furstenberg [F], the latter is also strictly ergodic. m

The group extension (G, x T, T¢) carries at least as many invariant

measures as (T, &) {corresponding product measures are Tg-invariant)

hence we immediately deduce :
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CoROLLARY 1. With the assumptions of Theorem 2, the numbers 1, oy,
Qz, ... are refionally independent. a

(The above fact can also be deduced for e;'s belonging to A directly
from (3). The assumption (2) is not essential.)

Remark 1. With a slight modification of the set €, Theorem 2 also
holds if we add one (finitely many reduces to one) rational number g = 1/n,
where 7 is relatively prime to all the p;’s. The group T* is then replaced
by Zn x T (Z, is viewed as a subgroup of T). Next, all I;’s must be
chosen multiples of n, hence we obtain g = ag. The cohomology function
on the added axis i3 then gy = 0. The ergodicity and strict ergodicity are
maintained.

IT. Solving Iwanik’s equation. Let the group G, be given. By
p-rationals we will mean the elements of the spectrum of the group ro-
tation (Gp, 1). For technical reasons we need to introduce a notation for the
nurmber of “unfilled positions”. And so, for given sequences (p;) and (I;) we

define
m—=p-(1—zﬁ-)
T D

Let (6;) be a summable sequence with 0 < §; < 1/2 for each j.
THEOREM 3. For every sequence (7;) of elements of T there exist
(a) increasing sequences (I;) and (p;) with (p;) defining Gp, and such
that for each j € N,
§.m
(75) Iy is o multiple of mj_1 end 1; < p"—p",
j—1
(b} a sequence {3;) of p-rationals, and
(¢) @ sequence (o) such that a; € A and y(oy) = v; + 0; for each i € N.

Proof Fix a sequence (g;) of positive numbers such that

(8) .E]_<% and Zﬁ'j<5k (k = 1).

i>k
We shall inductively find the numbers l; and p; satisfying (7;), define 5;,
and construct a triangular array (c j)jen, 1<i<j+1 such that for every pair
i,7 with ¢ < g,

{ &i 4
(9;) ai,j_zw =7+ B,

k<s Pk

and
(10_7') llkai,ﬂ < 2p+epe1+:..+e; for al 1<k <y
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Step 1. Let f; =0 and find §y > 1 such that

limi] < ex

(this is possible for both rational and irrational ;). Then let py be an
element of the sequence defining G, such that Iy < éipy, as in (71) (set
po == mg = 1). Observe that for z € [y, —&1/l1, 71 +21/l1] we have (Liz)y €
(—2e1,2¢1) C (—1/2,1/2), so that the function

(llm)'[[‘

-
increases linearly (with slope 1 — li/p1) from a value < 7y to a value > v,
(seen by an elementary calculation). Thus, there exists an w13 € [y —
61/11,’)/1 + 61/l1] with

l
_ {hoeaa)r =

g fa's

(81) 1,1 -

Of course, we have

(101) |51CX1’1| < 2g7.

Step j+1. Throughout description of this step, 7 > 1 has a fixed value,
while 4 and & range between 1 and j (later we also admit § = j + 1 and
k=7 +1). Suppose we have already defined all the numbers 8;, Iy, px and
@; 7, so that the requirements on I, and pg of (75} as well as the conditions
(9,) and (10;) are satisfied. First notice that

(11) |lkwr <28+ Egrr .. e

holds for each % if « is in some open interval U; around 0. In particular, by
(8), (Iyz)r € [(—1/2,1/2) and thus the function

5% (lez)r
kS P

increases lineaxly (with positive slope 13", 5 le/pk) on Uj. So, it is possible
to find zp € U; and a p-rational 8;41 with ~

luz
(12) %o — Z Urzo)w Yi+1 + i1
ksj P

We let 011,; = zp, and so, by (11) and (12), the conditions (9;) and (10;)
are additionally satisfied with 4 = j - 1.

Now, we repeat the procedure of step 1. Find ;44 > I, a multiple of
m™m;, such that

(13) |lj_+.1(li]j| < 441 for all 1 Li< .7 -+1
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(this is possible regardless of the rational independence of the o 4's), and
then pick p;41 from the sequence defining Gp such that I; 11 < 6;41p541/P5,
as required in (7,41).

In the sequel i denotes a fixed integer between 1 and j + L. For
z € o = &1 /b1, g + 8541 /]
we have, by (10;),
(14) |lkm] < 2ep + €1+ ...+ g +e541 forallli <k <4,

Next, by (13), we also have |l;;12| < 2441 on the same interval, which
extends (14) to k = 5 + 1. As before, by (8), the function

_ Z Urz)r

k<1 P

increases linearly (with positive slope 1 — 35, .\ Ix/px) on the above in-
terval, assuming at the endpoints values on opposite sides of ; + f3; (easily
calculated using (9,)). Hence, there exists in this interval an a; ;41 satisfying

l g 4
(95+1) gl — Y Uborisoa)e Y+ B
r<j+1 Pk
Of course, by (14), we also have
(10j+1) |lkai,j+1g <2epteEpprt. ot E forall 1<k <5+ 1'.

This completes the induction.
It follows from the construction that for fixed 4 the sequence (o ;);%; is
Cauchy, so o = lim; oy ; exists. We easily notice that (10,) and (8} yield

|lka,-) <Ep+ Zaj < 3eg,
izk
and so0 o; € A. Further, by a standard argument with separately estimating
a tail of a series and the corresponding finite sum, (9;) and (10;) imply that
y(ees) = v + By, as desired. m

III. Strictly ergodic Toeplitz flow. First, we need to represent an
ergodic rotation of the infinite-dimensional torus by a subshift. Then we
state our main result.

LemMa 2. Let (T, &) be ergodic. Then there ezists a minimal 0-1-
subshift (Y, S) and a continuous factor map ¢ :Y — T invertible except
on a subset F C T of Haar measure zero.

Proof Let 0= ap < a1 < a2 < ... < 1/2 be a sequence in T. Next
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define

7= |} [an-1,8n] X [on-2,8n-1] X ... % [ag,a1] X Tx T ...
n>1l
1t is easy to check that J and its complement constitute a topological gen-
erator for the flow (T%°, a). The existence of a 0-1-subshilt (¥,5) and of a
continuous factor map ¢ : ¥ — T invertible except on the subset

F= U (0 + na)
n&?
follow from [D-G-S, Sec. 15] (where 8J denotes the boundary of J). Of
course 8J C [0,1/2] x [0,1/2] x [0,1/2] x ... is of Haar measure zero. By
minimality of T, Y can be chosen minimal. w

THEOREM 4. Let ag be a countable subgroup of T containing infinitely

many rationals. Then there ezists o strictly ergodic Toeplitz flow (O(n), 8
with pure point spectrum oyp.

Proof. Every such subgroup op is generated by the union of two sets:
{1/p; : 7 € N} and {v : ¢ € I}, where p; |p;41 for each j, I is either
empty or finite or countable, and (if I is non-empty) the s are rationally
independent. We proceed with the proof for I = N, for the other cases see
Remark 2 below.

Let G, be the group of p-adic integers defined by the sequence (pj)-
We now apply Theorem 3 {with some fixed sequence (§;)) to obtain a sub-
sequence of (p;) (from now on (p;) will denote this subsequence), and se-
quences (I;), (&), {e;) with all the properties stated there. It is important
that the set {1/p; : j € N} U {y; + B : ¢ € I} still generates the same
group ag. From now on +; will denote «; + ;. These v;’s are also rationally
independent.

Let (¥, 8) be a subshift (we will specify it a little later, at this moment we
are more interested in defining the set C'). We apply a simplified {compared
to [W]) inductive construction of the Toeplitz sequence # from Y: in step j
we fill the initial (for odd ) or terminal (for even 7) I; yet unfilled positions
in [0, p;) nsing a block of length I; appearing in Y, and repeat this pattern
with period p;. Of course, this induction also defines the set C' C Gp,. Observe
that the last inequality of (7;) implies (2) (in our case r; < l;pj-1).

So, we can use Theorem 2, from which (G, x T, 1 x %), the mono-
thetic group rotation with pure point spectrum og, is measure-theoretically
isomorphic to the strictly ergodic (with the product measure) group exten-
sion (Gp x T, T¢), where Ty is defined by the cocycle a"C and « is the
sequence of ¢;’s. By Corollary 1, the element « is a generator of T,

We can now specify the subshift (Y, 9) to be the representation of (T, &)
of Lemma, 2. The group extension (G, x T*, T¢) is a topological factor, via
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Idx @, of the piecewise power skew product (G, x Y, S¢), and this factor map
is invertible except on the set G, x F of product measure zero. Now, any two
invariant measures on the skew product are mapped to the product measure
on the group extension (strict ergodicity), hence they may differ only on the
preimage of (7 x F. This set, however, is of any such measure zero, so the
difference is inessential. Thus strict ergodicity of (G, x Y, Sg) is proved.
Clearly, the map Idx¢ provides also a measure-theoretic isomorphism.

Finally, since each I; is a multiple of m;j_1, we have ¥(57) C Y (see
proof of the analogous inclusion in [W, Lemma 4.3]). By minimality of ¥
we have equality, and Lemma 1 says that (O(n), S) is strictly ergodic and
measure-theoretically isomorphic to (G, X Y, Sz). =

Remark 2. For I finite the same proof applies (Theorem 2 works as
well for finite products of tori, in Theorem 3 put «; = 0 for i > #I). Any
regular Toeplitz sequence over G, works for I = §.

Remark 3. By essentially the same proof, if n = p; is relatively prime
with g; = p; /p1 for each § > 2, then we can obtain o, for a Toeplitz sequence
over Gy. We let -yg = 1/n and replace T by Z, x T°. Theorem 2 applies by
Remark 1 with ag = v (cf. [T, Theorem 2], which is identical with applying
this Remark to the case I = () of Remark 2},

References

[B-K1] W. Bulatek and J. Kwiatkowski, The topological centralizers of Toeplitz
flows and their Z;-extensions, Publ. Math. 34 (1990), 4565,
[B-K2] —, —, Strictly ergodic Toeplitz flows with positive entropies and trivial central-
izers, Studia Math. 103 (19%2), 133-142.
[D-G-8] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Com-
pact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1976.
[D] T. Downarowicz, The Choguet simplex of invarient measures for minimal
flows, Israel J. Math. 74 (1991), 241-256.
[D-K-IL] T.Downarowicz, ). Kwiatkowskiand Y. Lacroix, A criterion for Toeplitz

flows to be topologically isomorphic and epplications, Collog. Math, 68 (1995),
219-228.

[G-H] W. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math.
Soc. Collog. Publ. 36, 1955.
[F] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer, J.
Math. 83 (1961), 573-601.
1]  A.Iwanik, Toeplitz flows with pure point spectrumn, preprint.
[I-L] A.Iwanikand Y. Lacroix, Seme constructions of strictly ergodic nomn-regular
Toeplitz flows, Studia Math, 110 (1994), 191--203.
[J-K] K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, Z. Wahrsch. Verw,
Gebiete 13 (1969), 123-131.
[O] 1.C.Oxtoby, Ergodic sets, Bull. Amer. Math. Soc., 58 (1952), 116-136.



246 T. Downarowicz and Y. Lacroix

[W] 8. Williams, Toeplitz minimel flows which are not uniquely ergodic,
7. Wahrsch. Verw. Gebiete 67 (1984), 95-107.

11.B.0. Faculté des Sclences et Techniques
Technical University of Wroctaw Département de Mathématigues
Wryhbrzeze Wyspiariskiego 27 6 Av. V. Le Gorgeu
50-370 Wroctaw, Poland B.P. 809
E-mail: downar@grafim.pwr.wroc.pl 20287 Brest Cedex, France
E-mail: jacroix@kelenn. univ-hrest.fr

Tastitute of Mathematics

Received March 29, 1995 (3445)
Revised version April 12, 1995 and March 4, 1996

icm

STUDIA MATHEMATICA 120 (3) (1996)

Acyclic inductive spectra of Fréchet spaces
by

JOCHEN WENGENROTH (Trier)

Abstract. We provide new characterizations of acyclic inductive spectra of Fréchet
spaces which improve the classical theorem of Palamodov and Retakh. It turns out that
acyclicity, sequential retractivity (defined by Floret) and further strong regularity condi-
tions (introduced e.g. by Bierstedt and Meise) are all equivalent. This solves a problem
that was folklore since around 1970.

For inductive limits of Fréchet—-Montel spaces we obtain even stronger results, in par-
ticular, Grothendieck’s problem whether regular (LF)-spaces are complete has a positive
solution in this case and we show that even the weakest regularity conditions already
imply acyclicity. '

One of the main benefits from our results is an improvement in the theory of pro-
jective spectra of (DFM)-spaces. We prove the missing implication in a theorem of Vogt
and thus obtain evaluable conditions for vanishing of the derived projective limit functor
which have direct applications to classical problems of analysis like surjectivity of partial
differential operators on various classes of ultradifferentiable functions (as was explained
e.g. by Braun, Meise and Vogt).

1. Imtroduction. Given an inductive spectrum (Fp)new of Fréchet
spaces with inductive limit E = ind, F, Palamodov’s [21] definition of
acyclicity can be rephrased as stating that the short exact sequence

0— PE, % BB, > E—-0

is topologically exact, where g((©n)nen) = 2 ©n s the canonical quotient
map and o((zn)nen) = (ZTn ~ Tn-1)nen (To = 0).

The origin of this definition was the subspace problem in (LF)-spaces
(which itself is closely related to surjectivity problems in classical analysis):
which subspaces of (LF)-spaces are again inductive limits of Fréchet spaces?
Such subspaces are called limit subspaces and there exists a long list of
papers dealing with this subject {see e.g. {13] and its list of references).
The subspace problem arises in a natural way if one is concerned with the
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Key words and phrases: inductive and projective limits, acyclicity, derived projective
limit functor.

[247)



