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Trace and determinant in Banach algebras
by

BERNARD AUPETIT (Québec)
and H. du T. MOUTON (Stellenbosch)

Abstract. We show that the trace and the determinant on a semisimple Banach
algebra can be defined in a purely spectral and analytic way and then we obtaln many
consequences from these new definitions.

1. Introduction. Determinants of infinite matrices were for the first
time investigated by the astronomer G. W. Hill in his studies on lunar the-
ory and his ideas were put into a rigorous form by H. Poincaré in 1886. Ten
years later H. von Koch refined and generalized Poincaré’s results. In 1803,
I. Fredholm developed a detérminant theory for integral operators. Unlike
von Koch, I. Fredholm studied eigenvalues and looked at the analyticity of
det(T+)\M). Fredholm’s determinant theory is certainly one of the first mile-
stones in the history of functional analysis. In the early fifties A. F. Ruston,
T. Lesanski and A. Grothendieck almost simultanecusly defined determi-
nants for nuclear or integral operators on a Banach space. In the seventies,
A. Pictsch developed an axiomatic approach to the determinant of elements
of certain operator ideals. Tn 1978, J. Puhl [16] studied the trace on the so-
cle and nuclear elements of a semisimple Banach algebra, basing his difficult
arguments on the standard trace defined for finite-rank linear operators.
For more historical information and references on this matter look at [11],
Chapters 4 and 5, and {15], 7.5 and 7.6.

The aim of this paper is to show that the trace and determinant on the
socle of a Banach algebra can be developed in a purely spectral and analytic
way, that is to say internally, without using operators on the algebra. Then
we use the analytic properties of the spectrum to prove that! the trace and
determinant are entire functions and to deduce the basic properties of the
trace and determinant in a purely analytic way. The essential ingredient in all
these arguments is the fact that the spectrum is an analytic multifunction.
So this point of view gives us the possibility of extending almost all the
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116 B. Aupetit and H. du T. Mouton

results of this paper to more general situations where the spectrum is also
analytic, for instance the case of non-agsociative Jordan-Banach algebras.
Using more intricate arguments this was done in [4, 6, §].

2. Rank and multiplicity. To simplify we shall assume throughout
this paper that the Banach algebra A is semisimple with an identity. The
socle of A, denoted by Soc A, is the sum of all minimal left ideals, or minimal
right ideals, of A, if they exist, otherwise it is zero. It is well known that
the socle of A is a two-sided ideal of A and that all its elements are alge-
braic, consequently they have finite spectrum. From Newburgh’s theorem
([3], Corollary 3.4.5) it follows in particular that the spectrum function is
continuous at every element of the socle. Moreover, this socle is generated
by the minimal projections of A, that is, the elements p = p? such that
pAp = Cp, if they exist. For more general information on the socle see [10],
Chapter 4, and [2], Chapter 3, §3. If A is finite-dimensional it coincides with
its socle (and conversely by Theorem 5.4.2 of [3]). If A is infinite-dimensional
then the socle is a proper two-sided ideal, consequently 0 € Spa for every
a & Soc A.

If X is an arbitrary Banach space, then B(X) contains finite-rank op-
erators, so its socle is non-zero. Another example of Banach algebras with
non-zero socle is given by the scatiered algebras, that is, the algebras for
which every element has a finite or countable spectrum (see [3], Theorem
5.7.8). It is not known in general which algebras have a non-zero socle.

The first result of this section was known by the first author since a
long time. It first appeared in a slightly different version for Jordan~Banach
algebras in [4], Theorem 3.1. It is an improvement of Theorems 2.2 and 3.1
of [14] and Theorem 2.2 of [7]. We denote by # the number of points of a set.

The case m = 0 of the following theorem includes several characterizations
of the radical. '

THEOREM 2.1. Suppose that a € A and that m > 0 is an integer. The
Jollowing properties are equivolent:

(i} #(Sp(=za) \ {0}) < m for every = € A,
(il) #({t € C: 0 € Sp(y + ta)}) < m for every y invertible in A,

(iti} Miep Sp(y +ta) C Spy for every y € A and every subset F of C
having m + 1 non-zero elemenits.

Proof. (i)=>(ii). This is obvious when we notice that 0 € Sp(y + ta) is
equivalent to —1/% € Sp(y~*a).
(ii)=-(iii). Suppose that A ¢ Spy and X is in the intersection. This means

that 0 € Sp(y — A +ta) for t € F and y ~ X is invertible, so it contradicts
(ii) applied to y — A.
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(iii)=-(i). This is, conveniently modified, the argument of part (2) (<)
in the proof of Theorem 2.2 in [7]. u

It is easy to see that every element of Soc 4 has these three equivalent
properties for some integer m. If « € Soc A, then the sets Ay = {z € 4 :
#(Sp(zae) \ {0}) < k} are closed by continuity of the spectrum on the socle.
By Baire’s theorem there exist a smallest integer mn and an open set U in A
such that #(Sp(za)\ {0}) < m for z € U. Applying the Scarcity Theorem
([3], Theorem 3.4.25) it is easy to conclude that a has property (i). This
argument proves in fact a little more. It implies that if a € A4 is such that
Sp(za) is finite for every © € A, then there exists an integer m such that
#(5p(za) \ {0}) < m for every z € A.

We shall denote by F,, the set of o € A satisfying the three equivalent
conditions of Theorem 2.1. By property (i) of Theorem 2.1, Fy is the radical
of A, that is, {0} when A is supposed to be semisimple. By the previous
remark we have Soc A C |5 _, Fm. We shall see later that these two sets
coincide. _

All of this suggests to define the rank of an element o of A to be the
smallest integer m such that a € F,, if it exists, otherwise the rank is
infinite. Consequently,

rank(e) = sup #{Sp(za) \ {0}) < cc.
zEA

Of course we also have rank(a) = sup,c 4 #(Sp(az) \ {0}).
Let us give a few elementary properties of the rank:

(a) #(Spe \ {0}) < rank(a) for a € A,

(b) rank(za) < rank(a) and rank(az) < rank(a) for a,z € A; moreover,
rank(ua) = rank(aw) = rank(a) if u is invertible,

(c) let p be a projection of 4, then p has rank one if and only if p is
minimal,

(d) the rank is lower semicontinuous on {Jj,_g Fm,

(¢} let & be an automorphism of A, then rank(zr) = rank &(z) for every
x & A

The proofs of (a) and (b) are obvious from the definition and the fact that
Sp(az)\{0} = Sp(za)\{0}. We now prove (c). If p is minimal then pAp = Cp,
consequently pazp = Ap for some A € C, hence Sp(zp) = Sp(pzp) < {0,A}.
So p has rank one by definition. If p is a projection then B = pAp is a closed
semisimple subalgebra of A with identity p. We have Spy pzp C Spy pzp,
because (pzp—A)g = g(pzp—A) = 1 implies (pzp—Ap)gp = pa(pap—Ap} =p
by multiplication by p on the left and right sides. Consequently, if p has rank
one we have #(Spg pep\ {0}) < 1. Associating with b = pzp the element
x(b) which is the element of Spp pzp\{0} if this set is not empty or 0 other-
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wise, it is possible to prove that B is isomorphic to €, hence p is minimal (see
Theorem 2.6 of [4] and [3], Chapter 3, Exercise 21). To prove (d) suppose
that there exists a sequence (xj) of finite-rank elements converging to some
finite-rank element z and suppose that rank(z) > lim, . rank(zg) = M.
Then rank(z) > M + 1 and by definition there exists v € 4 such that
#(Sp(uz) \ {0}) = M + 1. By continuity of the spectrum on the set of
finite-rank elements we conclude that #(Sp(uzy) \{0}) = M+ 1 for k large
and this together with (b) leads to a contradiction. Suppose that a € Fy, and
that @ ig an automorphism of A onto itsell. Since & preserves spectrum we
have #(Sp (x)®{a)\ {0}) = #(Sp(za)\{0}) < m for all $(z); consequently,
®(a) also satisfies property (i) of Theorem 2.1 and (e} is proved.

In the case of B(X) does this spectral rank coincide with the standard
rank? This is clear for the following reasons. Let m = dim7'(X). Then
dim 8T(X) < m, for every S € B(X), and #(SpT \ {0}) < dim7T(X)
because if £ # 0 there exists a polynomial p of degree < m such that
Tp(T)z =0, so 0 € SpTp(T"). This implies that SpT is included in the set
of zeroes of zp(z), hence we get the inequality. Using the definition of spectral
rank and the preceding remark we obtain rank(T) < m. Let e1,...,em be
a linear basis of T'(X). There exist linearly independent vectors zy,...,om
such that Tz; = e;. By Corollary 4.2.6 of [3] applied to B(X) there exists
U € B(X) invertible such that Ue; = %z; (i = 1,...,m). Consequently,
rank(T) > #(Sp(UT) \ {0}) = #(Sp(TT) \ {0}) = m, because TUe; = 1e;
(i=1,...,m). .

If o € A has finite rank, the set E(a) = {z € A : #(Sp(ze) \ {0}) =
rank{a)} is non-empty by definition of the rank. If z € F(a) it is clear
from properties (a) and (b) that rank(a) = rank(az) = #(Sp{za)\ {0}).
This motivates the introduction of mazimal finite-rank elernents, that is,
elements a € A such that rank(a) = #(Spe\ {0}). We shall see in Theorem
2.8 that they may be written as a linear combination of orthogonal minimal
projections.

THEOREM 2.2 (Density of maximal finite-rank elements). Let o € A have
finite rank. Then E(a) is a dense open subset of A. Consequently, the set
of mazimal finite-rank clements 45 dense in the set of fintte-rank elemenis.

Proof Let zp € E(a). We set ag = 0 and denote by o, .. -, tp the non-
zero distinct elements of the spectrum of Sp(zga), where m = rank(a). We
choose r > 0 such that the closed disks B(cv;,r} (i = 0,...,m) are disjoint.
By upper semicontinnity of the spectrum and Newburgh's theorem ([3],
Theorem. 3.4.4) there exists € > 0 such that ||z~ zo|| < ¢ implies #(Sp(xa)N
B(ay,r)) > 1 (i =1,...,m). But by hypothesis #(Sp(za) \ {0}) < rank(a)
= m, so necessarily #(Sp(za) \ {0}) = m for ||z — zo|| < &. This proves that
E(a) is open. If E{a) is not dense in A there exists an open set V containing
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no point of E(a); consequently, #(Sp(za)\ {0}) < m —1 on V. Then the
Scarcity Theorem ([3], Theorem 3.4.25) applied to XA — Sp((z1+A(z—21))a)
where 21 is fixed in V' and « arbitrary in A implies that #(Sp(za)\ {0}) <
m—1 for every & € A, so rank(z) < m -1 and this is absurd. Consequently,
E(a) is dense in A. From this, there exists a sequence (z) of elements of
E(a) converging to the identity. So the elements z;a are maximal finite-rank
elements and they converge t0 ¢. m

This theorem is interesting because if we want to prove some property for
finite-rank elements it is sometimes enough to prove it for maximal finite-
rank elements (which are very particular by Theorem 2.8) and then to extend
it by continuity to all finite-rank elements (see Theorem 2.11 and Theorem
2.14). These maximal finite-rank elements play the réle of diagonal matrices
in the case of matrices.

The next theorem was first given and proved in the situation of Jordan—
Banach algebras [4].

THEOREM 2.3 (Scarcity theorem for the rank). Let f be an analytic
function from o domain D of C into A. Then either the set of A for which
the rank of f(X) is finite has zero capacity or there exist an integer N and
a closed discrete subset B of D such that rank f(A} = N on D\ F and
rank f(A) < N on E.

Proof. It is identical to the proof of Theorem 3.4 of [4] replacing every-
where Uy(a) by za. w

THEOREM 2.4. Let a € A have finite rank. Let I' be an oriented reqular
contour not intersecting Spa end denote by Ag, Ay respectively its interior
and its exterior. By upper semicontinutty of the spectrum there exists a
ball U in A, centred at 1, such thet Sp(za) NI' =@ for z € U. Then for
7,y € UN E(a) we have

#(Sp(za) N A;) = #(Sp(ya) N 4)
Jori=10,1.

Proof. By Theorem 2.2, U N E(a) is non-empty, so let =,y € U N E(a).
Let I be the convex domain of C containing 0 and 1 such that A € D is
equivalent to Az + (1 — A)y € U. Taking f(A) = (Az + (1 — A)y)e, which is
also of finite rank by property (b), and applying the Localization Principle
([3], Theorem 7.1.5) to the analytic multifunctions A — Sp f(A)N4;, by the
Scarcity Theorem we conclude that there exist two integers Np, Ny and two
closed discrete subsets Fy, Fy of D such that

1 #(Sp f(A) N A;) =N; for A € D\ F,
(1) #(Sp F(NNA) <N, forheF; (i=0,1).
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To prove the theorem it is enough to show that 0,1 & Fy U F1. Suppose for
instance that 0 € Fy U Fy. For A ¢ Fp U F} we have

# Sp(ya) = #{5p(ya) N A¢) + #(Sp(ya) N A1) < No + Ny = # Sp f(}).

If 0 € Sp(ya) the relation (1) with y € E{c) implies m + 1 = # Sp(ya) <
Ng + N1 = #Spf(A) £ m + 1, from the definition of the ranlk, where
m = rank(a), so this is absurd. If 0 ¢ Sp(ya) by upper semicontinuity of
the spectrum we can choose A ¢ Fy U Fy such that 0 € Sp f(A). Relation (1)
implies

m = #Sp(ya) < No + Ny = #8p f(A) = m

and this is also absurd. By a similar argument the cage 1 € Fy U Fy also
gives a contradiction, so the theorem is proved. w

The independent number #(Sp(za) N Ag) is denoted by m(I', a) and is
called the multiplicity of a associated with I'. It is independent of I” if the
corresponding spectral points of a in Ap, Ay do not change. If « is isolated
in Spa we define m(w, @), the multiplicity of a at ¢, by m(I',a) where I' is
a small circle centred at o and isolating & from the rest of the spectrum.
We have m(e,a) > 1. It is not difficult to see that

m(Ia) = Z m(e, a).

a&Sp aNdg

If @ is a maximal finite-rank element then necessarily we must have
m(a,a) = 1 for every & # 0, & € Spa, because otherwise there would be
some ¢ € U M E{a) such that #(Sp{za) \ {0}) = m + 1 where m = rank(a)
and. this would violate the definition of the rank.

If we take for I' a contour surrounding all the spectrum of o we obtain

_ [ 1+rank(a) if0e€Spa,
(2) Z m(o, a) = {rank(a) if0&Spa.

acSpa
In fact, we shall see that the multiplicity of a finite-rank element a at
a # 0 is equal to the rank of the Riesz projection associated with o and «.

Let « € € and I' be a small curve isolating o from the rest of the
spectrum of a. By definition the Riesz projection is

(3) pla,a) = % {(h—a)-tax.
M

Obviously it is zero if o & 3p a. The Holomorphic Functional Calculus im-

plies that the p(a,a) corresponding to different o have zero product and
their sumn is one.
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The identity (A —a)~' = + + +a(A — a)~* implies that

(@) Pl a) —a)ytan

=2 i
273 4 A
LEMMA 2.5 (J. Zemdnek). Let p, ¢ be two non-zero projections of A such

that ||p — ¢l| < 1. Then there exists an z € A such that

g=¢e "pe*.

For the proof, see [21]. For more details and some improvements, see [19].
As a consequence, from property (b}, we have rank(p) = rank(q).

THEOREM 2.6, Let a € A have finite ronk and let Aq,. .., A be non-zerc
distinct elements of its specirum. If p denotes the Riesz projection associated
with a and A1, ..., A, that @s, p(A1,a) + ... +p(An,a), then

rank(p) = m(A1,a) + ... +m{A,, a).

Proof. By Theorem 2.4 and definition of multiplicity there exists g > 0

such that

m{Ay,a) 4 ...+ m(dp,a) = max #(Sp(za) Ap)

lle—1j<e

for D < & < &g, where Ag is the domain limited by a regular contour I’
separating the points Ay, ..., A, from the rest of the spectrum and 0. By [3],
Theorem 3.3.4, we have

m{A1,a) + ...+ m{An,0) = ”mrfflfﬁ#(sp(mw \ {0},
where g denotes the Riesz projection associated with ze and I'. Conse-
quently, by property (b) of the rank, we have m(\y,a) + ... + m(Aq, a) <
rank(q). If we choose £ > 0 small enough, from the definition of the Riesz
projections, it is easy to see that {jg — p|| < 1 so, by Lemma 2.5 and the
following remark, we have

m(A1,a) +... +m(An,a) < rank(q) = rank(p).

We now prove the converse inequality. We choose z arbitrarily near to
1 in such a way that m{A1,a) + ... + m{An, 0) = #(Op(za) N Ap) and we
set r = rank(a), m = m(Ay,a)+ ... + m(An,a),b = za. The spectrum of b
has m points in Ag and 7 — m non-zero points in Ay (the exterior of I7).
Denote by g1, ..., gr—m the r — m Riesz projections associated with b and
these r — m non-zero points. These projections are orthogonal to g by the
Holomorphic Functional Calculus. Suppose rank(g) > m. Then there exists
y € A such that #(Sp(yg) \ {0}) > m. Using the Holomorphic Functional
Calculus we can create m -+ 1 orthogonal projections p1,. .., pmy1 which are
in Ayq C AgeC Ab by formula. (4). Moreover, p;g; = 0 because ¢ is orthog-
onal to the g;. So Ab contains pi,. .., Pmt1s Qs -+ Gr—mj consequently, we
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can consider

zb=p1+ 22 +.. .+ (M + Upmiar + (m+2)q0 + .+ (7 + Do,

whose spectrum contains 7 4+ 1 non-zero points, and this contradicts the
definition of the rank of b, because rank(b) = rank(a) = r, by property (b).
Hence rank{g) = rank(p) < m. So the theorem is proved. w

CorROLLARY 2.7. Let p # 0,1 be o finite-rank projection. Then m(0,p)
=1 and rank(p) = m(1,p).

Proocf We have 1+ rank(p) = m(0, p) + m(L,p) because Spp = {0, 1}.
Then we apply the previous theorem to a = p and Ay == 1, noticing that the
Riesz projection associated with p and 1 is p itself, because by (3),

1 _ 1 V4 1-»
S N A -p) A = o V| A £ =p.
7 JA - 27ri5(>.-1+ ) )d)‘ b=
r r
Using an argument very similar to the one used at the end of the proof

of Theorem 2.6, we can deduce the precise structure of maximal finite-rank
elements.

THEOREM 2.8 {Diagonalization theorem). Let a € A be a non-zero maz-
imal finite-rank element. Denote by A1, ..., An its non-zero distinet spectral
values. Then there exist n orthogonal minimal projections py,...,p, such
that a = Aip1 + ...+ ApPp.

Proof We consider the Riesz projections py,...,p, associated with a
and the A;. They are orthogonal and commute with a. We now prove that
the p; have rank one, so they are minimal by property (c). By Theorem
2.6 we have rank(p;) = m(a;,a), which is one, by the remark following
the definition of multiplicity, because o is maximal. Let p = py + ... + pn.
We claim that ¢ = ap. Suppose @ # ap. Because A is semisimple there
exists an z € A such that Spxz(a — ap) # {0}. Note that the spectrum of
z(a - ap) is finite and let g be the Riesz projection associated with one of
its non-zero spectral points. Then g € Aa because a and p commute and ¢
is of the form y(1 —p) so gp; =0for i = 1,...,n. If we consider the element
c=p1+2po+...+np,+(n+1)q the relations (c—k)py = Ofor k= 1,...,n
and g(c — (n + 1)g) = 0 imply that {1,...,n + 1} C Spe, which violates
the fact that every element of Aa has at most n non-zero points because
rank(a) =n. S0 a = ap = pyapy + ... -+ Ppap,. By minimality of the p; we
have p;ap; = oyp; for some o;. But the spectral mapping theorem implies
that \; = a;. =

COROGLLARY 2.9. The socle coincide_s with the set of findte-rank elements.

_Pro of. By the remark following Theorem 2.1 we only have to prove that
finite-rank elements are in the socle. So suppose rank(a) finite. By Theorem
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2.2 there exists » invertible such that we is maximal, By Theorem 2.8, ua is a
linear combination of minimal projections, so it is in the socle. Consequently,
the same is true for a = v 1{ua). u

This last argument also proves that every element of the socle can be
written as a sum of rank one elements.

Theorem 2.8 implies easily the known result that every element of thé
socle is von Neumann regulor.

CoroLLARY 2.10. If a € Soc A there exists © € Soc A such that o = aza.

Proof By Theorem 2.2, let u be invertible such that va is maximal. We
have ue = A1p1+. ..~ AnPn, where the p; are orthogonal minimal projections
and the A; are non-zero. Then

ua:(Alpl+...+)\npa)(§£+...+i—”)()\lp1+...+)\npn)
1 I

:ua(i—i+...—l— i—:)ua.

So o = aza where z = (p1/ M+ ... +Pn/An)u €Soc A m

For z € A denote by C(z) the subalgebra (without identity) generated
by z and by 7(z) the supremum of the number of orthogonal projections in
C(«). In a rather forgotten paper {13], H. Kraljevi¢ and K. Veselié introduced
a concept of rank by taking for a € 4, sup,e 4 dimC(za) < oo. In fact, this
rank coincides with our spectral rank.

THEOREM 2.11. For a € A we have rank(a) = sup,e 4 dim C(za). If
a € Soc A the preceding number coincides with sup,¢ 4 7(za).

Proof. If sup,esdimC(za) < m < oo then #Sp(za) < m for all
z & A, and consequently rank(a) < co. So it is enough to prove the theo-
rem on the socle. If a € Soc A we have dim C(a) 2 n{a) > #(Spa\ {0}),
because the Riesz projections are orthogonal. So it is sufficient to prove
that sup,, dim C(za) = rank(a). By Theorem 2.2 there exists a set of
invertible clements % such that ue is maximal. By Theorem 2.8 we have
u@ = Mp1 + - .. + APy where n = rank(ua) = rank(a) and where the p;
are minimal and the A; non-zero. If ¢ is a polynomial without constant co-
efficient we have @(ua) = @(A)py + ... + ¢{An)pa. Given py,...,pn € C
it is always possible to find, by interpolation, such a polynomial ¢ satis-
fying 6(M\) = ai (8 = 1,...,n); consequently, Clue) = Cp1 + ...+ Cpa,
hence dim C(ue) = rank(a). Suppose now that for some z € A we have
dim C(za) > n + 1. By definition of C(za), we can find n + 1 polyno-
mials ¢1,...,¢ne1 without constant coefficient such that the ¢;(za) are
linearly independent. By Lemma 2.2.1 of [3] there exists £ > 0 such th'at
21, 21 € A with iz — @ufza)ll <&, ..., [iznt1— ¢n1(za)|| < € implies
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#1,--., #n41 linearly independent. By the density of the set E(za) there
exists u near the identity and in FE{za) such that z = ¢;(uzae) satisfy
the previous inequalities. But by the previous part of the proof we have
dim C{uza) = rank(ze) < rank(e) = n, and z,. .., 2,41 € Cluza) are lin-
early independent, so we get a contradiction. Hence the theorem is proved. w

Several authors, like K. Vala, K. Ylinen, J. C. Alexander, introduced the
concept of fintle-dimensional or finite-rank element. This means that the
rank of the bounded linear operator @ € B(4) defined by @ : © — aza is
finite (for more details see [9], Chapter F). This rank is bad for two reasons:
first, it does not coincide with the standard rank, even in the case of matrices,
as easily seen with a 2 x 2 invertible matrix m for which the standard rank
is 2 and dim 7{M5(C)) = 4; secondly, it is not subadditive as the standard
rank is (see Theorem 2,14). Nevertheless these two ranks are related as seen
in Theorem 2.12 which is an improvement of property (¢} of Theorem F.2.4
of [9] (which is formulated only in the primitive case) and of a lemma of
J. C. Alexander [1], also given as Lemma 4, p. 81, in [2].

THEOREM 2.12. For a € A we have
rank{a) < dimada < (rank(a))®.

Proof. If dimada is finite, then for every = € A we have dim(za)A(za)
= dim Ly (aA(za}) < dimL,(ecda) < dimade < oo, where L, denotes
the left multiplication by 2. So za is algebraic and then # Sp(za) is Anite
for z € A, bence o has finite rank by Theorem 2.1. Consequently, we can
suppose that a € Soc A, hecause otherwise the two inequalities are obvious.
If a € Soc A, by Corollary 2.10, we have C(a) C aAa so by Theorem 2.11
we have

rank(a) = sup dim C(ze) < sup dim(za) A(za) < dim aAa.
zEA zeA

By Theorem 2.2, there exists u invertible such that ug = Aipr e+ Anpn
where the p; are orthogonal minimal projections and the ); are non-zero.
But dim(ua)A(ua) = dimL,(ede) = dimada, because L, is invertible
and Au = A. Moreover, (ua)A(ua) = Z?’j:l pidp;. Because p; is minimal,
dimp;Ap; = 1. If i + § either p;Ap; = 0 or dim piAp; = 1. This can be scen
using the second part of the proof of Lemma 4, p. 81 in [2], or the end of
the argument of the proof of the theorem in [12] (page 22). Consequently,
dimada < n® = (rank(ua))? = (rank(a))?.

We now arrive at the most important result of this section. This theorem
was first proved in the situation of Jordan-Banach algebras ([4], Theorem
3.9), with an intricate proof using a geometrical characterization of algebraic
varieties of C? [5]. The argument depends on deep considerations on. complex
analysis in one and two variables and analytic multifunctions. Of course
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it could be possible to simplify slightly this proof in the case of Banach
algebras, but we now give a truly elementary proof which is only based on
Rouché’s theorem.

LEMMA 2.13. Let a = Ayp1+. .. +Anpn where A1, ..., Ay are distinct non-
zero numbers and p1,. .., py, are orthogonal projections. Let b be of rank one.
Then there exists an entire funciion h, depending only on a and b, such that
for X# 0, z € Spla+ Ab) \ {0, A1,..., An} is equivalent to z 7 0, A1,..., An
and z(z — M) ... (2 — An) = AR(2) = 0. In particular, there exists at most
one point in Sp(a + Ab) \ Spa near zero when A is small and non-zero.

Proof For z ¢ Sp o we have the identity
z—(a+Ab) = (z —a)(1 — A(z —a)~1b).
So for A # 0, 2 € Sp{a-+ Ab) \ Spa is equivalent to z ¢ Spa and 1/A €
Sp{(z — a)71b). But for z # 0, \1,..., A\, we have

AT P plb pnb
(z—a) b————-zm/\l—i—...—i—zm}\n
Consequently, for A # 0, z # 0,1, ..., Ap, the property z € Sp(a + Ab) is

equivalent to
(5) ;(z—)\l) (2= ) € Spa(2)b
where

g(z) =2(z— A2)... (2= An)prt ...+ 2(z = A1) .. (2= An1)Pn

+(z~M)...(z= )L —p1)... (1L —pn).

For z € C we have g{z)b € F1, so #(Spg(2)b\ {0}) £ 1. By Theorem 3.4.17
of [3] there exists h entire such that Sp g(2)b = {0, h{2)} for every z € C.
Consequently, the first part of the lemma is proved.

Let £ > 0 be such that the closed disks B(0,¢), B();,€) are disjoint
{(i=1,...,n). By Newburgh’s theorem there exists §; > 0 such that |A\| < é;

implies
{ Sp(a + Ab) € B(0,e) U B(Ar,6) U...UB(An,€),

F2(ep) (L=l

(6) #(Sp(a+2b) N B(h,e)) = 1fori=1,...,n.

Let I" be the boundary of B(0,=) and let p(z) = z(z— A1) ... (2 — As). There
exists § such that 0 < § < é; and

. p(2) = (p(2) — A(2)} < [p(2)|
for z € I" and |A| < 8. By Rouché’s theorem (see for instance [17] , p. 242) the
number of zeros of p(z)—Ah(z) on B(0, ¢) is the same as the number of zeros
of p(z) on B(0;¢), which is one. Consequently, for 0 < |A| < § we have at
most one point of Sp(a+Ab)\Sp a in B(0, &) because Spa C {0,M1,:.., Az} m
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THEOREM 2.14. If a,b € A then rank{a + b) < rank(a) + rank(b).

Proof By Corollary 2.9, we can suppose that a,b € Soc A, because
otherwise the inequality is obvious.

First step. We suppose that a is maximal of rank n and that rank(b)
= 1. We prove that #(Sp(a -+ b) \ {0}) £ rank(a) + 1. As in Lemma 2.13,
we choose £,8 > 0 such that Sp(a + Ab) has at most one non-zero point
in B(0,g). We consider the diagenalization obtained in Theorem 2.8, and
prove that for |A] < ¢ we have

4(Sp(a +Ab) N B(A;, ) = L.

Denote by p;(\) the Riesz projection associated with a-+Ab and the boundary
of B{)\;,€). These p;(}) are analytically connected to p;, the Riesz projection
associated with a and );. Consequently, by Lemma 2.5 and the following
remark we have rank{p;()\)) = rank(p;) =1 (i = 1,...,n). By Theorem 2.6
we have

rank(pi(N)) = Y mle,a+Ab),

a&SplatAb)
aEB(Ai,€)

moreover m(a,a + Ab) > 1, so this proves that there is only one point of
multiplicity one in Sp(e + Ab} N B(X;, €). Consequently, for |A| < 6 we must
have # Sp(a + Ab) \ {0}) < n + 1. By the Scarcity Theorem ([3], Theorem
3.4.25) we have #5Sp(a + M) < n+ 2 for all X € C. The argument given
in the proof of Theorem 7.3.5 of [3] implies that the (n + 2)th symmetric
function of the spectral values of a+ Ab, that is, their product counting their
multiplicities, is entire. By the Identity Principle either it is identically zero
on C in which case (# Sp(a+ Ab) \ {0}) < n+1on C or it vanishes on a
discrete set so restricting & if necessary we can suppose that # Sp(a-+ Ab) <
n+1on (0 < |A| < § and then the same is true on all C. Consequently, the
assertion is proved taking A = 1. (Remark: it is possible to eliminate these
last analytic arguments considering the two cases where the dimension of A
is finite or infinite.) '

Second step. We suppose that rank{h) = 1 and a € Soc A. We prove
that #(Sp(a +b) \ {0}} <€ rank(a) + 1. By Theorem 2.2 we know that there
exists a sequence (u,,) of invertible elements converging to the identity such
that u, € E(a). The elements u,0 are maximal of rank equal to rank(a).
So by the first step we have #(Sp(una + b) \ {0}) £ rank(a) + 1. But the

“spectrum function is continuous on the socle, by Newburgh’s theorem ([3],
Corollary 3.4.5), and (una) converges to a; consequently, we have proved the
assertion. )

Third step. We suppose that rank(d} = 1 and ¢ € Soc A. We prove
that rank(e + b) < rank(a) + 1. Let z & A be arbitrary. If b = 0 it is
obvious that #{Sp(z(a + b)) \ {0}) < rank(a) < rank(a) + 1. So suppose
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that rank(zb) = 1. By the second step applied to za and zb we obtain
#(Sp(z{a+b))\{0}) < rank{za)+1 < rank(a)+1, so the assertion is proved.

Fourth step. We prove the theorem by induction. By the previous
step it is true for rank(b) = 1. So suppose it is true for rank(bh) = m and we
prove it at the order m + 1. Let b € Soc A such that rank(d) = m + 1. Mul-
tiplying b by some invertible elevnent u we can suppose that b is maximal
of rankm 41 so by Theorem 2.8 it can be written as ay1p1 +. . . + Gmr1Pm+1
where the o4 are non-zero and p; are orthogonal minimal projections. Then
va+ub = (ue--oarpi+. ..+ CnPm)+ Cmp10m1. We have rank(aipr+. . .+
CmPm) < m by the third step repeated m times, so by the hypothesis of in-
duction we have rank(ua-+o1p1+. . . +oppm) < rank(ua)+m = rank(a)+m.
Applying again the third step we obtain

rank(a + b) = rank{ua + ub) < rank(a) +m + 1 = rank(a) + rank(b).
So the theorem is proved. m

Applying Theorems 2.6 and 2.14 we can obtain a new property of the
rank. The next lemma is part of the folklore.

LEMMA 2.15. Let a,b € A be such that ab = ba = 0. Then Sp{a+b)\{0} =
(Spa\ {0}) U (Spb\ {0}). Moreover, if Ag 5 0 is isolated in Sp(a + b) then
p(Ae,a +b) = p(Ao, a) + p(Ao, b)-

Proof. For A # 0 we have

) )\—(a,+b)=§()\wa)()\—b):%()\—b)(/\_a).

So it is easy to see from (7) that A — (a+b) is invertible if and only if both
A —a and X — b are invertible.

Let I' be a circle centred at Ay which separates Ag from 0 and the rest
of the spectrum of a +b. If A€ I' by (7) we have A# 0, A~ g and A — b
invertible. Because b= (A —a)% we have

(8) (A—a)"b=+ onl

Moreover, we have

(9) (A= (a+b)t=AA =B (A —a)
=A—a)t+ DA =T =1 -a)
=(A-a)+d(A -0 A —a) "
=(A—a) P+ A= H{A—a)"b
(- -
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So integrating this quantity on I” multiplied by 1/(27i) we get

- RN YR
(10) P00, 0 +b) = p(o, 8) + 5— 1! (A=)t
= p(A(la (L) + P()\O: b):
by formula (4) applied to b. =

THEOREM 2.16. Let py,...,0n be orthogonal projections of finite rank.
Given non-zero numbers oy, ..., & we have

rank{@apr + ...+ QpPn ) = rank(p;) + ... + rank(pn).

Proof Without loss of generality we may suppose the projections to be
different: from zero.

First step. We prove that
rank(aipr + ...+ Gnpn) = rank(pr + 22 + ...+ 1Py
This comes immediately from the two identities

(p142p2 + ...+ npn = (a1 + ... QD)
X(&+EEE+___+E&E)
Q Qi Xn,

(11)
pr + - Fonpn = (p1 + 2y + .. A npp)

.
and property (b) of the rank,

Second step. Using induction on n it is easy to prove from Lemma
2.15 that if #y,..., %, are orthogonal elements then

n

Sp(z1+ ... +2.) \ {0} = | J(Sp =i \ {0}),
(12) =1

n
P()\U,ml + fae + m'ﬂ.) = ZP(A(); wi)a
i=l

o 2}
x (alpl + 5 P2 +...+ -f—pn)

where Ag € Sp(z1 + ... + ), Ao # 0. Setting v = py -+ 2ps + ... + npy we
have Spu \ {0} ={1,...,n} and hence
rank(u) = m{l,u) + m{2,u) + ...+ m(n, u)
== rank p(1,u) + ... + rank p(n, u),
by Theorem 2.6 applied to u.
Taking =z = kpy, all the Spxzy \ {0} are disjoint, and consequently by
(10} we have

plk, u) = p(k, kpr) = pr,
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because all the terms p(k, jp;) axe 0 for j # k. So we have
rank{cupr + ... + anpn) = rank{u) > rank(p1) + ... + rank(p,).
The other inequality is a consequence of Theorem 2.14.

COROLLARY 2.17. If rank(a) = n = v + 8 > 1, then there exist b,c €
Soc A such that a = b+ ¢, rank(b) = r and rank(c) = s.

Proof We take u invertible such that ua is maximal of rank n. Then
ua = APy + ...+ AnPn, where Ay, ..., A, are the non-zero spectral values
of wa and m,...,pn the corresponding orthogonal Riesz projections, by
Theorem 2.8. We take b’ = Aip1 +. ..+ Aoy and ¢ = dps1prea+.. .+ AnPn-
By Theorem 2.16 we have rank(d') = r and rank(¢’) = s. Taking b = u™¥
and ¢ = v~ ¢’ and using property (b) of rank we get the result. m

COROLLARY 2.18 (*). Let a € A. The rank of a is the smaollest integer k
such that a € Iv + ...+ Iy, where Iy, . .., I, are distinet minimal left ideals.

Proof We may suppose that o € Soc A because otherwise k£ = oo. Let
r = rank(a). By Theorems 2.2 and 2.8 there exist u invertible, A1,...,An
non-zero and distinct numbers and p1,...,pn orthogonal minimal projec-
tions such that rank(ua) = rank(a) and wa = Apy + ... + Anp,. Because
Iy = Ap,..., I, = Ap, are minimal left ideals we have @ € Iy + ... + In;
consequently, n = r by Theorem 2.16, and so the number k as defined in
the statement of the corollary satisfies & < rank(a).

Conversely, if a € I + ... + I, where the left ideals are minimal, it
is well known ([1], Lemma 2, p. 78) that there exist minimal projections
p1,...,pp such that I; = Ap; (i = 1,...,k), so @ = &p1 + ... + zapx for
some T1,...,Tx € A; consequently, by property (b) and Theorem 2.14 we
have

rank(a) < rank(z1p1) + ... + rank(zxpy) < rank(py) + ... + rank(pg) = k-
So the corollary is proved. =

We finish this section giving an application of Theorem 2.14 to deriva-
tions.

THEOREM 2.19. Let D be a derivation of A. Then rank(Dz) < 2rank(z)
for every x € A.

Proof Since A is semisimple, by the Johnson—Sinclair theorem, D is
continuous, so for every A € C it defines an automorphism e*? of A. Suppose
2 is of finite rank. By property (e) of the rank we have rank (e*”x) = rank(z).

(*) BEditorial note: This result has also been obtained by M. Brefar and P. Semrl
(private communication). :
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Jetting

er 1
f(/\)={ 3 z  for A #0,
Dz for A =0,
which is analytic in A, by Theorem 2.14 for A # 0 we have

AD, ;
rank f(A) < rank (e 5 I) + rank (:;) = 2rank(z).

From Theorem 2.3 we conclude that, in particular, rank f(0) < 2rank(z). w

The congtant 2 is the best one. We can verify that for 4 = M,(C),
2 = (g (13), which is of rank one, and D the inner derivation defined by (} (1)),

we have Dy = ("01 (1]), which is of rank 2.

3. Trace and determinant. If o € Soc A we define the trace of a by

(1) Tr(a)= > Am()a),
AESp a

and the determinant of 1+ a by

(2) Det(l+a)= [ (1-+xm*e),
AESpa

It is obvious that Det(1+ a) # 0 is equivalent to 1 + a being invertible,
From (1) and (2) it is clear that

(3) |Tr(a)| < o(a) rank(a),
(4) IDet(1+ a)| < o(1+ a)™™ ) < (1 + p(a))ranke),
(5) (1~ o(a)y™™@ < |Det(1 +a)|  for gla) < 1,

where o denotes the spectral radius.

THEOREM 3.1. Let f be an analytic function from a domain D of C into
the socle of A. Then Tr{f(\)) and Det(1+ f(A)) are holomorphic on D.

Proof By the Scarcity Theorem there exist a closed discrete subset £ of
fD and an integer n such that # Sp f(A) = n for A € D\ E and #Sp f(\) <n
or A€ B,

First we take Ao € D\ E. Then Sp f(Ao) = {a1,...,n} and we choose
€ > 0 such that the B(oy,e) are disjoint. By continuity of the spectrum
on the socle there exists 6 > 0 such that |A — Ag| < 6 implies Sp f(A) C
B(e,e) U... U Blay,e), A € D\ B, and #(B(cu,e) N Sp F(A)) = 1 for
|A — Ao| < &. Denote by a;(A) the point in this intersection, We know from
[3], Theorem 3.4.25, that these cv;()) vary locally holomorphically. If § is
chosen small enough, by Lemma 2.5, the Riesz projections p(ey {A), F(A)) and
p{ai, f(Ao)) are equivalent, so by Theorem 2.6, we have mla;(A), f(A)) =
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m{c, f(Ao)). From this and the local holomorphy of the a;{A) we conclude
that Tr(f(A)) and Det{1+ f(A)) are holomorphic on D\ E.

Suppose now that Ag € E. Then Sp f(A) = {ay,...,am} (m < n). As
previously we choose £,6 > 0 such that the B, e) are disjoint and |A -
Mo| < & implies Sp f(A) € Blow,e)U.. .UB(am, ). Once again if § is chosen
small enough the projections p(8B(ay,2), F(A)) and p(8B(a,€)), f(Ao)) are
equivalent for 2 = 1,...,m and consequently we have by Theorem 2.6,

m(o‘isf()\o)) = Z m(ﬁ,f()‘))
BESP F(ANB(24.5)
Continuity of the spectrum on the socle and this relation imply that Tr(f(A))
and Det(1+ f(A)) are continuous at every point of I and then at every point
of D. By Morera’s theorem (see [17], p. 224), Tr(f())) and Det(1 + f(A))
are holomorphicon all D. w

The following lemma is implicitly contained in the proof of Theorem 5,
p. 29, of [2].

LEMMA 3.2. Let f(\,u) be o complez-valued function of two complex
variables which is separately entire in A, and such that f(A u) # 0 for
all A, p in C. Suppose moreover that there exist two positive constants AB
such that

‘ |70 p)] < A HBlal
Then there exist three complex constants o, 3,7 such thai
FOL ) = @A Bty

Proof. Because the complex plane is simply connected, by [17], Theorem
13.11, there exists $(), 1) separately entire in A, 4 such that exp(B(\, 1)) =
F(\, 11). Then we have Re®(}, p) < AJA| + Blu|. So if we fix ;2 and apply
Liouville’s theorem for the real part we conclude that ®(A, p) = Afi(p) +
fa(p) for every A. Teking two different values of A and solving the system
of two equations in fi, f» we conclude that fi, f2 are entire in p. Fixing u
again and taking ) real and going to +oo we conclude that Refi{u) < A
for arbitrary u, so again we conclude that fi{u) is a constant a. A similar
argument with X fixed proves that (X, z) = ug1(A) + g2(A), where g1 () is
a constant 4. Finally, we have —Aa + ga(A) = ~fp + fa(u) for every A, u,
hence this quantity must be a constant v and we get the result. m

THEOREM 3.3. Let z,y € Soc A. Then:
(i) Tr(z +y) = Tr(z) + Tr(y),
(ii) Det(e® V) = Det(e®e) = Det(e®) Det{e¥),
(iii} Det{e®) = e™(®),
(iv) Det((1 + z)(1 +4)) = Det(1 -+ =} Det(1+y), _
(v) for every integer n, Tr(z) and Det(1 + z) are continuous on .Fn.



132 B. Aupetit and H. du T. Mouton
Proof. (i} By Theorem 3.1, A(A) = Tr(z + Ay) is entire. Furthermore
R(A) . @ .
[X—rco A !Allinoo r ()\ T y) #l-% (pz +y) ()

because p — Tr(uz + y) is continuous. So by Liouville’s theorem, A(A) is a
polynomial of degree one. Identifying the coeflicients we get the result.

(i) We take f(A, ) = Det(e?®TH¥), which is well-defined because a €
Soc 4 implies e* — 1 € Soc 4. By Theorem 3.1 this function is separately
holomorphic in A, x and it is never zero because e’ ¥ is invertible. Let
N = max(rank(z),rank(y)). By Theorem 2.14 and property (4) we have

Fau) <€ g(e”'*'#?!)wnk()\m"*-#u) < 2N (Ml

because rank(e® — 1) = rank(a) by property (b). So by Lemma 3.2 there
exist o, 8,7 € C such that f(), u) = e***#4+7 Because f(0,0) = 1 we may
supppose that v = 0. Taking A = 1, p = 0 we get ¢® = Det(e®) and a
similar argument gives e® = Det(e¥). Consequently, Det{et¥) = f(1,1) =
Det(e®) Det{e¥).

(i) fce Frthene* —1=c(l1+£+...) € F1. If Spe = {0,a} then

Sp e = {1, e™} and consequently
eT(e = o = Det(e®).
By the remark follewing Corollary 2.9, every z € Soc A can be written as
T=c1+...+cg, where c,..., e, € Fi. So applying (i) and (ii) we have
Det(e®) = Det(e®) x ... x Det{er) = gT(er)+-+Trlen) o Trlz)

(iv) We take A € C such that |A||z|, |A||ly|| < 1. By the Holomorphic
Functional Calculus there exist 4,v € Soc A such that 1 — dz = &% and
1 — Ay = eV, Hence by (iii), we have

Det((1 - Az)(1 — Ay)) = Det(e“e”) = Det(e") Det(e")
= Det(1 — Az) Det(1 — Ay).
Because the functions Det((1 — Az)(1 — Ay)) and Det(1 — Az), Det(l — Ay)
are entire by Theorem 3.1, by the Identity Principle we conclude that the
same property is true for every A, so (iv) is proved.

(V) e,y € Fp then z—y € Fyy,, by Theorem 2.14, so by (i) and property
(3) we have [Tr(z) - Tx(y)| = |Tr(z ~y)| < o(z—y) rank(z ~y) < 2n]z—y]|.

Suppose first that 1 + z is invertible. Then by (iv) we have

Det(1 4 y)
Det(1 + z)

Taking [|(1 — 2)~Y(y — )|| < 1, by properties (4) and (5) we get

A=l +z) 7 fle—g)* < %%

= Det(1 + (1 +2)" y — 2)).

<@+ +2)7 - [l2 -yl
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which proves continuity of Det(1+ y) at y = «. If D(1+ z) = 0 we may
suppose that Spz = {a; = —1,a9,...,a,}. We take 0 < £ < 1 such that
the balls B(w,€) are digjoint and, by continuity of the spectrum on Soc 4,
we take & > 0 such that |jy —z|| < & implies Spy © B{ow,&)U...UB{am, &)
and Spy N Blay,e) £ 0 (i = 1,...,m). Then

Det(l+y)| = J] 1L+ < (14 |a] + &),
AeSpy

because B(~1, £) contains at least one point of Spy. Consequently, Det(1-+y)
goes to zero as y goes to z in F,,. m

Let H be a Hilbert space and A = B{H). In this case the socle of A
consists of the finite-rank linear operators on H. We consider a sequence
(pn) of orthogonal projections onto subspaces of dimension n, when n varies
from one to infinity. Then ||p,/n| = 1/n, Tr(pa/n) = 1, so this shows that
the trace, and also the determinant, cannot be continuous in general on all
the socle.

From Theorem 3.3 it is possible to give another proof of Theorem 2.16
avoiding Leruna 2.15. Because

- mn 23
o [mrtmens e (B ),

a1pyr + .o = (o1 4. .. Fpa){aap + .+ anPa),

we have rank(aypy +. ..+ onpr) =tank(pi+...+pn). Alsop=p1+...+Dn
is a non-zero projection. By Corollary 2.7 we have rank(p) = m(l,p) =
Tr(p) = Tr(p1) + ... + Tr(pn) = rank(p1) + ... +rank(p,)

‘We finish this article proving that there exists a connection between the
spectral radius and the trace for elements of the socle. To prove Theorem
3.5 we essentially follow the very simple and beautiful argument due to
H. K. Wimmer [20] in the case of matrices, modifying it slightly with the
help of Lemma 3.4 in the general case of elements of the socle.

LEMMA 3.4. Let a € Soc A, A1 be a non-zero spectral value of a and let
1/2 & Spa. The Riesz projection associated with p = 1—32)%1 and a{l—za)™t
is equal to the Riesz projection associoted with Ay and a. Consequently, i1
and Xy have the same multiplicity in the corresponding spectra.

Proof. Let I" be a small curve surrounding py. Because the transfor-
mation u = A/(1 — 2z} is injective we have
1

plus, a(l — za)“l) = S(”‘ —afl — 20y dp

I
1 A SN\ dA
‘%i(lmzf“(l“”) ) (1= 22)?
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1 LA

a 27r?l§,(l za)(A - o) 1—2z2A
1 daA

o — - _ p -1
2m§(1 2A+z(A—a))(A~—0) 7
1 zdA

= 5 VT TP

¥

where 7, the preimage of I, ig a small curve surrounding A;. But the first
integral is zero because v does not surround the pole % of A — 1'3‘”;\ i I s
taken small enough. So the first part is proved. The last part is a consequence

of Theorem 2.6. =

THEOREM 3.5. If a € Soc A then
ola) = Tim |Tr(a")[/®,

Moreover, if p(a) £ 0, the number of speciral values of a with modulus g(a)
8 given by
— D@
koo oa)®
Proof. We have in general [Tr(a®)| < rank(a)g(a)® by property (b) of
the rank and formula (2) of Section 2, so the theorem is true for g(a) = 0.
Suppose now g(a) # 0 and denote by Aj,..., A, the non-zero spectral
values of @ and by my,...,m, their multiplicities. We consider the series
S e Tr(a®)2* whose radius of convergence R satisfies
I ky[1/k
7 = A (Te(@®) " < ola),

by the inequality at the beginning. Let |z| < 1/g(e) < R. Then the series
converges and we have

> Tr(ah)z" = i Tr((za)*) = Tx (i(m)k) = Tr(a(l — za)™)),
k=l k=1 ksl

because the trace is additive on the socle and continuous on a set of bounded
rank elements. We just have to notice that the elerents Zizl(za)’“ have

rank less than or equal to rank{a) for every ¢ < co. Now by Lemma 3.4 we
have '

- P Mg A
Te(a(l — za)~Y) = —22L 4 Mudn
(a ™) 1— 22Xy +1—z)\n’
Wl}ich Is a rational function with poles 1/A,...,1/),. Consequently, R =
min(1/|A1],...,1/|As]). Hence I/ R = g(a). The second assertion comes from

Kronecker’s theorem, exactly as in [18]. w

icm

Trace and determinont in Bonach algebras 135

The similar result, where the superior limit is replaced by the limit, is
not true. To see this take

1 0
o= (0 ml) € My(QC).
Then Tr(a?*) = 2, Tr(a?*+) = 0.

COROLLARY 3.6. Let a € A. Suppose that Tr(az) =0 for all z € Soc A.
Then aSec A = 0. If moreover a € Soc A then a = 0.

Proof Let © € SocA and y € A. Then Tr((azxy)®) = 0 for k = 1,
so by the previous theorem we have g({az)y) = 0 for all ¥ € A. Hence
axr € Rad A = {0}, that is, aSoc A = {0}. If a € Soc A then (ay)Soc A =0,
hence (oy)? = 0. Again we have a € Rad A= {0}. Soa=0. »
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Complexité de la famille des ensembles de synthése
d'un groupe abélien localement compact

par

ETIENNE MATHERON (Paris)

Résumé. On montre que s G est un groupe abélien localement compact non discret
3 base dénombrable d’ouverts, alors la famille des fermés de synthése pour 'algébre de
Fourier A(G) est une partie coanalytique non borélienne de F(G), 'ensemble des fermés
de G muni de la structure borélienne d’Effros. On généralise ainsi un résultat connu dans
le cag du groupe T.

Introduction. Depuis une dizaine d’années, les relations entre I’ Analyse
Harmonique et la Théorie Descriptive des Ensembles ont été largement ex-
plorées (voir par exemple [KL1] ou [KL2]). L’étude des propriétés descrip-
tives de certaines familles de fermés issues de I'Analyse Harmonique s’est
révélée trés profitable aux deux disciplines.

Cet article est consacré a la famille des fexmés de synthése d'un groupe
abélien localement compact.

Dans [KMG2], Katznelson et McGehee construisent dans le groupe ™
des ensembles de synthése de “rang” arbitrairement grand, et indiquent
trés bridvement qu'une construction analogue est réalisable dans T.
Ce résultat est utilisé par Kechris et Solovay pour montrer que les en-
sembles de synthdse du groupe T forment une partic coanalytique non boré-
lienne de K(T), l'ensemble des compacts de T muni de la topologie de
Hausdorff. Dans cet article, on obtient la méme conclusion pour tous les
groupes abéliens localement compacts (non discrets) & base dénombrable
d’ouverts.

Dans toute la suite, la lettre G désigne un groupe abélien localernent
compact non discret & base dénombrable d’ouverts, et on note T le groupe
dual de G. '

Par transformation de Fourier, on identifie L*(I') & une sous-algébre
de C5(G), que l'on note A(G). Le dual de A(G) est T'espace PM(G)
des pseudomesures sur G {qui s'identifie & L°(T)). I’espace M (G) des
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