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Kdthe spaces modeled on spaces of O functions
by

MEFHARET KOCATEPE (Ankara) and
VIACHESLAV P. ZAHARIUTA (Rostov-na-Donu)

Abstract. The isomorphic classification problem for the K&the models of some C*°
function spaces is considered. By making use of some interpolative neighborhoods which
are related to the linear topological invariant D, and other invariants related to the
“guantity” characteristics of the space, a necessary condition for the isomorphism of two
such spaces is proved. As applications, it is shown that some pairs of spaces which have
the same interpolation property Dy, are not isomorphic.

We consider the isomorphic classification problem for the Kothe spaces
which. are modeled on the space of C°° functions on a domain with cusp
which are flat at the cusp point (studied by Kondakov-Zahariuta [9]) and
the spaces of infinitely differentiable Whitney functions on special compact
gets in R and vanishing at the cusp-like limit point with all their derivatives
(studied by Goncharov-Zahariuta [7]). In these papers the authors have
shown that in some cases the spaces have a basis and they are isomorphic
to the K6the space K (a) where :

—min{ng,p)
3

PP
Uy, kp = MM kET, 7 — 0,

and
(o p = 0P P, ™) py 50, dy 0,

respectively. Tt was shown earlier {by Tidten [15], see also Goncharov—
Zahariuta [6]) that these spaces depend omn the thinness of the cusp in
topological sense, namely, among them there is a continuum of pairwise
non-isomorphic spaces.

In the present paper, we consider a generalization of these cases, namely
we consider Kothe spaces of the form K (a;,) = H(k,v,a) where

ayp = ePPrmRE e g p e N={1,2,.. },
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2 M. Kocatepe and V. P. Zahariuta

1<a; Soo, v=(v), %=1l k:N-N

We assume that the topology is defined as usual by the sequence of norms
(Il - lz) where for = = (&),

o0
lzllp = 3 I€ilass
i=1

and
Up={z € H(x,v,0): =l < 1}
is the corresponding unit bhall. Observe that Gipi1 2 €6ip and also that
H(x,7,a) is a Schwarts space and if (In4/4} is bounded, H (k,, a) is nuclear.
If sup; £i(i) = K < 00, then a;p = e"®(Boer for p > K, o H(k,,a)
is diagonally isomorphic to the infinite type power series space Eoo(a) =
Aco{a) = K(eP%), If lim;_,o0 k(1) = 00, then a;, &~ e?(1+7)e: and the space
Hk,v,a) coincides with Fuo({via;)) as sets and the identity is
an isomorphism. So the interesting case occurs when x~(n) is an infinite
set for infinitely many n. If (v;) is bounded, say by I', then
ePM < ay,, = gPtrimin{s(d),p))a < eglptIpjay

so the space H (x,7,a) coincides with E.(a) as sets and the identity is an
isomorphism. Thus in the rest of the paper, we shall assume that lim supy;
= 0Q. .

In an arbitrary sequence space E', we denote the coordinate basis by
e = (e;) where e; = (0,...,0,1,0,...), 1 being in the sth place. If # = (b;) is
any sequence of nonnegative real numbers, we write

B(b) = Be(b;) = {m =(E)EB: Y &b < 1}.
=1
In particular, if B = K(a;,) is any K&the space then Up = B¥(aqp).
For two functions f,g: R — R, f(t) < g(t) means
VE>03t0: t2>to= (ftF)* < g(t)
and F(t) 3 9(¢) means
k>03o: tzto= ft) <o)+ k.

I Aisan arbitrary nonempty subset of a locally convex space, we denote

the absolutely convex hull of A by I"(4) and the closed absolutely convex
hull.of A by I"(4).

PROBLEM. Give an isomorphic classification of spaces H (k,7,a), that is,
find necessary and sufficient conditions for H(s, v, a) = H(K,¥,8) (isomor-
phic). : '
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In this paper by using appropriate linear topological invariants we give a
necessary condition for isomorphism of these spaces. Then we give examples
of spaces having the same interpolation property (i.e. condition D) which
can be distinguished by this method.

Linear topological invariants. Linear topological invariants (such as
approximative and diametral dimensions) as a tool for isomorphic classi-
fication of nonnormed linear topological spaces appeared in investigations
of Pefezyriski [14], Kolmogorov [8], Bessaga, Pelczyiiski and Rolewicz [2],
Mityagin [10] et al.; they were also initiated by Gelfand [4]. These invariants
can be called “quantity” invariants, because they are based on considera-
tion of some measure characteristics such as entropy and dismeters. Here
we use the simplest characteristic of such kind. For & given linear space F
and absolutely convex sets ¥V and W in E, we consider

Be(V,\W)=8(V,W)=sup{dimL: Le F,LNW C V}

where F denotes the set of all finite-dimensional subspaces of F spanned on
elements of V. Trivially, we have

(1) VI C Vo, Wy D Wa = B(Vi, W1) < B(Va, Wa).

If T' is a linear isomorphism, then clearly 3(T(V),T(W)) = B(V,W). Thus
in the case of Fréchet spaces, the above-mentioned classical invariants can
be described by the following fact.

PROPOSITION 1. Let X and ¥ be Fréchet spaces, and (Up) and (Vy)
be fundamental systems of zero neighborhoods in X and Y respectively. If
X=2Y,ie X andY are isomorphic, then Vp 39’ Vg’ 3¢ 3C >0 Vi > 0:

) 1 1
B(tU,, Uy) < ﬂ(tC’qu, ET/;_.,:) and BV, Vp) £ ﬁ(tCUq:, EUI.:).

To get a new way for distinguishing nonisomorphic spaces with very
slight differences in their structures (like those that will be considered here),
following the ideas suggested in [19} and [20], we combine some “quantity”
invariants with appropriate “quality” invariants. What we call a “quality”
invariant is an invariant which appears if a certain general property of linear
toplogical spaces is considered (e.g. montelity, nuclearity, quasinormability,
etc.) or any other invariant property which is defined by an interpolation
relation between seminorms. This way, one can get (see, for example, [21])
invariant characteristics of Kothe spaces considered in [17] and [18], which
appeared by the influence of Mityagin’s results [11]; [12] on invariant charac-
teristics of (non-Montel) power series spaces (see also [13] for more detailed
consideration of these invariants).
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If F is a sequence space with coordinate basis e = (e;), and a = (),
b = (b;) are two sequences of nonnegative scalars, and ¢, > 0, then

(2) BB (), 7B%(a)) = [{i : bi/a; < 1/7}|
where for a set S, |5| denotes the cardinality of S if S is a finite set and

400 if 9 is an infinite set (see for example [3] and [21]).
It is also easy to see that

Bf(max{a;, b;}) C B(a) N B*(b) C 2B°(max{a;, b;}) = B°(% max{a;, b;}).
Jo it follows that
(3) [{i: aifei <1, bi/e; <1} < B(B%(a) N B(b), B%(c))

< |{7. : aui:/ci <2, bi/ci < 2}[
and of course dropping any one of the two inequalities appearing in the right
hand side expression possibly increases the corresponding cardinality.

Now we consider an appropriate “quality” invariant, defined by the in-
terpolation property D,. This property was considered by Vogt [16] and
Tidten [15] and called DN, by them (see also Ds(f) in the work of Apiola
[1] as well as works of Goncharov and Zahariuta [5], [20] and [6]).

Let ¢ be a continuous, increasing function such that ¢(f) > ¢ > 0 for
t > 0. A Fréchet space (X,| - ||,) is said to have property D, (written
XeD,)if

C
Ip¥YgIr AIC>0: |zlg <o)+ -t~||a:||r vt >0, Yz € X.

It is clear that property D, is a linear topological invariant, that is, f X 2 Y,
le. X and Y are isomorphic Fréchet spaces, then X € D, if and only if
YeD,.

The following proposition was proved in [6].

PROPOSITION 2. Let X = K(aip) be a Schwartz Kothe space. Then the
following are equivalent:

(i) X has property D,. _

() IpYe Ir3C>0:  aiq/aip < @(Cairfaiy).

Proof. (i)=(ii). By D, we have p. Given g we find r and C correspond-
ing to ¢+ 1. Thus

C
lallgss < ol + izl Vi> 0, Vo € X.

Let z = ¢ and t = 2Cay; r/ahq_i.l Then 2aigi1 € @(2C0 /0 41)i p.
Since a;q < 2a, ¢+1 for large i, we obtain

24 < w(—zga’”), i> g,

ai,p : G;i’q
‘By enlarging C, we can have the last inequality for all .
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(i)=>(i). Let p,q,, C be as in (ii). Given ¢ > 0, let
N; = {Z e N: C’a.l-,r/ai,q <t} Ny = {1 eN: Cai,,-/ai,q > t}.
Given z = (&) € X, we have

llzllg = Z |&ilas,g = Z |ilas,q -+ Z |€:lai,q

1€N; €M,
< Z Ezlaz,plp( ”) + Z | a“. < @(®)|l=llp + —““Hﬂ?”r -
iEMN; 1ENg

Next we show that the space H(k,v,a) has property D,, for some . Let
N(t) = sup{vy : e* < ¢},

Since limsupy; = oo, we have N(t) /" oo as t  co. We also have v; <
N(e®). Let g(1) = ),

PROPOSITION 3. H(k,7,a) has property D,.
Proof. Let p < ¢ <r and 2(g — p) < r — ¢. We would like to have

a; 7] .
-1 < zp(—%) , i large,
Oi,p @iyg

which is equivalent to

el@=p-rri{min(x(i),q) —min(x(i),p)))a; < Nl )r—gtvyi(min(s(é),r) —min(x(i),9))) as

Here (...) inside N (...} is a;n/aig = €000 > 68 50 N(..) >4 > 1.
The above inequality takes the following forms:
eFors(i) <p<g<mr
g—p<N(.)(r—aq),
which holds trivially.
sForp< k(i) <g<mr:
—p+%((5) — p) < N("~D%)(r —q).
Indeed, now
a~p+7s@) ~p) Sg-p+vla—p) < (@—p)2v
< (= ON(e") < (= PN (L0%),
eForp<g<u(i)n
¢ —p+rle—p) SN{.)r—g+mn(s(i) —q).
This holds since ‘
(@—p)(L+%) <(g—p)2% SN(.)r— g SN(.)(r—g+ %) - g).
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Finally,
o Forp< g <v<n{i)

g—p+ylg—p) SNC. ) r—g+vlr—q),
which holds trivially. m

We note that this ¢ may not be the “best” ¢ in general. For example,
if v; / oo when £(2) < py and () is bounded when (4) > pg, the space
H(x,7v,a) has Dy (or DN), i.e. D, with o(t) = £, but the above consideration
gives a bigger function.

Remark. Qur proof shows that if v C N is a subsequence such that
{&{i) : 4 € v} is bounded or £(3) — oo as 1 — 00, ¢ € v, then the subspace of
H(k,7v,a) spanned by {e; : i € v} has DN. The actual role of D, appears
when p < &(¢) € p; where (p;) is a sequence of positive integers such that
p; —+ 00, Let I7°° denote the set of all such sequences P = (p;). Givenp € N
and P € II*, we define

Npp(t) =sup{vi:p < (1) <p;, ™ <t} and o, p(t) = Ve, (8)

It is clear that H(k,v,a) € [D,, » where the intersection is taken over all
p € Nand P = (p;) € II*°. It is an interesting question whether there is a
smallest @g, i.e. such that (1D, , = Dy,.

In general, this question seems to have a negative answer even in the
following slightly weaker form: does there exist a function g such that the
space H(k,,a) belongs to the class Dy, but to no class D, with ¢ < ?
Let us describe some sufficient conditions for the existence of a smallest class
Dy, (in the latter sense).

Let M(t) /o0 as t / oo. Then go{t) = tM® = t. Let vy be a sub-
sequence of N and v = M(e%) for 1 € v, and 1 < M(e*) otherwise.
If for each p € N and P € II* the set {i € vy : p < K(i) < p;} is infi-
nite, then H{x,~,a) belongs to D, and does not belong to any D, with
® < (g, in particular it does not belong to the class DN If any subsequence
{ai 1 p £ K1) < g, i € 1}, p < g, is nonlacunary (that js, there exists a con-
stant ¢ such that each interval [t, ct] contains at least one point of this sub-
sequence), then, moreover, Dy, p = Dy, for all p € N and P = (p;) € II*.

Given a function ¢ as in the definition of property D, and u > 0, we
define

®(u) = inf ((t) + u/1).
PROPOSITION 4. Let A, B > 0. Then,

(i) B(AB) < A= o(B) < A and
(ii) ¢(B) < 4 = O(AB) < 24,

icm
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Proof. (i) Assume A < ¢(B). Given t > 0,
B <t=A<p(B) <ot) <o)+ AB/L,
B/2<t<B=A<p(B/2)+ A< plt) - AB/t,
0<t<B/2= A<24 < AB/t < lt) + AB/t.
Thus 4 <infiso(e(t) + AB/t) = $(AB).

(ii) Assume 24 < ${AB). Then 24 < () + AB/t for all t > 0. Taking
t =B, we get 24 < p(B) + A, which gives A < p(B). m

Next we consider a function f(t) = ¢™®) where M(t) /" o0 as ¢ 7 co.
In H{k,~,a), we want to consider the “maximal” subspace which does not
have property Ds. More precisely, we consider the reverse inequality

a; ; .
3 > f(%-’—t) where 2(g—-p) <r—gand 2{g—p) < M(e"9).
a'i:.p Cl:i!q

It follows immediately that if £(2) < p or r < k(4), then the above inequality
cannot, hold. For p < ¢ < £(3) < r, the inequality takes the form

M (=m0 ) (¢ — g+ (w(i) — 0)) < (g~ B)(L+%)-
This cannot hold, since
LHS > M (e 9%)(1+ ) > M(e" )1 + ) > 2(g — p)w-
For p < k() < g < r, the inequality takes the form
M%) (r ~ ) < ¢ = p+2(s(i) ~ 7).
So we obtain

(4) p<r(i) <g<rand (r— )M D%) <y = Yig > f(ﬁﬁ).
: Oip Gj.q
Conversely,
) 22> (B2) 2 p <) S g < r and MEEI) < 2(e— ).
Gi,p Gi,q

In the next proposition we consider some specially defined neighborhoods
which are connected with property D,.

PROPOSITION 5. Let K(a;,) be an arbitrary Kothe space. Let f : (0, 00)
— (0,00) be an increasing continuous function end F(u) = infyso(f(2) +
uft). Forp <r let

rer(y ). v-rlen(z)

Then V' CV C (24 &)V’ for any € > 0.
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Proof Let z = (&) € }%T)U,, Nt for some ¢ > 0. Then

St (22) £ 3 doss (£ + 7027) = 5@l + glel <2

i t ’l‘lp

So z € 2V', implying

V= r( U (}%UP ﬂtUr)) cav.

t>0
Since V 2 'lel—)Up N Uy, it follows that ‘[7, and hence V', is a zero neighbor-
hood. So .
V=Vc VeV cov 46V =2+,
Conversely, let z = (&) € V', ie let 37, |&|aipF(air/aip) < 1. Let #; =
|&;|aipF (Gir/aip). Then 3, 1| < 1. Find o such that |o;| = 1 and o4
= &;. Set

_w
i pF(ai,r/0i,p) v
‘We shall show that u; € f(t) = Up NtU, for some ¢ > 0. Then it will follow that

;tim € F( U (—f—(—tjUpﬂtUr)) =V

>0
But 3, tju; = . So we get V/ C V. Now

Uy =

1 @4,

Ul = luillr = e,
Il Flair/aip) el aipF(ai,r /i p)
ie. 1
Qi
€ U,n ' U,.
Flair/a;p) k aipF(air /@i p) ’
Now
H>0: w; € f(t)U NtUp & v >0 y; € - U N (w)U,
Let v = F(a; /0 p). It suffices to show that
@i,r -1 ; FHw) o : -1
—l 8, i< e v< .
R < e T <), e vSFOf0)
That is,

¥t>0: o< f()+ %vf“l('u), ie vt <EF(E) +of M (w).
But by censidering two cases

v < ft) = vt < FR)E <L) +of ),

v> f{t) = o) > t= vt < of ) S UF(E) 4 of M),
we obtain the result. =

Kithe spaces 9

Now we consider 8(V, W) where

V:f(U( (t)U ﬂtU,))ﬂe"Um W=U, p<g<r.

1>

This consideration involves a quality invariant, that is, measuring

f(go (ssmne))

through Uy, and a quantity invariant, that is, measuring U, through U,
50 that we cut some part of the space.

By Proposition 5 and (1), we have
BV, W) 2 B(B*(aspF (ai,r/aip)) N € B*(ain), B (aiq))
(by (2) and the left hand side of (3) we continue as)
2 s Flair/aip) < 0i,g/0ip, ir/0ig <€}
{by Proposition 4(ii) with A = $a,4/a:ip, B = 2a;,,/a;,; we have)
= \{@ : F(2ai0/00,q) < 30ig/0ip, 0irfBig < e"'}|
> Hi: flaip/aig-1) < 0i,9-1/0ip, Gir/diq—1 < e}
(and by (4))
> {i:p<ali) <g~1, (r—g+ )Ml D) <y, elrmatlla < g7},
Similarly, if € > 1 is a constant, then

(o) <o(elrfar(32)) o) )

< {z : F(“—) < porihe Tur o 60%?}

Gi,p Gip  Gig
< i gL 8 < g 5"—’-“156025}
B 6C% aig Gip  Dig

~ 1' . f a"ls'i""l) < aiwq a#'ﬁ,r—l < eT}‘
. i ’ =
~ ai,q ai,P U"i)q

< Wiip <nli) < g M(eM79%) <2(g - p)v,
e('l‘ 1— qai SeT}l'

Now assume that H(x,y,a) is isomorphic to H (7,7, @). We denote the
neighbborhoods in these spaces by Up and Up, respectively. Then

Y FIp Ve IgVF Ir: U T(U,) = T(U) » Ug - Us = T(U,)
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where U > V' means that U O ¢V for some ¢ € R. We let

V=TI U,NtU, | ne', |, W=U,
(Yo new). w=u

o M
7 =f(U (i" ﬂtﬁ,:) nefﬁ,ﬁ), W= ;.
>0 f( )
Then V T(V) and T(W) > W, so for some constant C > 1,

BV, W) = B(T(V), T(W)) < (ov, Gw)

Observe that the above argument is valid for all M such that M(t) .7 oo as
t " oo, Thus we have the following theorem.

THEOREM. Let M : (0,00) — (0,00) be any function such that M(t) /
o a8t /7 oo. Assume H(k,v,a) is isomorphic to H(R,¥,@). Then

(i) Yp dp Vg 3§ V7 3r:
{i:p < k(i) < g, (r— M D%) <y, 0% < T}
S Wi <R <q M%) <4F— 5y, T D% < e},
(i) Vp 3F ¥§ 3q ¥r F:
[{i: 5 <R(@) < § F—M(FD%) <7, 0% < 7}
IHip<nlg) < g, Ml q)%) (q Py, €70 < €T},

Applications. Now we consider some examples of the above-mentioned
spaces which are distinguished by the Theorem.

ExAMPLE 1. Let a; = a; = lni and 6 = K. Let N = Ny UN, UN; be
a decomposition of N into three disjoint, infinite subsets such that Ny is
thinner than Ny in the following sense:
e [{i e Ni:p<r(i)<g, i<n}
n—oe {i € Ny UNy 1 p < k(2) < g, i < nl/m}

for every m > 0 and p < ¢. Also assume that for all p < ¢ and 7 < § we
have

HieNMuUN i p<s(i) <q, i<HZ{ie MUN 1 P < (i) <7, i < s}

as 8 — oo. Let My, My, My : (0,00) — (0,00) be three functions which
increase to co as t /' oo and assume that kM;3(#%) < Ma(t) for every k
asymptotically as ¢ " oo and Ma(t) < M, (t). We define

Ml(eai), i€ Ny, @ .
e R
) .

=0

M3(eai): i€ N-?-!

icm
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By our remark after Proposition 3 it follows that under some additional
conditions, for each ¢, H{k,v,a) € D, if and only if H(k,¥,a) € D,.
The spaces H(x,v,a) and H(x,¥,a) are not isomorphic. In fact, we assume
H(x,v,a) 2 H(x,7¥,0) and apply the Theorem with M = Mjz. The middle
inequality
(7- - q)M(e(T—Q)%) < ¥
on the left hand side of (i) is true for all large enough i € Ny U Ny and for
at most finitely many i € N3. The middle inequality
M%) < 27— 5
on the right hand side of (i) is true for all large enough § € N; and for at
most finitely many j € Ny U N3. Thus we have Vp 3p Vg 3¢ V7 3r:
HieMUNy:p<k(i) <gq, i< e/ T2y
3WjeN F<r(i)<q 5 </
Now with m = 3(r — q)/(¥ — g), we obtain
{jeN:F<a(f)<q j<e/T Y
SHieN UN i B < k(y) €7 j < er/Brmaly,
Thus we obtain
ie NfUN, tp< k(i) <gq, i <&/}
S eNMUN : F<r() <F j /@Dy
But this contradicts our assumption above.

ExaMpLE 2. As before, let a; = @ =Iniand k =K. Let N = Ny UNy UNg
and N = Ny UN,UN; be two decompositions of N into three disjoint, infinite
subsets such that N; and N, are both thinner than Ny in the sense of the
previous example, i.e. for all p < ¢ and m > 1 we have

B Hie N :p < (i) <q, 1 <n} _
n—oo [{i€ Ny 1 p < k(1) < q, i Snt/mY

and

lm |{zeN2 p<k(i)<q, i<n}
n—oo [{i €N 1 p < (i) S g, i St/
‘We also assurme that for all p < ¢ and § < § we have
Hie Ny :p < s(i) <g, i< 5%}
' S {ieNy :p< k() <q, i <8} ass— oo
We let Mz = M, My, M be as in the previous example, and define
My(e™), i€Ny, Mi(e™), i€y,
= Ma(e™), 1€Ny, and 7 =< Ma(e™), i€y,

Mg(eai), 7 € N, Mg(e“"), 1 & Na.



icm

12 M. Kocatepe and V. P. Zahariuta
The spaces H(x,7,a) and H(k,%,a) are not isomorphic. For if H{x,v,a) &
H(k,%,a) then by the Theorem we would have ¥ 3p Vg 3§ vF 3r:
{ieNiUNy 1 p < k(i) <gq, i <e™/(T0y
SHFeMUNe P <w(f) <7, j<e™/F-DY,
But the left hand side is
>{i €Ny p <) <q i<e/lTm)
and the right hand side is equal to
[FeN:F<r(f) <G, j </
+ i eNg: B < r(f) £§ §<e/F-DY
2HieM  p<k(f) <G, j <e/Gr=aly
+HieNa P < () <F §<e/BUr—a},
So we obtain
H{ieNy:p<h(i)<g i< e"/(r“ﬂ}‘
22 ENy i F< k() <G j < e/ By
which contradicts our assumptions.

In our third example the densities of the distributions of & and % are
different.

EXAMPLE 3. We consider &(¢) = ¢ — [v/i]? +1 and &(3) = ¢ — 2ltoga sl 1,
So

1 2 345 6 7 89 10 ... 15 16 17
kil
1 23123451 2 ... 7 1 2
and
I 2 3 45 6 7 8 9 ... 15 16 17 ... 31 32
Kol
112123 412 ... 8 1 2 .,..16 1

We let a; = @; = log, 4, and choose v; = 7; and M(t) such that the middle
inequality on both sides’in the statement of the theorem always holds, e.g.,
vi = M(i)*. Thus if H(k,,e) = H(E,~,a) we have V5 Jp Vg 37 V7 Ir:

fiip<nli) <q i <2VUDY X (G F<R() <7, j <27/F-D).

So we obtain
A/ or/(r—q) = log, 27/ (F-0)

which is a contradiction. So the spaces H(k,v,a) and H (K,v,a) are not
isomorphic. : '

Kithe spaces 13

These examples show that in some special cases where the distributions
of v and 7y are considerably different or the densities of % and & are consider-
ably different, these spaces can be distinguished by this invariant. However,
we still have the following question.

QUESTION. Assume a; = ;. Let N = N, U Ny be a decomposition of N
into two infinite disjoint subsets and let k, & be such that for p,g € N, p < g,

{ip < k(i) < g, i<n}]

lim 0
n—oo T
and
i LSNP <R g i<n)

n— o0 n
Let M (t), Ma(t) : (0,00) — (0,00) increase to oo as ¢ — co, and assume
kM (t5) < My(t) for each & asymptotically as ¢ /. Define

~ _ [ Mife™) ifie N,
and % = {Mg(e%) if i € Ny,
Are the spaces H(k, v, a) and H(R,, a) isomorphic? If they are not, can we
distinguish them by using the above invariant or some modifications of it?
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Stochastic continunity and approximation
by

LEON BROWN and BERTRAM M. SCHREIBER (Detroit)

Abstract. This work is concerned with the study of stochastic processes which are
continuous in probability, over various parameter spaces, from the point of view of ap-
proximation and extension. A stochastic version of the classical theorem of Mergelyan on
polynomial approximation is shown to be valid for subsets of the plane whose boundaries
are sets of rational approximation,

In a similar vein, one can obtain a version in the context of continuity in probability
of the theorem of Arakelyan on the uniform approximation of continuous functions on a
closed set by entire functions.

Locally bounded processes continuous in probability are characterized via operators
from L'-spaces to spaces of continuons functions. This characterization is utilized in a
discussion of the problem of extension of the parameter space.

Introduction. The notion of a stochastic process which is continuous in
probability (stochastically continuous in [16]) arises in numerous contexts in
probahbility theory (see [4], [7], [8], [16], [28]). Indeed, the Poisson process is
continuous in probability, and this notion plays a role in the study of gener-
alizations of this process and, from a broader point of view, in the theory of
processes with independent increments {16]. For instance, R. K. Getoor [15]
showed that the Brownian escape process, in dimension at least three, is con-
tinuous in probability and has independent increments. The recent work of
X. Fernique [13] on random right-continuous functions with left-hand limits
(so-called cadlag functions) involves continuity in probability in an essential
way. _

The study of processes continuous in probability as a generalization of the
notion of a continuous function began with. the approximation theorems of
K. Fan [11], [8, Thms. VLIILIIL, VLIILIV] and D. Dugué [8, Thm. VLIILV]
on the unit interval. These results were generalized to convex domains in
higher dimensions in [18], where the problem was raised of describing all
compact sets in the complex plane on which every random function contin-
uous in probability can be uniformly approximated in probability by random
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