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Invariance properties of homomorphisms on algebras of
holomorphie functions with the Hadamard product

by

HERMANN RENDER and ANDREAS SAUER (Duisburg)

Abstract. Let I (1) be the set of all bolomorphic functions on the domain Gy, Two
domains (71 and Gy are called Hadamard-isomorphic if H {G1) and H(G3) are isomorphic
algebras with respect to the Hadamard product. Qur main result states that two admissible
domains are Hadamard-isomorphic if and only if they are equal.

Introduction. Let f{z) = 3 7 ja,z™ and g(z) = Y -7, bn2™ be power
gseries with positive radii of convergence. Then the Hadamard product of f
and g is defined by f*g(z) = ¥ " @nbnz". Let G be an open domain of C
containing 0 and let H(() be the set of all holomorphic functions on G. We
call a domain G admissible if for all f, g € H(G) the Hadamard product f*g
extends to a (unique) function of H{G), i.e. H(G) is a commutative algebra.
Examples of admissible domains are the open unit disk D := {z € C : |7|
< 1}, or more generally I, := {z € C: 2| <r} for r > 1, C\ {1} and so-
called a-starlike regions like C_ := {z € C: z & [1,00)} (see [3] for details).
By the famous Hadamard multiplication theorem a domain G is admissible
if and only if the complement G® of G is a multiplicative semigroup (cf.
e.g. [5]).

The aim of this paper is to study homomorphisms on H(G). Let us
call two domains Gy and G2 Hadamerd-isomorphic it G and (75 are ad-
missible and H(G:) and H(G») are isomorphic algebras with respect to
the Hadamard product. Our main result states that two. admissible do-
mains Gy, Ge with 1 € Gf are Hadamard-isomorphic if and only if they are
equal. This stands in sharp contrast to the following classical result: H(Gy)
and H{(Gy) are isomorphic algebras with respect to the peintwise multi-
plication if and only if Gy is bibolomorphically equivalent to G. Indeed,
we give a complete description of all isomorphisms for admissible domains
G with 1 € G°. Roughly speaking, if G is an admissible domain differ-

1001 Mathematics Subject Classification: Primary 46J05; Secondary 3QA99.
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ent from I3, an isomorphism & induces a permutation ¢ : Ny — Ny such
that

1) @( io anz”) = i 27

n=0

for all z in a suitable neighborhood of 0 end ¢ must be of a rather special
form depending on the following property of the domain: if k& denotes the
cardinality of {z € G° : |z| = 1} then y permutes only the equivalence
classes {kn +j:n € Ng} for = 0,1,...,k -1 and n > ng. For example,
if G =C_ wehave k = 1 and ¢ is therefore equal to the identity for large
n € Ny. The proof is based on function-theoretic theorems of Szegd and
Pélya—Carlson.

In the first section we show that boundedness of the domain is an in-
variant for isomorphisms. Further we prove that the continuity of a linear
mapping & satisfying &(2") = 2#™) implies that @(n)/n is bounded. In
the next section we determine the isomorphisms of H(D,) for r € [1,00].
Examples show that our results are sharp. In Section 3 we prove that the
cardinality & of {# € G° : |z| = 1} is an invariant. Section 4 contains the
above-mentioned description of isomorphisms. In the last Section 5 we prove
our main result about Hadamard-isomorphic domains.

1. Elementary properties of homomorphisms. Let G be an ad-
missible domain. We define the coefficient functionals &, : H (G) — Chy
on(f) = an (where f(z) = 3°°° a,z" in |2| < 1). The algebra H(@) is
a completely metrizable locally convex vector space (ie. a Fréchet space),
where the norms are given by |flx = sup, .y |F(2)| for an arbitrary com-
pact subset K of G. It can be shown that the Hadamard multiplication is
continuous, hence H(G) is a so-called By-algebra. If 1 € G° then H(G) has
a unit element given by

(2) 1) 1=

1 (> )
I = Zz" for all |2| < 1.
-z n=0

In [8] it is proved that each multiplicative functional on (@) is contin-
uous. An’application of the closed graph theorem shows that each homo-
morphism & : H(G1) — H(Gy) is continuous (cf. [7]). An isomorphism &
has the property that $(z™) is again a monomial (ef. Theorems 1.1 and 2.1

which have been proved in [7]). Example 1.2 shows that this is not true for
arbitrary homomorphisms.

1.1. THEOREM. Let Gy and Gy be admissible domains and let & : H (G1)
~ H(Gq) be a homomorphism. If the range of ¢ is dense or containg all

monomials then $(2") is either O or a monomial, i.e. has the form.z™ for
some m & Ng.
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1.2. EXAMPLE. The assumption concerning the range cannot be omitted.
Let G be an admissible domain. Define a linear mapping & : H(G) — H(G)
by &(f) = 6.(f)v. Then & is multiplicative and mital but B(z) =~ is not
a monomial.

1.3. THEOREM. Let ¢ : H(G1) — H(G=) be a continuous linear mapping
with $(z") = 29, p(n) € Ny, for all n € Ny. Define r; = sup{|z| : z €
G} fori=1,2. If G2 # D then @(n)/n is bounded and T8 < 71, where
a = limsup p(n)/n.

Proof We assume first that 7y < oo. Let (o) be a sequence of posi-
tive numbers with a,, — 71. Then p,(z) == (z/a,)" converges uniformly to
0 on every compact set in G. The continuity of @ implies that &(p,)(z) =
a; 2™ — 0. Let 29 € Gy with |%] > 1. Then a;™20|?™ — 0 and
therefore there exists ng € N such that a;™|20/¥™) < 1 for all n > ng. It fol-
lows that ¢(n)/n < log an/ log |20} — log 71/ log |2| and « < logri/log |20
Hence |z|* < 7y since log|zg] > 0. Thus we have proved the inequality
r§ < ry.

Assume now that r; = oo and let (a,), be a sequence of positive num-
bers with an — oo, Then pn(z) := (z/an)™ converges uniformly to 0 on
every compact set in Gy. Let zg € Gy with |zp| > 1. The continuity of &
yields a;;"|z0|#™ — 0. Then for sufficiently large n we have a7 ™|zp|#*™ < 1,
which is equivalent to

(3) w(n)log|z| < log ar, S
oy, On

If limsup,, ., ¢(n)/n = oo then there exists a subsequence (ny)ren such
that limg.eo @{ng)/nk = oo. Define now a, = nif n & {ny,ne2,...} and

ny, = A/ (ng)/ng. Clearly an, — oo but p(n)/(nas) # 0, which contradicts

the above statement. Hence the proof is complete. m

1.4, LEMMA. Let ¢ : Ng — Ny be an ingection. Then there exists an
infinite sequence ny € Ny with w(ng) > ng.

Proof Assume contrary to the assertion that there exists ' € N
with @(n) < n for all n > n/. Consider the set N/ := {0,...,n}. Since
@(n’ +1) € N' there exists m € N’ with ¢(m) > n' and we choose m such
that ¢(m) is maximal. Moreover, ¢({n’ 4+ 1,...,¢{m}}) < {03 ceyip(m)}
and thus ¢({0,...,9(m)}) C {0,...,p(m)}. Since  is an injection we have
©({0,...,9(m)}) = {0,..., p(m)}. Now obviously ¢(s(m) +1) > p(m) +1,
a contradiction, m

1.5. THEOREM. Let @ : H(Gy) — H(G2) be an isomorphism. Then Gy
is bounded iff Gg is. Further, vy := max{|z| : z € Ga} =_max{|z| fz €
Gi} =t r1. If Gy is a bounded domain different from DD then lim p(n)/n = 1.
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Proof. We claim that ¢ : Ny — Ny is injective: suppose that ¢(n;) =
@(ng). Then B(2™ # z™2) = z#(M) x z¢(n2) = 2#(™) £ 0. On the other
hand, 7y # ng implies 2™ * 2™ = 0, hence $(z™ x 2"2) = 0, a contra-
diction. Lemma 1.4 now shows that 1 < limsupy(n)/n =: a. Let now G,
be bounded. If Gy # D we have ry < r§ < ry by Theorem 1.3. Hence Ga
is bounded and ry < 7. If Gz = I we have ry < r1 since (| contains
D. Finally, the same argument applied to @1 vields ry = ro. For the last
statement note that rf = r¢ < r; by Theorem 1.3, hence o = 1 since
re>1 m

1.6. LEMMA. Let ¢ : Ng — Ny be a bijection. Then limsup p(n)/n < oo
if and only if liminf ¢~ (n)/n > 0.

Proof The easy proof is omitted. m
The next example shows that Theorem 1.3 cannot be improved.

1.7. BXAMPLE. Let 7 > 1 and Gy = {z € C : |2| < r} \ [L,7) and
Gy = {z€ C:lz| < /F}\ ((~/7,—1]U[L,/7)). Then H(G1) and H{G3}
are unital algebras. Define &(f)(2) i= f(2%) = Yonepanz"", which is well-
defined since z € Go implies z? € Gy, Then @ is an injective homomorphism
but not unital since &(y) = 1/(1 — 22). Note that p(n) = 2n and that
Imep(n)/n=2

2. Isomorphisms of H(D,) for r € [1,00]. The results of this section
{except for Theorem 2.1} are independent of the rest of the paper. Most
of them are quite elementary but we include them for completeness. The
main result, Theorem 2.6, characterizes the isomorphisms of H(D,). The
following theorem can be found in [7].

2.1. THEOREM. Let (1 and Ga be admissible domains and let &
H(G1) — H(G2) be a homomorphism with $(z") = 2¢(™ for n e Np.
Then w: Ng — Ny is injective and

@) 5(f)(2) = Y anz#™
n==0

for all 2z in o suitable neighborhood of 0, where f € H(G1) is given by
fz) = 307 g anz™ for all z in o neighborhood of 0. If the range of & is
dense then  is o bijection.

Proof. The proof of Theorem 1.5 shows that ¢ is injective. Suppose now
that there exists m € Ny with ¢(n) # m for all n € Ny. Then &(f)* 2™ =0
for all f € H(G). Hence &(f) € ker(éy,) for all f € H(G). Thus the
range is not dense in H(G), a contradiction. For the representation (4)

note that f * exp(z) is an entire function and & js continuous (cf. [7] for
details). w '
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2.2. THEOREM. Let @ : H(G1) — H(G3) be a homomorphism with
B(2™) = 22 for alln € No. If G # I then B(f) is entire for every entire
function f.

Proof. Let f(z) be entire. By Theorem 2.1 we know that &(f) is locally
equal to Yoo anz?(™, where f(2) = 377 a,2™. Tt suffices to show that
the series converges for each 2z € C. Let o := limsup ¢(n)/n, which is finite
by Theorem 1.3. Then there exists ng € N such that p(n)/n < e+ 1 and
therefore r#(M/m < petl for all n > ng. Since the convergence radius of f is
infinite there exists ny € N such that |an['/® < 1/rt2 for all n > ny. Now
let r > 1 be arbitrary and |z] < r. Then

atly ® n
® el (e < (T0) = (1),

r

Since },, r~" converges the proof is complete. w

The agsumption Go # Db is essential in Theorems 1.3 and 2.2 as the
following example shows:

2.3, ExampPLE. Let 1 < r < oo and let o : Ng — Ny be an injective
function. For f € H{I,) define $(f) := 3 oo ; anz®{™, which is an element
of H(ID): clearly |2#{™| < 1 for || < 1 and |an| < 6" with 1/r <8 < 1 for
large n € N by the convergence radius formula. It follows that & : H(D,) —
H(D) is a homomorphism for an arbitrary injection ¢.

2.4. LEMMA. Let 1 <7 < oo ond ¢ : Ngp — My be an injection with
o = liminf, o0 @(n)/n < 0o, Then $ : H(D,) — H(Dy) defined by $(f) =
% 0 anz? ™ s a homomorphism for any s > 1 with s* < r. In particular,
if r=18>1then & : H(D,) — H(D,) is a homomorphism for any injection
i : Ng — Ny with limeg(n)/n=1

Proof Let |2| < 81 < s and 51 > 1. Note that limsup P < g o
8¢ < p since 8y > 1. Choose £ > 0 with sf < (1 — &){r —¢). Then
there exists np € Ny such that sf(”)/ "< (L —g)(r—c¢) foralln > ng.
Since limsup |a,|"/® < 1/r there exists ny such that |a,| < 1/(r — &)"
for all » > ny. The estimation for .s"{’(”) yields |anz?™| < (1 — )" for
2| < 8 and n > max{ng,ni}. Hence 3, |an| - |2[P(™) converges for all
Lz| <5

2.5. LEMMA. Let @ : Ny — Ny be an injection with lim inf,, ec o(n)/n
> 0. Then & : H(D) — H(D) defined by S(f) = Tnep anz?™ is a homo-
morphism.

Proof. Let |z| € v < 1 and let @ := liminf,.,0 o(n)/n. Then there

exists ng € N with a/2 < p(n)/n for all n > ng. Now [2] < 7 < 1
implies |z/*(")/™ < »9/2, Since f has at least convergence radius 1 there



58 H. Render and A. Sauer

exists n; € N such that Jan|t/™ < r~%/% (note that 7%/* < 1). We infer
that

(6)  lons?™] < (lan/o 2SI < (rmol /2" = (1)
Since r*/? < 1 we have found a convergent majorant. m

2.6. THEOREM. If 1 < 7 < oo then & : H{(D,) — H(D,) is an iso-
morphism if and only if it is induced by a bijection ¢ with liMp_ o0 @(n)/n
= 1. If r =1 or co it is an isomorphism #ff 0 < Hminf, .. @(n)/n <
limsup,,_, .. p(n)/n < co.

Proof. The necessity of the first statement follows from Theorem 1.5.
For the converse note that @ is a homomorphism by Lemma 2.4. Moreover,
the inverse permutation ¢~ satisfies ¢ ~'(n)/n — 1 and induces a homo-
morphism which is the inverse of . For the case r = oo the necessity follows
from Theorem 1.3 applied to ¢ and ¢~ and from Lemma 1.6. The converse
follows from the proof of Theorem 2.2 applied to ¢ and ! (cf. also Lemma
1.6).

It remains to consider the case r = 1. Lemma 2.5 applied to ¢ and ¢!
vields the sufficiency (cf. Lemma 1.6). For necessity suppose iminf ¢(n)/n
= 0. Then there exists a subsequence ny — oo with limp(ng)/ne = 0.
We define b = (log(ni/e(ni)))~?, which converges to zero. Consider
fz) =302 (1 + b )" 2™, which is an element of H (D). Now

RGOS 1+ (10s (f%’f—l))l} T

&
k=0
We will show that the radius of convergence of the latter series is 0,
which yields a contradiction. We have to consider

®) timsup |1+ (1og (Mﬂ))l}”/

k—+50 Tt

It is easy to see that im =" (ny}/ne = co. Now limy_,00[1 + 1/ log z]® = o0
gives the desired contradiction. If lim inf ¢(n)/n = co then liminf ¢ ~*{n)/n
= (. The above reasoning applied to ¢! shows that iminf p(n)/n < oo.
Finally, Lemma 1.6 yields limsup ¢(n)/n < co. »

The next example shows that a homomorphism is in general not deter-
mined by the values of $(2"): the constructed homomorphism & satisfies
$(2™) =0 for all n € Ny, but & # 0. On the other hand, an isomorphism is
determined by the values $(2"), (¢f. Theorem 2.1).

2.7. EXAMPLE. Let Gy := D) \ {1} (where 7 > 1 is a fixed number) and
let &3 be an admissible domain with 1 € G§. Let T : H(G1) — C be the
functional where T'(f) is defined as the residue of  at the point z = 1, and
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define @ : H(G1) — H(G?) by $(f) = —T(f). It can be shown that & is a
unital homemorphism with $(z") = 0 for all n € Ny but & # 0.

3. Some invarianis of Hadamard isomorphisms. In the first section
we have seen that boundedness of the domain is an invariant of isomeorphisos
(with respect to the Hadamard product). From [7] we take the following
result:

3.1. THEOREM. Let Gy and Gs be Hadamard-isomorphic domains.
Then:

{(a) G is simply connected iff G2 is simply connected.
(b) 1€ GS iff 1€ Gs.

(¢) 1 € G is non-isolated iff 1 € G§ is non-isolated.
(d) 1 € G is isolated iff 1 € G§ is isolated.

In the sequel we assume that 1 is in G°. It is clear that A := {2z € G°:
|z| =1} is a unital subsemigroup of the unit circle. If it is not finite then A
is dense in the unit circle and G is the unit disk. If A4 is a finite semigroup
then it is a subgroup, equal to the set of all kth roots of unity for a suitable
k & N, and will be denoted by Ay in the sequel. Suppose that G, Gy £ D are
Hadamard-isomorphic domains with 1 € G§ for 1 == 1, 2. We want to prove
that ky == ks, i.e., that the number of kth roots of unity is an invariant. As
a preparation we need

3.2. THECREM, Let G1,Gs # D be admissible domains with 1 € Gf
and let k; be the cardinality of A; == {z € G : |z| =1} for i = 1,2. Let
¢ = exp(2mifky) and v;(2) == (/&%) € H(Gy) for j =0,...,k — 1. If
& : H(Gq) — H(G2) is a homomorphism then there exist a naturel number
r < kg and a polynomial p(z) such that B(y;) = p(2)/(1 —27), in particuler
$(vy;) is a rational function for 5 =10,...,k;.

Proof. Note that &(y) = &(vy) * H(v}. It follows that the Taylor co-
efficients of B(v) are either 0 or 1. Let $(v;) = Y pugbn2z™ Since 'yfl =
v we infer that $(y) = (H(y,;))". Hence bf* are either equal to 0 or 1
for all n € Ny, i.e. that the coefficients b, are either 0 or kith roots of
unity. Since Gy # D a theorem of Szegd [6, p. 227] shows that there ex-
ist r € N and a polynomial p(z) such that &(v;) = p(z)/(1 — 2"). We can
assume that 7 € N is minimal with this property. Each pole of g(z) :=
p(2)/(L — 2"} is of first order and it must be contained in A, since g
is holomorphic on (. Hence there exists a polynomial g{z) with g(z) =
g(2)/(L ~ 2z*). Since r was minimal with this property we infer that
T S kz. n ’
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3.3. THEOREM. Let G1,Ga 7é D ke admissible domains and 1 € G5,
Let k; be the cardinality of A; == {z € G ¢ |z| = 1} for i = 1,2. If
@ : H(Gy) — H(G2) is an isomorphism then k1 = kg.

Proof. By Theorem 3.2 there exist 7 < kp and a polynomial p(z) such
that &(v1) = p(z)/(1 ~ z"). By polynomial division there exist polynomials
p1 and pp with p(z) = p1(2)(1—2")+p2(2) and the degree of py at most r—1.
Let pa(2) = cg + 12+ . .. + 12”1, Since B(y1) = py(2) + pa(2)/(1 - 2")
there exists ng € N such that the Taylor expansion of ®(vi) is periodic
for all n > np and the coefficients are given by ¢g, .. -, ¢—1. In particular,
€0, .., Cr—1 are kyth roots of unity (cf. the proof of Theorem 3.2). We claim
that

(9) {1,662y = {eo,.. ., o1}
For this we consider fy(z) := Y po & 2" for large N € N. Then the Tay-
lor coefficients of &(f) are either zero or equal to some c; for j = 0,...,r—1

since ¢ only permutes the Taylor coefficients of fy (cf. Theorem 2.1).
Now (9} implies k1 < r < kg. The same argument applied to & yields
k2 S k!]_ |

4. Isomorphisms of H(G) for G# D and 1 € G°. Let G # D be an
admissible domain with 1 € G° and let & be the cardinality of {z € G°:
|z| = 1}. Throughout this section we denote by £ the kth root of 1 given
by exp(2in/k) and by A = {¢7 : j =0,...,k — 1} the set of all kth roots
of 1. Then Hy :={f € H(C \ Ax) : f(o0) = 0} is a unital subalgebra (with
respect to Hadamard multiplication) of H{G}. We need some properties of
Hy,. Define v;(2) := v{z/¢’) € Hy, for each j =0,...,k— 1. Each f € H;
has a unigue decomposition

-1
(10) F=>_v+f; with fje Hy
i=0

by Laurent expansion. As pointed out in {4], Hy, is topologically and linearly
isomorphic to the topological direct sum of the closed subspaces «y; * Hy,
i =20,...,k — 1. For each { € A} there is a natural continuous algebra
homormorphism T¢ : Hy — H; defined by

k-1 k—1 ]
)= TC(Z%' *fj) = 0
=0 =0

(cf. Lemma 2 of [4]). Note that T¢|H is just the identity and that Te{v;) =
{iyforj=0,...,k—1. Now suppose that g € H, and defineg : C — C as the
Gelfand transform (cf. [8]). Then F is an entire function of exponential type
zero interpolating the Taylor coefficients of g, Le., that g(z) = 3 oo, G(n)z".

(11) Tif
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This result is known as the theorem of Wigert {cf. [8] or [, p. 8]). We
want to determine an analogue for functions in Hj. Theorem 4.2 gives a
description of the power series of f € Hy in terms of the Gelfand transform
of T¢(f) € Hy. The next lemma is a technical preparation.

4.1, LEMMA. Let f € H,. Then

k-1
F=2 wixly with fj= ZC‘ch(f)-
J=0 CE.Ak

Proof Define g := ?;3 ¥ * f; with f; as in the statement. We have

to show that g = f. It follows that T, (g) = 2;?:_:; 7 §; and

k-1 k—1
1) T=1Y ORI =5 T T 06 = T,0)
J=0¢eA, QQAL Jj=

since E?;é (n¢~1)7 is 0 for n # ¢ and equal to k for n = (. This gives
Ty(g — f) = 0 for all € Ay, leading to a system of k linear equations for
(g — F); as in (10). Since the coefficient matrix is Vandermonde we infer
that f —g=0.

4.2, THEOREM. Let f € Hy. Then f(z) = 5% Teon (F)(n)2"

Proof Let f= Ef;;é v; * f; as in Lemma 4.1. Then

k-1

(13) f= %Z Y vk IR
J=0 (e
Since ;(2) = 1/(1—2/&0) = 5% 67972 and Ty (£)(2) = 3200 Te(F) () 2"
we obtain
(14) = %Z > i ST () ()2

n=0 €Ay =0

The last sum is cqual to ooy TE—TE F(n)z" since ZJ,,O(C 1g=my = 0 for
(#E m

4.3. TuroreM. Let Gq, Gy # I be admissible domains with 1 € G§ for
i=1,2 and let k be the cardinality of {z € G§: |2]=1}. If & : H(G1) —
H((3) is an isomorphism then there emist ng € N ond pairwise distinct
bg,...,bkml € 7 such that w(kn + ) = kn + b; for all nk+j = no and
i=0,...,k—-1.

Proof. Let g(z) = 2/(1 — 2)2 = 100y nz™. Then $(g) = 3 oe,nz?™,
Since the coefficients of $(g) are integers the theorem of Pélya-Carlson [6,
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p. 231] (note that G, # D) shows there exist M, N € N and a polyno-
mial p(z) (with integral coefficients) such that &(q) = p(2)/(1— 2"V, By
polynomial division there exist polynomials p1 and pp such that ${g) =
p1(2) + pa(2)/(1 — M) and the degree of py is strictly lower than that of
the denominator. It follows that go := &(g) — p1 vanishes at infinity, hence
¢ € Hy, = Hy by Theorem 3.3. Then h¢ = T¢(q2) is & rational function
in the algebra H; for each { € A;. It follows that the Gelfand transform
h¢ : C — C is a polynomial (cf. Satz 1.3.X of [1]). Moreover, the nth Taylor

coefficient of g0 is given by h;:(n) (cf. Theorem 4.2).
On the other hand, we know that

B(g) =ga+p and P(g) = th_l(n)z“.
n=0
Hence there exists np € N such that ¢=1(n) = he-a(n) for all n > ng.
Then

(15) e Hnk+j)= ft—;:’(nk—l-j) for all nk + 7 > no.

Since @: is a polynomial and lim sup ™t (n)/n < oo (apply Theorem 1.3)
we infer that i;g:; is a polynomial of degree at most 1. Hence for each
j=0,...,k~ 1 there exist coefficients a;,b; € C such that ¢~ (nk +j) =
aj(nk) + b; for all nk+ j > no. Note that a; > 0. Moreover, e H(n+ 1)k
+7) — ¢ Y (nk + j) € Z implies a;k € Z. Tt follows that b; € Z. For each j
define p; := &~ (320" ZF ). Tt follows that

(16) éMl(l ZJZk) -_pj _ Z z‘PWICkn+j) — Z Zﬂjkﬂ-+bj

=Tt0 =10

1

1 — zesk’
Hengce 2% taikne /(1 — %) js in H(G:). Consequently, a;k is smaller than
ky = k (cf. Theorem 3.3), i.e., 0 < a; < 1. Since ¢~ (nk 47}/ (kn+7) — o;
for 7 =10,...,k — 1 we infer that 1 < limsup ¢~*(n)/n < 1. It follows that
aj=1for j=20,...,k—1.

Let us show that the b;’s are distinct. Suppose that there exists d € Z
with b; — b; = dk for some i # j and d € Z. Choose n € N such that
n+d > ng. Then nk+ b; = (n + d)k + b;, a contradiction to the injectivity
of ¢~ (preserving disjoint classes). Finally, it is easy to see that ¢ is of the
same form as ™!, m

— zbj—}-ﬂ.j kng

4.4, THEOREM. Let G # D be an admissible domain with 1 € G° and let
k be the cardinality of {z € G°: |z| = 1}. Let ¢ : Ny — Ny be an ingection
such that there exist ng € N and poirwise distinct by,...,by—1 € Z such
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that w(kn+ ) =kn+b; forall n > ng and § = 0,....k — 1. Then there
exists o homomorphism & : H(G) — H(G) with $(2") = 2¢™) . If p is a
bijection then $ is an isomorphism.

Proof. Choose ng € N 50 large that p(nk + j) = nk +b; for all n > ng
and bj —j > —nok for j = 0,...,k — 1. Let f(z) = 3°%°_ am2™ be an
element of H(G). We want to prove that &(f)(z) := Yo" am2z?™ defines
an element in H(G). Note that f * l—fiz—,; € H(G)for j =0,...,k—1and
q(z) = Eﬁ’;"d’l Ank+i 2" € H(@). Hence

4 o .
(17) f * m - q(z) = Z ank+jz”’“+5’
n=krg
is & holomorphic function on G which has a zero of order at least kng at
z = 0. Since b; — j > —npk we can multiply with 2%~/ and obtain

k-1 oo k—l o0
(18) Zzbj““ﬂ' Z Onpy 2" = Z Z nki 2™ € H(G).
Fe=0 n=kng i=0n=kno

The latter is equal to 3., 1 amz?(™, hence S e _o amz?™ is in H(G).
Clearly ¢ defines a linear and multiplicative mapping.

If o~ is the inverse function of ¢ then there exist ¢; € Z and ny € N
such that ¢~'(nk + j) = nk + ¢; for all n > n;. Thus ' induces a homo-
morphism $! by the above proof. It is easy to see that 1 od = $od™! =
id =

5. Hadamard-isomorphic domains

5.1. TrrOrEM. Let Gy and Gy be admiseible domains and 1 € GS. If
Gy is Hadamard-isomorphic to Gy then Gy = Gs.

Proof By Theorem 3.1(b) we know that 1 € G§. First assume that
Gy =D. By Theorem 1.3 we obtain max{|z| : 2 € G3} < r1 = 1. Since G
containg 1D we have Gy = DD, For the general case, let k be the cardinality of
{z€ G5 : 2| =1} and let a € G§. Then f(2) = 27/(1=(z/a)*) is in H(G1).
Let & : H(Gy) — H(G2) be an isomorphism and, according to Thecrem 4.3,
let w(kn+j) = kn+b; for nk+j > ng and put p(z) = S0 B2k Jgnk),
Then

o zn}c+j> 20 nk+b;

. 1
1 o) s =8 L ) = Y S = A

n=ngy n=mng

It follows that @ € G since otherwise &(f) would have a pole at z = a.
Hence G§ C G and equality follows by symmetry. m
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5.2. THEOREM. Let Gy be an admissible domain and D, the open ball
of radius 1 < r < oo. If Gy is Hadamard-isomorphic to Dy then Go = D.

Proof The case r = 1 follows from Theorem 5.1. Assume that 1 <
r < oo. Let & : H(D,) — H(G2) be an isomorphism. By Thecrem 1.5
we know that G5 C I, and lime(n)/n = L. If f(2) = 3 o_qan2" for all
|2] < 7 then &(f) has convergence radius at least r (cf. the proof of Lemma
2.4). Hence each function (f) can be considered as a function on Dy. Sup-
pose that there exists zp € D, \ G2. Then g(z) = 1/{(z — z) € H(G2)
cannot be of the form &(f) for some f € H(Gs), a contradiction. Hence
B C Go.

Let us consider the case r = co. Then @{f) is entire by Theorem 2.2.
Hence Gz must be equal to C. =

Finally, assume that G is an admissible domain with 1 € &. Then H(G)
is a Fréchet algebra (see {8]) without unit element and & contains the closed
unit disk. If 7 is bounded then lim ¢(n)/n = 1 by Theorem 1.5. This is also
true for unbounded domains as the following result shows.

5.3. THEOREM. Let (7 and G» be admissible domains with 1 € Ga. If
& : H(Gy) — H(Gs) is an isomorphism then ¢(n)/n converges to 1 and
r1 = 13 where r; = inf{|w| : w € G§} for i=1,2.

Proof. Let w € G$ with |w| = 4. Then &(w/{w — z)) is locally equal
to g(z) == o7, 2¥™ Jw". Since g(z) is holomorphic on G it has conver-
gence radius at least ro. Let ¢ with 1 < 2 < ry be arbitrary. Then there
exists ng € N with z#(™) /jw|® < 1 for all n > np. It follows that ¢(n)/n <
log |w|/logz for all n > ng and 1 < limsup p(n)/n < log|w]/log 2. We infer
that logz < logr; and therefore ro < r1. By symmetry we have 1 = rq and
now it is easy to see that ¢(n)/n convergesto 1. =

Except for the case G = D, we have not been able to prove that
Hadamard-isomorphic domains are equal if 1 € (.
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