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Acyclic inductive spectra of Fréchet spaces
by

JOCHEN WENGENROTH (Trier)

Abstract. We provide new characterizations of acyclic inductive spectra of Fréchet
spaces which improve the classical theorem of Palamodov and Retakh. It turns out that
acyclicity, sequential retractivity (defined by Floret) and further strong regularity condi-
tions (introduced e.g. by Bierstedt and Meise) are all equivalent. This solves a problem
that was folklore since around 1970.

For inductive limits of Fréchet—-Montel spaces we obtain even stronger results, in par-
ticular, Grothendieck’s problem whether regular (LF)-spaces are complete has a positive
solution in this case and we show that even the weakest regularity conditions already
imply acyclicity. '

One of the main benefits from our results is an improvement in the theory of pro-
jective spectra of (DFM)-spaces. We prove the missing implication in a theorem of Vogt
and thus obtain evaluable conditions for vanishing of the derived projective limit functor
which have direct applications to classical problems of analysis like surjectivity of partial
differential operators on various classes of ultradifferentiable functions (as was explained
e.g. by Braun, Meise and Vogt).

1. Imtroduction. Given an inductive spectrum (Fp)new of Fréchet
spaces with inductive limit E = ind, F, Palamodov’s [21] definition of
acyclicity can be rephrased as stating that the short exact sequence

0— PE, % BB, > E—-0

is topologically exact, where g((©n)nen) = 2 ©n s the canonical quotient
map and o((zn)nen) = (ZTn ~ Tn-1)nen (To = 0).

The origin of this definition was the subspace problem in (LF)-spaces
(which itself is closely related to surjectivity problems in classical analysis):
which subspaces of (LF)-spaces are again inductive limits of Fréchet spaces?
Such subspaces are called limit subspaces and there exists a long list of
papers dealing with this subject {see e.g. {13] and its list of references).
The subspace problem arises in a natural way if one is concerned with the
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question whether a partial differential or convolution operator on a space of
distributions is surjective, which turned out to be equivalent to the fact that
the range of its transposed operator is a limit subspace in a strict (LF)-space
of test functions. This and related questions were studied by Hérmander [17]
and his work was a starting point for Palamodov’s investigations, because
it is quite easy to see that a sequentially closed subspace L of an acyclic
(LF)-space E = ind, B, is a limit subspace if and only if the inductive
spectrum (B, /LN E,)nen is again acyclic.

Palamodov [21] and Retakh [23] found the following characterization of
acyclicity, which has been reproved by Vogt [29] avoiding the homological
language and methods in the original proof.

THREOREM 1.1. An inductive spectrum (En)nen of Fréchet spaces is
acyclic if and only if it satisfies Retokh’s condition (M), i.e. in every space
E, there is an absolutely conver Q-neighbourhood Uy, with

1. U, € Upqy for every n € N and
2. for every n € N there is m > n such that all topologies of the spaces
By, k> m, coincide on U, .

Our main result (see Theorem 2.7, (4)=>(2) below) states that the first
requirement in Retakh’s condition (M) can be drepped. This has been known
only for (LF)-sequence spaces [29] and weighted inductive limits of contin-
uous functions [2]. The proof for the general case is surprisingly elementary
but it is based on a long development of the theory and has remarkable
consequences for the general theory as well ag for applications e.g. to distri-
bution theory.

Besides acyclicity there are many other regularity conditions for (LF)-
spaces, which were needed since, in general, many pathologies may appear,
e.g. an inductive limit need not be Hausdorfl even if the defining steps are
Banach or nuclear Fréchet spaces.

K. Floret {11] studied properties of bases in inductive lmits E = ind,, B,.
To do this he defined & to be sequentially retractive if every null sequence
in E already tends to 0 in some step. He investigated this property thor-
oughly in. [12], where he proved a useful factorization theorern and showed
that sequentially retractive (LI")-spaces are sequentially complete. As a con-
sequence of our main result they are even complete.

A stronger regularity condition-—bounded retractivity, see Definition 2.1
—was introduced by Bierstedt and Meise [3] who dealt with approximation
properties of inductive limits.

For different purposes many other regularity conditions were defined; we
refer to the appendix of Chapter 3 in Bierstedt’s survey article [1].

Neus [19] studied all these conditions and he showed that they are equiv-
alent for inductive limits of normed spaces.
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In the second chapter of the present note we show that the equivalence
of all the mentioned “strong regularity” conditions holds in (LF)-spaces
because they are equivalent to acyclicity. This solves a preblem that was
explicitly stated e.g. in the book of Bonet and Pérez Carreras [22, Problem
13.8.7].

The third part deals with inductive imits of Fréchet—Montel spaces and
we prove that in this setting already regularity implies acyclicity and com-
pleteness, in particular, Grothendieck’s question [16, questions non résolues
9] whether quasi-complete (LF)-spaces are complete has a positive answer
for this class. Moreover, these properties are characterized by a condition
{wQ) due to Vogt, which is appropriate for evaluation in concrete cases.

As a main application we finally consider projective spectra of (DF)-
spaces and in particular the derived projective limit functor, a construction
due to Palamodov [20] and further developed by Vogt [27, 28]. Our The-
orem 3.5 below is very helpful in the investigations of the surjectivity of
convolution or partial differential operators defined on spaces of ultradiffer-
entiable functions of Roumieu type (for example, on spaces of real-analytic
functions, Gevrey classes etc.) as was shown e.g. in [5, 6], [7, Prop. 3.3], [8,
Prop. 1.9].

In fact, the surjectivity of such an operator is equivalent to the vanish-
ing of Proj* &, where X is a projective spectrum of (DFM)-spaces and the
projective limit is the kernel of the considered operator. As a consequence
of our reswlt this condition is equivalent to a Phragmén-Lindeldf condition
{introduced in this context, for example, in [18]) on the zero variety of the
polynomial associated with the operator. Partial results of that type bave
been obtained so far with specialized “hard analysis” proofs (see e.g. [5]).
The further evaluation of the Phragmén—Lindelsf conditions still requires
more analytic work (see [5, 18]) but the result itself is immediate (for exam-
ple, 3.5 below saves much of the work in [5]).

Furthermore, the derived projective limit functor is the main tool in the
splitting theory for Fréchet spaces developed by Palamodov {21, §9] and
Vogt [26]. However, in that situation the projective spectra never consist of
(DFM}-spaces, so that our theorem is not directly applicable. We refer to
[14, 15], where the methods of the present article are modified to get the
desired splitting results,

Our notation for locally convex spaces (l.c.s.) is standard (like e.g. in
22)); note that Uo(B) always means the system of absolutely convez 0-
neighbourhoods of a l.c.s. F.

2. Retractive (LF)-spaces. Recall that an (LF)-space is regular if
every bounded set is contained and bounded in one of the steps. ‘We now
define some stronger regularity conditions.
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DEFINITION 2.1. Let (B,7) = ind,(En,7s) be an inductive limit of
L.c.s. The defining spectrum (Ey )nen is said to be

1. sequentially retractive [11] if every null sequence in B converges to
zero in some step,

2. boundedly retractive [3] if for every bounded set B in E thereis n € N
such that B is contained in E), and the topologies T and 7y, coincide on B,

3. (sequentially) compactly reqular [3] if every {(sequentially) compact
subset of the inductive limit is (sequentially) compact in some step.

By Grothendieck’s factorization theorem (16, théoréme Al, for an (LF)-
space all defining spectra of Fréchet spaces are equivalent. This justifies
calling an (LF)-space sequentially or boundedly retractive or (sequentially)
compactly regular if one (and then each) defining spectrum has this property.

Cascales and Orihuela [9] proved that precompact sets in {LF)-spaces are
metrizable and therefore sequentially compactly regular, and sequentially
retractive (LF)-spaces are already compactly regular.

It is an important result due to Palamodov [21, Theorem 6.2} and Val-
divia [25, Chap. 1, §9, 5 (3)] (the latter for inductive limits of arbitrary l.c.s.)
that if an increasing sequence (U, )nen of O-neighbourhoods satisfies the re-
quirements of condition (M) in Theorem 1.1 then even the limit topology
coincides with almost all step topologies on these neighbourhoods. However,
the assumption that the sequence (U, )nen is increasing is essential for their
proofs.

The following result—essentially due to Palamodov [21, Cor. 7.1], cf. [29,
Thm. 3.2, Cor. 3.3]—is of particular importance for the theory.

PRroPOSITION 2.2. Acyclic (LF)-spaces are complete and boundedly re-
tractive.

Combined with 1.1 this implies that (LF)-spaces with (M) are sequen-
tially retractive. Om the other hand, the following contribution of C. Ferndn-
dez [10] shows that sequentially retractive (LF)-spaces “nearly” satisfy (M).

PRrOPOSITION 2.3. Every sequentiolly retractive (LF)-space B = ind, B,
satisfies (Q), i-e. for every n € N there are Uy, € Up(Ey) and m > n such
that B, and E), induce the same topology on U, for all k > m.

Proof. For the sake of completeness we give a slightly simplified version
of the original proof. We show that for every n € N there are U, € Up(H,)
and m > n such that the topologies of £, and F have the same convergent
sequences in U,. Fix n € N and a decreasing basis (Vi )ren of Up(Ey) and
assume that for every k € N there are a sequence (g i)ien € VkN and zp & Vi
such that xj; converges to z for ! — co in E but not in Ej. Arranging
the double indexed sequence yx; = @iy — Zx In an arbitrary way into a
single indexed sequence it is easy to check that the latter converges to 0 in
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E and therefore also in some step Ej,. But then also the subsequence i,
converges to 0 in FEy,, a contradiction. m

To show that condition (Q) in the previous proposition (which also ap-
peared in [29, Proposition 2.3]) already implies (M) we need the following

LEMMA 2.4. Let X be o vector space and 8, T two locally conves topolo-
gies on X. Let A be an absolutely conver subset of X and assume that there
15 U € Up(X, S) such that S|una is coarser than Tlyqa. Then S|4 is coarser
than 7| a.

Proof. Since A is absolutely convex we only have to show that T induces
a finer filter of O-neighbourhoods in A than 8. Let V € I (X, 8) be given.
Since VN3U € Up(X, S) there is W € Up(X,T) with WNANU C VN 3U.
We show that W N A CV (which gives the conclusion).

Let 2 € WNA If ¢ U there is n € N with 5z € U and sz € U.
Since W and A are absolutely convex this implies sz € W NANU C 1U.
Therefore, =tz € U, which contradicts the choice of n. We have shown
zeWnNANUCV. »

Note that for A = X the previous lemma was obtained already in the
seventies by Roelcke [24]. Now we are ready to prove

ProroSITION 2.5. Let E = indn(En,7n) be an inductive limit of l.c.s.
with (Q), i.e. for every n € N there is U, € Uy(E,) on which residually all
topologies T;. coincide. Then (Ey)nen satisfies (M) and is therefore acyclic.

Proof Tt is known and very easy to see that it is enough to establish
(M) for a defining spectrum which is a subsequence of the given one. Sa, we
may assume that for every n, k € N already Tp41|p, = Tntklr, holds.

The coincidence of T3 and T3 on U implies that there is V3 € Up(Es)
with 2V3 N U1 C 1Us. Define Uy = Uy + (407 N V), which is an absolutely
convex O-neighbourhoed in Ey containing Uy,

To show Ta|g, = ’1},_|.k|gz for every k € N it is—by the previous lemma—

enough to show the coincidence of the topologies on Ty N V3. But
TN Vs = (U + (302 NV)) NVa C (U1 N 2Vs) + (302N Vs)
CLilUs+ (U =V
and the topologies coincide on Iy (hence also on the subset U2 N V3) by as-
sumption. Thus, we have shown T3|g, = T34x|g, for every k € N. Proceeding
by induction yields that the inductive spectrum satisfies (M), which implies

acyclicity (note that this implication in Theorem 1.1 holds for arbitrary
inductive spectra of l.c.s.). w

Combining 2.3 and 2.5 we arrive at



252 J. Wengenroth

THEOREM 2.6. Sequentially retractive (LF)-spaces are acyclic.

Collecting all known facts (namely 1.1, 2.2, 2.3 and 2.5) we finally get
the following

THEOREM 2.7, For an (LF)-space E the following conditions are equiy-
alent:

(1) E is acyclic,
(2) E satisfies (M),

(3) E is sequentiolly retractive,

(4) F satisfies (Q),

(5) E is boundedly retractive,

(6) E is compactly regular,

(7} E is sequentially compactly reqular.

If the steps are only metrizable one has to add in (1), (2) and (4) the re-
quirement that F is regular (because sequentially retractive inductive limits
are always regular but even sirict inductive limits of normed spaces need not
be regular {12]; note that in 2.3 completeness of the steps was not needed).
An immediate consequence of the theorem (together with 2.2) is the follow-
ing improvement of a result due to Floret [12, Korollar 5.3] who showed that
sequentially retractive (LF)-spaces are sequentially complete.

COROLLARY 2.8. Sequentiolly retractive (LF)-spaces are complete.

3. Inductive limits of Fréchet—Montel spaces. In this section we
consider the situation where the steps are Fréchet—Montel spaces, which is
the most interesting case for applications in distribution theory. By duality
we characterize all relevant properties of projective spectra of {(DFM)-spaces
(which are exactly the strong duals of Fréchet—Montel spaces).

The following notation was introduced by Vogt in [29].

DermNiTIoN 3.1. An inductive limit ¥ = ind,, E, is said to satisfy (wQ)
if for every n € N there are U, € Up{E,) and m > n such that for every
k>mand W € Uy(E) thereare V € Up(Ey) and § > 0 with VNU,, € SW.

Note that without the factor S the condition would mean that F) and
P, induce the same topology in U, {i.e. condition (Q)).

If || |l is & fundamental system of seminorms in the space B, (wQ) is
equivalent to the following inequalities, which are appropriate for calcula-
tions in concrete cases:

Yndm>n NeNVE>mMeNIKeN, §>0Vrc B,
lzlm e < 8 (], + 5]l )

It was noticed by Bonet and Ferndndez [4] that in (LF)—spéces, (wQ) is
equivalent to the fact that the topologies of Ey and E,, have the same
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bounded sets in Uy,. Using this remark one can easily see that regular (LF)-
spaces satisfy (wQ), which was first proved by Vogt [29, Thm. 4.7]. The next
proposition improves this result. Recall that an inductive limit is a-regulor
if every bounded set is contained {but not necessarily bounded) in some

step, and S-regular if every bounded set which is contained in a step is also
bounded in some step.

PROPOSITION 3.2. An (LF)-space which is either a- or B-regular satisfies

(wQ).

Proof Let E = ind, E, be an a-regular (LF)-space and n € N fixed.
Then there is U, € Ug(E,) and m > n such that T> C Ep. Indeed, let
(Vi)rew be a decreasing basis of Uy(Ey,) and assume that for every k € N
there is 2, in the E-closure of V3, but not contained in Ey. Given W € Uy (E)
there is k € N with T/—f C W (because every lc.s. has a O-basis of closed
sets). This means z; — 0 in F without being contained in any step, a
contradiction. Let now & > m and B C U, bounded in F;. Then D =
TB)E’c is a Banach disc contained in B,,, and the identity map {[D],pp) —
En has closed graph since both spaces are continuously included in Ey.
The closed graph theorem implies that thig identity map is continuous and
therefore B is bounded in F,,. The above mentioned remark of Bonet and
Fernindez yields that F satisfies (wQ).

Let now E be §-regular and as before (Vi;)xen be a decreasing basis of
Up(Ey). Assume that for every & € N there is By, C Vj which is bounded
in E but not bounded in Ey. The union B = | J, .y Br is contained in E,
and again bounded in B. Indeed, if W € Up(E) there is k € N'with V;, C W
and 0 < A <1 with ’\U15jgk B; C W. Hence, AB C W. Now f-regularity
implies that B is bounded in some step Ep, a contradiction since B C B is
unbounded in Ey. Again [4] implies that F satisfies (wQ). w

In addition to Theorem 2.7 we now get the following result, which means
that for inductive limits of (FM)-spaces all regularity conditions considered
in the literature are equivalent.

THEOREM 3.3. Let E = ind, B, be an inductive limit of Fréchet—-Montel
spaces. The following conditions are equivalent:

(1) E is complete,
(2) B is regular,
(3) E is a-regular,
(4) E is B-regular,
(8) E satisfies (wQ),
(6) B is acyclic.
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Proof. By Grothendieck’s factorization theorem, complete (LF')-spaces
are regular. The implications (2)=+(3) and (2)=-(4) are trivial, and (3)=-(5)
and (4)=>(5) are proved above. Let now (5) be satisfied. Using the remark
of Bonet and Fernandez above we know that there is a sequence of 0-
neighbourhoods of the steps in which almost all step topologies have the
game bounded sets. Let U, be an absclutely convex 0-neighbourhood such
that all topologies of Ey, k > m, have the same bounded sets in U,. Fix
k > m and let {z,)ren be a sequence in U/, which converges to O in the
topology of Fy. This sequence is then bounded and hence relatively com-
pact in the topology of E,,. Since on a compact space no coarser Hausdorff
topology exists we conclude that the sequence tends to 0 also in Fy,. Thus,
the topologies of By, and E,, coincide in U,. Thecrem 2.7 implies acyclicity,
which vields completeress by 2.2,

The previous theorem has an immediate consequence for the subspace
problem described in the introduction.

COROLLARY 3.4. Let B = ind, E,, be an aeyclic tnductive {imit of Fré-
chet-Schwartz spaces and L o stepwise closed subspace (t.e. Ly, := LN By,
is closed in B, for each n). The following conditions are equivalent:

(1) L is a limét subspace of B,
(2) the spectrum (Eyn /L) satisfies (wQ),

(3) the quotient map q : E — E/L lifts bounded sets, i.e. every bounded
set in the quotient is contained in the image of some bounded set in E.

Proof. Since quotients of Fréchet—Schwartz spaces are Montel, the
equivalence of (1) and {2) follows from 3.3 and the remarks preceding 1.1.
(2)=(3). By 3.3 the bounded sets of E/L = ind, F /L, are contained
and bounded, hence compact, in some step E,,/L,, and thus can be lifted
to E,.
. (3)=>(2). Since (3) easily implies regularity of E/L, again 3.3 implies
2). m

As promised in the introduction, we now turn to projective spectra of
(DF)-spaces. We want to recall the main definitions.

A projective spectrum is a sequence X' = (X, o) Jnen of Les. X, and
continuous linear maps o5 ¢ ¢ Xp41 — X, We set

X =Proj’ X = {(azn)n € HXn D Opa1{®ny) = 2, for all n},

Proj' X = || Xa/B(X),
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where

B(X) = {(:cn)n € HXn :3(Yn)n € Hxn with T, = yn— 05 11 (¥nt1) Vn}.

This definition of Proj® is taken from [28] and it has been obtained by Pala-
modov [20] as a characterization of his criginal definition in terms of homo-
logical algebra. It is quite easy to compute that if

0—-X =YV —=Z—0

is a short exact sequence of projective spectra such that Proj'X = 0, then
the sequence

0 — Proj & — Proj’y — Proj® 2 — 0

is again exact. This fact reflects the homological origin of the definition
and is the typical situation in applications (like the one explained in the
introduction).

A is called reduced if the canonical map p™ : X — X, (2x)ken. v Zn,
has dense range for every n € N. In this case, the strong duals X/, form an
inductive spectrum where the transposed maps of g}t ; may be considered as
continuous inclusions. We denote by X* the inductive limit of these strong
duals. If X, is a regular (LB)-space with fundamental sequence (Bp)ien
of bounded sets then the strong topology on X, is determined by the semi-
nOrms

lyl5; = sup{ly(2)|: 2 € Bng}, leN
For n < m the transposed of the map ¢, = p7 5 0...0 g0  : X0, — X,
is denoted by «I*. Vogt called the spectrum X to be of type (P) if the
inductive spectrum of the strong duals satisfies (wQ), i.e.

Vndm>n,NcNVE>mMeNIKeNS>0vye X,
lem vl ae < 8 (lenyll ze + il )

In concrete cases this condition is very useful {even if it looks complicated
at first sight), and it is much easier to check these inequalities than to
show Proj' X = 0 by other means, We remark that in the applications
to partial differential equations it was exactly condition (P5) that charac-
terized Proj* X = 0 and thus the desired surjectivity of the partial differ-
ential operators considered there. Moreover, it could be reformulated as a
Phragmén-Lindelsf condition similar to that in Hérmander’s work [18], but
hard analysis had to be used to show sufficiency. The following theorem
gives the missing implication in a result of Vogt {28, Theorem 3.4] and thus
saves large parts of work in the applications.

THEOREM 3.5. Let X be a reduced projective spectrum of (DFM )-spaces
and X = Proj® X . The following conditions are equivalent:
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(1) Proj* X =0,
(2} X is bornological,
(8) X is complete,
{4) X is barrelled,

(5) X* is regular,

(6) X is of type (Py).

Proof. The implications (1)=(2)=>(3)=-(4)=>(5)=>(6) were proved in
Theorem 3.4]. To show (6)=+(1) note that (P5) is a reformulation of

condition (wQ) for the inductive spectrum of the strong duals and apply

3.3

to conclude that X* is acyclic. By the very definition of acyclicity this

implies that the transposed of the acyclicity map o is surj ective, which gives
Proj' ¥ =0. =
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The multiplicity of solutions and geometry
of a nonlinear elliptic equation

by

Q-HEUNG CHOI (Incheon), SUNGKI CHUN (Incheon)
and TACKSUN JUNG (Kunsan)

Abstract. Let {2 be a bounded domain in R™ with smooth boundary 412 and let
L denote a second order linear elliptic differential operatar and a mapping from Lz( 2)
into itgelf with compact inverse, with eigenvalues —);, each repeated according to its
multiplicity, 0 < A < Ap < A3 £... £ A £... — oo. We consider a semilinear elliptic
Dirichlet problem Lu + but —au™ = f {(#) in £2, v = 0 on 8. We assume that a < Aj,
Az < b < Az and f is generated by ¢y and ¢2. We show a relation between the multiplicity
of solutions and source terms in the equation.

0. Introduction. Let f2 be a bounded domain in R® with smooth
boundary 842 and let L denote the differential operator

8 ( e,
L= 2 ai-(m)w-—),

where a;; = a;; € C°°(f2). We consider the semilinear elliptic: Dirichlet
boundary value problem

Lu+bu®™ —au™ = f(x) in &2,
u=10 on 2.

Here L is a second order linear elliptic differential operator and a mapping
from L?({2) into itself with compact inverse, with eigenvalues —J;, each
repeated acccording to its multiplicity,

D <l <... S <. —o0.
In [8, 4, 8, 10, 15], the authors have investigated the multiplicity of

(0.1)

solutions of (0.1) when the forcing term f is supposed to be a multiple of
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