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3) On peut définir de maniere évidente le rang d’un ensemble de synthese
pour V(2¥), et montrer que ce rang est un II}-rang. 11 résulte alors de 2)
et du théoréme de la borne qu'il existe, dans 2¥ x 2¥, des ensembles de
synthése pour V(2%) de rang arbitrairement grand.
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A Fourier analytical characterization of the Hausdorff dimension
of a closed set and of related Lebesgue spaces

by

HANS TRIEBEL and HEIKE WINKELVOSS (Jena)

Abstract. Let I" be a closed set in R* with Lebesgue measure [I'} = 0. The first aim
of the paper is to give s Fourier analytical characterization of the Hausdorff dimension
of I'.

Let ¢ < d < n. If there exist a Borel measure p with suppp C I" and constants ¢1 > 0
and ¢z > 0 such that eyr? € p(Blz,r)) < ear? for all 0 < r < 1 and all ¢ € I', where
B(x,v) is a ball with centre = and radius r, then I" is called a d-set. The second aim of the
paper is to provide a lnk between the related Lebesgne spaces Lp(r), 0 < p £ oo, with
respect 40 that measure u on the one hand and the Fourier analytically defired Besov
spaces Bj (") (s € R, 0 <p< 0o, 0 < g < o0) on the other hand.

1. Imtroduction. Let 0 < ¢ < 1. Then C”(R*) stands for the usual
Hélder space on B™, that is, the collection of all complex-valued continuocus
functions f on B™ such that :

:E — .

O 1@ = s @) +ap LT oo

zcR™ @ty |$ - y'
Let s € R and s = ¢+ o with 0 < o < 1. Then the Zygmund spaces Cs(R™)
are the lifted Holder spaces,
2) C(R") = (id —4) 4/ %7 (R™),
where A is the Laplacian and everything must be interpreted in the frame-
work of tempered distributions §'(R™). Of course C*(R") in (2) does not
depend on the choice of ¢ and o, and the Holder spaces are included in
the Zygmund scale. Assume I' to be a closed subset of B™ with Lebesgue
measure |I'| = 0. Let

(3) C*T(R") = {f € C(R"): f(p) =0 if p € S(R") and ¢|I' =0},
where f() is the usual pairing for the Schwartz space S({R™) and its dual
§'(R™). Furthermore, @|I" is the restriction of ¢ € §(R™) to I'. In particular,
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supp f C I"if f € €T (R™). Only spaces T (R™) with s < 0 are of interest
since €57 (R?) = {0} if s > 0. On the other hand, if —co < 81 < 53 <0,
then Cs=:T(R*) ¢ C*f'(R™). Hence it makes sense to ask for the largest
value s such that C5% (R™) is non-trivial. More precisely: The distribuiional
dimension dimp I is, by definition,

(4) dimp I" = sup{d : C~"**T(R™) is non-trivial}.

Of course “non-trivial” means C~"+4I(R") # {0}, The Hausdorff dimension
of I' is denoted by dimg I". The first aim of our paper is to prove the following
assertion.

THEOREM 1. Let I' be a closed subset of R™ with Lebesgue measure ().
Then

(5) dimH I = dimD I

To describe the second main result we recall the notion of a d-get. Let
0 < d < n Then a closed set I in B” is called a d-set if there exist a Borel
measure 4 with supp  C I' and positive numbers ¢; and ¢z such that

(6} e1r® < p(B(z,r)) <cor? forall0<r < landz €T,

where B(z,r) stands for the ball centred at z and of radius 7. The measure
1 can be identified with the Hansdorff measure H? restricted to I, and we
have dimg I’ = d. Self-similar fractals are typical examples of d-sets. Let
L,(I") with 0 < p £ 00 be the related Lebesgue spaces with respect to that
measure i, which is equivalent to H%|I', the restriction of H* to I'. Any
e Lp(I'), 1 < p < oo, can be interpreted as a tempered distribution
f e S8 (R™) given by

(7 Fe) = § £l D) () pld),

r

v & S(R").

A Fourier analytical characterization of the distributions f obtained in
that way will be given in the framework of the Besov spaces By {R™) with
s E€R, 0<p <00, 0<g= oo These spaces can be introduced parallel to
the above spaces C*(R"). In particular, C*{R") = BE, ,(R"}. The subspacoes
B;;f; (R™) are defined similarly to (3). A second possibility of characterizing
the space Lp(I") is to find out whether it can be identified with the trace
space of suitable spaces By (R"). Here the trace trp f of f & B;qq(lliﬁ"') is
defined pointwise if f is smooth and the rest is a matter of corpletion (if
the necessary norm. inequality holds). The second aim of our paper is to
prove the following assertion.

THEOREM 2. Let I" be a closed d-set in E® with 0 < d < n.
i) Let L <p<oo and L/p+ 1/p' = 1. Then
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(8) Lp(_[") - By;:ggt—d)/p’,f‘ (]Rn.)

in the sense of (7).
(i) Let 1 < p < co. Then

(9) trp BT VP(RY) = Ly (1),

The two parts of this theorem provide a perfect link between L, spaces
on I" and the Fouricr analytically defined spaces B (R™). If one steps
from I' into R™ according to (7) and (8), one loses (n — d)/p’ smoothness,
returning via (9) one loses {(n — d)/p, i.e. together n — d, which is rather
natural. Although these two theorems seem to be of interest for their own
sake, they also pave the way to a spectral theory of fractal pseudodifferential
operators, We shift this task to later papers. But to provide a feeling what
can be expected on that basis we outline a simple but typical example:

Let 2 be a bounded, say, smooth domain in B® and let I" C 2 be a
compact d-set with n—2 < d < n. Let {(—A)™! be the inverse of the Dirichlet
Laplacian in §2, Let Wi(2) be the classical Sobolev space and Tfffﬁ(!)) =
{g € W3(82) : tran g = 0}. By (7)-(9) with p = 2 the operator tr*,

{10) (" £) () = (trr P (l0) () uldy),

r ,

w € D(£2),

males sense ag a mapping from I/TO/%(.Q) in D'(£2), and it comes out that the
so defined fractal differential operator

(11) B=(-A)"Totr*

2 -
generates a compact, self-adjoint, non-negative cperator on W1i(82). For its
positive eigenvalues A, k € N, there exist two positive numbers ¢, and ¢y
such that

(12) cihg SEETEDE < e, kel

Compared with the classical Weyl exponent 2/n one has the natural replace-
ment of n by d and a fractal defect n — d, which comes from both parts of
Theorem 2. We return to this subject later on in greater detail and greater
generality.

The plan of the present paper is the following. In Section 2 we collect
some definitions and references. We are very brief. Special properties of
function spaces will be mentioned later on when they are needed. The proofs
of the two theorems above are given in Section 3. Finally, Section 4 contains
comments and further results. In particular, in Theorem 3 we extend (9) to
p < 1 and to some spaces Fy  (R™).
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2. Definitions and preliminaries

2.1. Function spaces. Let R™ be the euclidean n-space. The Schwartz
space S(R™) and its dual space S'(R™) of all complex-valued tempered distri-
butions have the usual meaning here. Furthermore, L,(R™) with 0 < p < 0o
is the usual quasi-Banach space with respect to the Lebesgue measure, quasi-
normed by || - | Ly(R™)||. Let ¢ € S(R™) be such that

(13) suppp C{y € K" : [y <2} and e(z)=1ifle|<1;

let p;(z) = (27 72) — (2771y) for each j € N (natural numbers) and put
g = . Then, since 1 = Z;‘;O w;(z) for all £ € R™, the ¢; form a dyadic
resolution of unity. Let f and f be the Fourier transform and its inverse,
respectively, of f € §'(R™). Then for any f € S'(R™), (¢; )V is an entire
analytic function on R”.

DEFINITION 1. Let s € R, 0 < p < o0 and 0 < ¢ £ oo. Then By (R")
is the collection of all f € §'(R") such that

A9 I B = (2 | Lo@)e)”

=0
(with the usual modification if ¢ = oo) is finite.

Remark 1. A systematic treatment of the theory of these spaces may
be found in [10] and [11]. In particular, B, ,(R") is a quasi-Banach space,
which is independent of the function ¢ € S(R") satisfying (13), in the sense
of equivalent quasi-norms. This justifies our omission of the subscript ¢ in
(14) in what follows. If p > 1 and ¢ > 1, then By (R") is a Banach space.

Remark 2. We have
(15) C(R™) = B, (R"), s€R,
in the sense of (1) and (2).

2.2. Closed sets. Let 0 € d € n and let I' be a non-empty closed set
in R™. Furthermore, H* stands for the d-dimensional Hausdorff measure
on R*, and H?(I') is the corresponding Hausdorff measure of I". Moreover,
dimy I' denotes the Hausdorff dimension of . We assume that the reader
is familiar with the basic notions of fractal geometry (see [1] and [2]). Our
restriction to closed sets comes from our aim described in the introduction.
The Lebesgue measure of I' is denoted by |I"|. For the definition of a d-set we
refer to the introduction. We mention that our notation is slightly different
from that used in fractal geometry (see [1]), but it coincides with that of [8].
In particular, any measure u on I" with (6) is equivalent to the Hausdorff
measure H* restricted to I' (see [8, pp. 28-32]). We also refer to [6], [7] and
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[9], where the concept of a d-set is used in connection with function spaces
preferably of B) ~type.

DeFmNITION 2. Let I' be a non-empty closed subset of R® with |I'f = 0.
Suppose that s € R, 0 < p< oo and 0 < g < oo, Then

(16)  Bpg (R") ={f € By ,(R"): f(¢) =0 if p € S(R"), p|I"=0}.

Remark3. By (15), the space B[ (R™) coincides with C*'(R™) given
by (8). ‘
Remark 4, Let 0 <p< oo, 0 <g<ooand

(17) s>op=nl/p—1);.
Then B2 ,(R") ¢ LP*(R") and, hence,
(18) Byi (R") = {0},

ie. is trivial. In other words, only values s < o, (in particular s < 0 if
1 < p < o) are of interest. Recall supp f C I'if f € B;:{ {R™) in any case.
2.3. Explanations of the theorems
The distributional dimension. Let again I" be a non-empty closed subset
of R" with |I'| = 0. Then the distributional dimension dimp I is given by
(4). By (15), (17) and (18) on the one hand and 6 € C™"(R") (6-distribution)
on the other hand it follows immediately that
(19) 0<dimpI <n

(as it should be). We introduced the concept of the distributional dimension
in [13]. But we must confess that our claim at the very end of that paper
(hastily written down during proof reading) that (5) holds f?r any Borel
set’ (or even Suslin set) is not correct: Assume I' to be an arbitrary (Bon?l
or Suslin) set in R™ with |I'| = 0. Then (3) and (4) make sense and ob.v1-'
ously dimyp I = dimp T, where I' is the closure of I'. But a corresponding
assertion for the Hausdorff dimension is not true.

Traces. Lot ¢ € S(RM). Then trp ¢ = p|I7 makes sense pointwise. Let I’
be a closed d-set in R” with 0 < d < n. Then (9) must be understood as
follows: There exists a positive number ¢ such that

(20) ler o | LD S elle | BET 2P @)

for any ¢ & S(R™). Since S(R™) is dense in Bf,':“l_d)/ P(R™) (see (10, p. 48]),

: B(n—d)/I’(Rn) and
this inequality can be extended by completion to any feB, )
hence,

(21) e BUT PR € Ly ().
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The equality (9) means that any f7 € L,(I") is the trace of a suitable
g€ B(?l_d)/p(ll{”) on I" and ||f7| Ly(I"}|| is equivalent to

(22) int{||g | BT PR < top g = £,

Hyperplanes. To illustrate the two theorems we take a look at ' = R4
with d € N, d < n, interpreted in the usual way as a hyperplane in R"™. That
is, R* will be identified with

(23) {z=(21,...,2n) ER" 12y =... =2, = 0}.

Let §*~9 be the é-distribution in R?~%. Then

(24) FeSRY, flp)=0 forall e S(R") with I =0
if and only if

(25) f=f106"% with fye SI(Rd).
On that basis we proved
(26} dimp " = dimy I' = d

in [13, p. 127] by direct reasoning. Here the latter equality is obvious. Hence,
(26) illustrates (5).

Traces of function spaces on hyperplanes (and on smooth surfaces) have
been studied in great detail (see [10, 2.7.2] and {11, 4.4]). For assertions of
type (9) (also for p < 1) we refer to [4, §11] and [11, p. 220}. Hence, (9) is
their fractal extension, whereas (8) is their dual assertion; see also Remark 7
below. A part of Theorem 2(ii) may also be found in [5].

3. Proofs

8.1. Some preliminaries. The proofs of the theorems mainly rely on the
atomic characterization of B} (R") and on local means. Thus we briefly
recall the main facts.

Atomic decomposition. Let v € No = NU {0} and k € Z™. Then Q,x
denotes the cube in R™ with sides parallel to the coordinate axes, centred
at 27"k and with side-length 2. If r > 0 and @ is a cube in R*, then
r{) is the cube concentric with @ and with side-length r times that of Q.
Let C{R") be the usual space of all complex-valued bounded continuous
functions on R* equipped with the L.o-norm.

DEFINITION 3. (i) Let o > 0 with & & N. Then a function @ is called a
1-atom (or more precisely 1,-atom) if : :

(27) suppe C 5Qox  for some k ¢ 77
and
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(28) a€C7(RY), o |CTR™)| <1,

with C(R") in place of C°(R"™) if o = 0.
(i) Let s € R, 0 <p<oo,0>0witho @ Nand L+ 1 € Ny. Then a
function a is called an (8,p)-atom (or more precisely (s, p)s, z-atom) if

(29) suppo C 5@y for some v € N and some k € Z*,
(30) a€C(RY), lla(2™) | C7(RM)f) < 27 en/P)
with C'(IR") in place of C°(R") if o = 0 and
(31) Vo a(z)dz =0 for |8 < L.
Remark 5. We adopt the custom that the condition (31.) is empty if
L = —1, If the atom a is supported by 5Quk, we write it ayg, L.e.
(32) supp awk C 5Qur.

Lot 0 < p < oo and 0 < g < oo. We introduce the sequence space

bp,g = {)\ = { Ak freto,hezr CC: A ] bpgll = (i( Z kAvklp)q/p) 1/q - oo}

=0 kcZ™
with the usual modifications if p = oo and/or g = oo.

PROPOSITION 1. Let 0 < p < 00, 0 < g < oo and s € R. Let o 2> Q,
c>suwitho@dN, and L+1€Ng with L > max{[op - s), —1}, whgr& ap is
given by (17). Then f &€ S(R") belongs to B; (R*) if and only if it can be
represented as

o0
(33) J= Z Z Murtor  (conuergence in §'(R™)),

w=0) k€Z%" .
where ayy, are 1p-atoms (v = 0} or (s,p)o,L-atoms (v € N in the sense of
Definition 3() and (i), respectively, with (32), cma!.)\ = {/\V;c},,em,ii kEdZH'E
bp,q- Furthermaore, inf | | by g, where the infimunm is tc'zkensoverna admis-
sible representations (33), 48 an equivalent quasi-norm in By ,(R").

For the proof we rofer to [3].

Local means. A function K € S(R") is an admissibl-a kernel if it can
be represented ag K = AVK® where N € Ny is suﬂ‘imenﬂ% large, A 1sJf
the Laplacian, K® € S(R™) has a compact support and K9(0) # 0.1
f € 8'(R™), then the local means are defined as
(34) K, f)(z) = | KW)fe+iy)dy,

. Bn
(appropriately interpreted). Suppose that Ko € S(I.E’&“) a%so.lhas a czméa:;t
support and that /o(0) # 0. Let Ko(l, F) be defined in a similar way to .

t>0, zeR"”
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PROPOSITION 2. Let s € R, 0 < p < 00,0 < g < 0o and N € N with
2N > max{s,op}, where o, is given by (17). Then
1 dt i/q
) 1Kol N1 L) |+ [k 1) | Lo
5 ;
(modification if ¢ = oo) is an equivalent quasi-norm in By (R*) (see [11,
2.5.3)).

Remark 6. If s < 0, then N = 0 is admissible in the above proposition
{see [14, 3.1]). In particular, one can drop the first summand in (35).

3.2. Proof of Theorem 1. Step 1. Due to the local nature of dimp we
hawve

dimp I = sup dimp ("N 2Qox)
A=A
with dimp ("M 2Qg) = 0 if the intersection is empty. The same is true for
dimp. Hence we may assume that I” is compact.

Step 2. We prove dimp I” > dimg I". This is clear if dimyg I = 0 (see
(19)). If dimy I" > 0, then we have H7 (I} = oo for every ~ with

(36) 0< v < dimyy I

By [1, Theorem 5.6] there exist a compact set C' C I' and a constant ¢ > 0
such that

(37) HY(C) >0

and

(38) HY{CNB(z,r))<er”, zeR*, 0<r<l.
We define f € S'(R") by

(39) fe) = ela)H(dz), ¢ e SR,

c

Obvicusly, f(g) = 0if p|I" = 0. Let K be an admissible kernel in the sense
of 3.1 with support in the unit ball, say. Then Proposition 2 and Remark 6
yield
) IR~ sup K, ) | Lo (R

<4<

where “~" ag usual means that there exist positive numbers ¢; and c¢q inde-
pendent of f such that the left-hand side of (40) can be estimated from below
by ¢1 times the right-hand side and from above by ¢ times the right-hand
side. Now, (34), (38) and (39) imply

Kt ) <t |k (2_;3)

¢

HY(dy) < eit™™HY (CNB(x, 1)) < et~
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for every # € R™. Together with (40) and (39) this gives f € ¢+ I(R?).
Moreover, by (37), f # 0. Consequently, dimp I" > ~ and the choice (36) of
v implies dimp I" > dimg I

Step 3. To prove the reverse inequality we need a preparation:

LeMMA. Let s < 0 and assume I' £ § to be o closed subset of R™ with
[T} == 0. Let Bf n(R™) with s € R be the closure of {¢ € S(R*) : ¢[I" = 0}
in Bf [ (R*). Then

COT(R™) 3 {0} if and only if BT L(R™) # Brs(R™).

Proof. Supposc that By h(R™) # By {(R"). Then By 7(R™) is a closed
proper subspace of By {(R"). By the Hahn-Banach theorem there exists a
non-trivial element in (Byj(R"))" = C*(R"), which vanishes on By n(R™).
Hence C*T (R") is non-trivial. _

The reverse assertion can easily be seen by contraposition: If By 1(R") =
Bii(R™) and f € C*F(R"), then f vanishes on a dense subset of By ;(R").
From this it follows that C7 (R") is trivial.

Step 4. We now handle dimp I" < dimg I'. Without loss of generality
we may asswme dirayg I < n (see (19)). If

(41) dimg I’ <v<mn,

then M (I") = 0. We intend to prove that B 7(R*) = B (R") and to
use the Lemma. By the definition of H” and the compactness of I", for every
¢ > 0 there exist a § > 0 and a finite covering of I by open balls B; centred
at I" and with diameters less than § such that

N
(42) Z(diam B;)T <o,

i=1

. . N
where dia B; is the diameter of B;. The union | J;_, B; also covers the

closure I of some neighbourhood I, = {z € R* : dist(m,.l") < e} 'of I,
where £ depends on g. Let now {¢; }j\f_,l be a smooth resolution of unity on

T, subordinate to {B;}7L,, i.e.
N . . ._ —_
(43)  ple) =) (diam By)"(diam By) Tes(z) =1 e el
=l _ ‘
' ‘ i i )"V, may be assumed to be
and supp@; C. By. The functions (diam BJ:)' vy
(r =1, 1)—a1foms (up to constants) (see Definition 3). Hence, by (43), Propo-
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sition 1 and (42),

N
(44) o | BYTT@®R)] < ¢ (diam By)Y < co.
Frml ‘

Let 9 € S(R") have a compact support and choose some n € S{RE™) with
n(z) = 1if = € supp ¥ U supp ¢, where ¢ is given by (43). Then
(45) $(@)n(o) - pls)) =0 itzer
and

1o — 4b(n — ) | BYyT(R™)|| = (b | BYyY (R™) < elle | BLLT(RM Y],
where we used the fact that ¢ is a pointwise multiplier for BT 7(R"), (see
10, 2.8]). Since the set of all compactly supported functions in S(R") is
dense in By';7(R"), the last inequality together with (44) and (45) and the
Lemma lead to C~"+7-F(R") = {0}, Thus, dimp I" < v and the choice (41)
of v implies dimp I" < dimg I'.

8.3. Proof of Theorem 2(i). Step 1. Let f©' € Ly(I") and let f be given
by (7). We prove f € B5, &~ /" (R") and
(46) |71 B9 B < ellfT | Lo(D)|

for some ¢ > 0 independent of f¥'. We apply Proposition 2. Let K be an
admissible kernel in the sense of 3.1 with support in the unit ball, say. Sup-
pose that p < oo, The modifications of the following estimates are obvious
if p = co. The definition of f, {34) and Hélder’s inequality imply

|K (¢, ) ()] |
(552 ) (25 )

—n P
<t (; Tk
. y ,
K(y“;—) Hd(dy)) " 0 Bla, )

By the right-hand inequality of (6), we obtain

1K (8 £) | Lp(R)]|
1/p
et LTy 8 B E2E ) de )
(;a (y)l( (t) ) (y})
< etV EMP| K| Ly (R - 1£7 | Lp(T)]),

where we also used Fubini’s theorem. This inequality, Proposition 2 and
Remark 6 now imply (46). By (7) we have f € B;,E,Z”"d)/p,’r(R“).

|

r

< ct—n( L
r

|

R
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Step 2. To prove the reverse assertion we need some elementary prepa-
rations. Let 0 < g < co and suppose that I' is a closed d-set in B" with
0 < d < n. Furthermore, Ly(I") has the above meaning with respect to
the restriction of the d-dimensional Hausdorff measure to I'. Assume that
i satisfies
(47) @€ S(RY), suppeC2Qu, I wlE—k=1 fzecR",

kegn
where, by the above notations, Qpg is the unit cube centred at the origin.
Let ¢ > 0 be a fixed number, which will be chosen sufficiently large later
on. For every v € Ny we determine a maximal g2~ “-distant set {z*'}; on
I', i.e. a set of points 2 € I" with the properties
|zu,l — 2" > 27 ifl#m and I'C UB(ZU,J, 027,
1

Now we fix a reference point y,, € {2'}; for every cube Q.5 with 2@, NI
# (), which minimizes the distance between 27"k (the centre of Q1) and
the set {z}:

[k — 27k = mlin 2~ 27V
We assume o to be so large that
(48) ok = 29 if 2Que NB(z1,27Y) # 0.
Let g be a continuous function on I' with compact support (equivalently,
the restriction of a compactly supported continuous function in R™ to I7).
By the above agsumptions it follows that
(49) a(@) =Y )o@z -k — glz)  inLe(T)

-
as v — 00 and :

i/q
(50) lgw | o) | ~ 2-%(; 9@l

if v is sufliciently large. We used (6) and the fact that g,(z) = g(y,{k). near
Yok by the above construction (see (47)-(49)). Of course‘the summation over
k in (49) and (50) may be restricted to those & € Z* with 2Qu NI #0.

Step 3. We prove the reverse assertion to Step 1. Let f be a function
in B R/PT (Re) Let g € S(R™) with compact support and

oo

(51) gV(m) = Zg(m)tp@”m _ k)
k
= 3 olva)e(2'z — )+ 3 (ofa) = gy oz~ k)
k _ k |

=gh(z) +oi(a), vEN
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where ¢ has the same meaning as in (47), the summation in (51) is restricted
to those k& € Z" with 2Q, NI 5 (} and y..x is given by (48). By Proposition 1,
204/ (2vg — k) are ((n — d)/p,p')-atoms (up to constants), we have

n— J _ ’ 1 lfp’
(2t | BT R < a2 (gl
k

< e2l95 | Ly (D] < esllglLp (D),

where we used (49) and (50) for laxge v. Representing the differences g{z)—
9(yux) in (51) as integral remainder terms of the corresponding Taylor series,
one may interpret the second sum as an atomic decomposition of g¥. The
application of Proposition 1 then leads to a similar estimate for g%, where
now an additional factor 27" comes out. Assuming g|I" # 0, we choose v
large (in dependence on g) and estimate the left-hand side of (52) with g¥
in place of gy by the right-hand side of (52). Hence we have a corresponding
estimate for g¥ itself. By the assumptions about f and duality (see [10,
2.11]), we obtain

(83) 179l = (g S IIF | BRG0P (RM)]|-|lg” | BETA7 (=)
<ollf | B LY R - |lg | Ly (D).

Basic properties of the Hausdorff measure (see [1, 1.2]) imply that the con-
tinuous functions on I with compact support are dense in L {I"). By Step 2
this applies also to the restrictions to I of g € S{R") with compact support.
Now (53) shows that g — f(g) is a bounded linear functional on this dense
subset of Ly (). The representation theorem for linear continuous function-
als on Ly (I') implies the existence of a uniquely determined 7 € Ly(I'
such that f is given by (7) and

B9 I LD = IF | L (1) = C| < ¢l | By G4/ (B

3.4. Proof of Theorem 2(ii). As announced af the end of the introduction,
we intend to generalize (9) in Theorem 3 below (see 4.4). Having this in
mind we now prove a little more than stated in (9) covering those parts of
Theorem 3 for which no additional considerations are needed.

Step 1. Let 0 <p < o0 and let ¢ < min{1,p}. We prove
(55) trp BO /PR € Ly(I);

the necessary explanation of how to understand (55) may be found in 2.3
(see in particular (20)-(22)). We rely again on atomic representations. Let
¢ € S(R™) be represented in BS% P/P(R") as

oo
(56) p = Z Z )\ukauk: ”{AIJ]GE}VENO’IQEZW i bp,q“ S CH(p | Béz_d)/P(R"')H
v=0 kgZn )
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(see Proposition 1). By |a.(z)| < 27v{n—d)/p)=n/p) and the fact that I" is
a d-set it follows that (56) restricted to I' converges in L,(I") and

el | Lo(I)| < cllee | B /7 (®R™))

(see also [7, Lemma 1.2/1]). The rest is a matter of completion according to
2.3, (20)~(22).

Step 2. Let d/n < p < oo and 0 < ¢ < min{p,1}. We prove that
under these circumstances try in (55) is an ontc map and that the related
(quasi-) norms are equivalent. As mentioned in 3.3/Step 3 the compactly
supported continuous functions on I' are dense in L, (I"). By 3.3/Step 2 the
even functions of type (49) are dense in L,(I"). Hence any g € L,(I") can
be approximated by a sequence {g;[I"}jen, of functions of type (49) with

(57) gj(w) = ZAij(p(QVjQ: - k)a J €N,
k

where v; € Ny, such that

®  o-Se] LyD)| < 2 llg | LoD, J € M.
i=0

Again the summation over k in (57) and in what follows is restricted to
those k € Z™ with 2Q,, N I" # . Furthermore, whether functions defined
on [R™ are considered on R™ or on I' will be clear from the context. Now,
(58} implies

(59) lgs | Lo(I) < c277l|g | Lp(D)]I,
and under the above assumption, (50) with p in place of ¢ yields

(60) lgg | Lp(D)i[ ~ 2_”"“(2 |A”f’“|p)1/p‘

Moreover, (57} is an atomic decomposition of g; in B~ /P(R") with the
atoms 2/%/Pp(2V 1 k) and the corresponding coefficients 27/4/7 ), ;. Here
we use d/n < p, since in that case we have {n— d)/p > o, (see (17)) and no
moment conditions for the atoms are required. Thus, Proposition 1 implies

/e
(61) los | B @M < e2 75 (3 )
k

Applying the t-triangle inequality with t = min{l, p,q} to

DaEEe
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and taking (59)-(61) into account we obtain the convergence of the sequence
{Z;;U gi}rem, in B,(,?q”d)/ P(R™). Its limit is denoted by ext g, i.e.

(62) extg =)y 27PN, i Pp(o¥ig — k).
j=0 k

Again (62) is an atomic decomposition in B /7 (R™), and Proposition 1,
(59) and (60) yield

(63) lext g | BTy VPR < ellg| L(1)]).
The definition of trp in Step 1 (see also 2.3/(20)-(22)) finally implies
(64) trp(extg) = g.

Remark 7. We mentioned that the two parts of Theorem 2 are dual o
each other. To underline what is meant by this, we give a new proof of (55)
restricted to 1 < p < c0 and ¢ < 1 by dualizing (8). Let ¢ € S(R*). Then
trpw = |I" and the Ly (I")-Ly (") duality implies

lixr o | L(D)]
= sup {| {07 (@)™ (0) H(d)| : £7 € Ly (1), 7 | Ly (D) < 1)
r

Now we define f by (7) and apply (8) to obtain
ltrr @ | Lp(I)]]
<crmp{lf(p)l: £ € BRI @), IF | BT VR < o)
< esllp | B YRR,

making also use of the B(n_dJ/ F (]R“)nB;,(:;d) /P(R") duality and the elemen-

tary embedding B a/s (R C Bj(,?l_d)/ P(R™). The rest is again a matter
of completion.

4. Comments and complements

4.1. An independence assertion. Let again I' be a closed d-set in R*
with 0 < d < n. Let m € N with m > n and B* ¢ R™ be interpreted as
a hyperplane in the usual way. Of course we also have I' ¢ R™ and one
can replace B(Tl AR in (9) by B(m A/P(Rm). For our later purposes
it will be helpful to have a closer loock at this independence, in particular in
connection with values p < 1. Let

(65) d/n < p< oo.

Then we have (n —d)/p > n(1/p— 1); and the corresponding assertions
with n+ 1, ...,m in place of n. By [10, 2. 7.2] or, better, [11, p. 219], it
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follows that
(66) trgs BJT~9/P(R™) = B{n=®/P(R),
which again sheds light on (9).

0<g< oo,

4.2. An open set condition. The extension of (9) to p < 1 causes some
trouble if p < d/n. For that purpose we introduce the following notation.

DerITION 4. Let I' C B™ be a non-empty Borel set. I is said to satisfy
the open set condition if there exists a u € N such that for every cube 2@k,
v e Ny, k € Z*, with 2Q,, NI # 0 one of the 24" congruent subcubes with
side-length 2-"T4~1) does not intersect I'.

Remark 8. Without loss of generality we may assume that the propor-
tional cubes in the definition for v € Ny and k € Z™ are mutually disjoint.
This can be achieved by enlarging the number p if necessary.

4.3. The spaces F? (R"). We intend to extend (9} also to the spaces

5 o(R™). For that purpose we briefly recall the definition of these spaces.
Let @ € S(R™) satisfy (13), let ¢;(z) = ¢(279z) — p(277+'2) for j € N and
wo = .

DEFINITION 5. Let 0 <p < oo, 0 < ¢ < oo and s € R Then
the collection of all f € S'(R™) such that

61 F | o g(R?) Ilc.a—H(ZZ‘“ql(so A0 | Ly

g (B™) is

(with the usual modification if ¢ = oo) is finite.

Remark 9. As in the case of By ,(R"), the space Fy (IR"} is a quasi-
Banach space (Banach spaceif p > 1 aud g > 1) and does not depend on the
function ¢. Hence we omit the subscript ¢ in (67) in the sequel. A systematic
treatment of the theory of these spaces may be found in [10] and [11].

Let 0 <p<oo, 0<g<ooand x(”)(m) = 2¥7/Py,i(2), where xu% is the
characteristic function of the cube Q.. We introduce the sequence space

fp,q = {)\ = {)\vk}ueNn,kEZn cC:

| (T @0 2oy

<o}
=0 heZ®
(with the usual medification if ¢ = o0).

PROPOSITION 3. Let 0 < p < o0, 0 < g < oo and s €ER Let o 2 0,
c>s witho ¢ Nand L+1€Ny with

sl )}
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Then f € §'(R™) belongs to Ey (R™) if and only if it can be represented as

[ +]
(68) f= Z Z Avkaur  (convergence in S'(R™)),

w=0 keZ»
where ayy are 1,-atoms (v = 0) or (s,p)s,z-atoms (v € N) in the sense of
Definition 3(i) and (ii), respectively, with (32), and A = {Mor}veng, kezn €
Jo.g- Purthermore, inf [ X | fp4|l, where the infimum is taken over all admis-
sible representations (68), is an equivalent quasi-norm in Fy (R™).

A proof of this assertion may be found in 4].
4.4. An extension of Theorem 2(ii).
THEOREM 3. Let I' be a closed d-set in R™ with 0 < d < n.
i) Letd/n<p<ooand D < g< min{l,p}. Then
(69) - trp BUTAPRY) = L(I).

(i) Let I', in addition, satisfy the open set condition. Then (69) holds
Joroll0 <p<ooand 0 < g< min{1,p}.

(iil) Let 0 < p < 1,0 < q < oo and assume I' o satisfy the open set
condition. Then

ter BT PRY) = Ly(T).

4.5. Proof of Theorem 3. Step 1. Part (i) of the theorem is covered by
Steps 1 and 2 of 3.4. '

Step 2. We prove (ii}). The embedding trp B;(,?q_d)/p(R”) C Ly(I) is
clear by 3.4/Step 1. To prove the reverse assertion we apply a similar con-
struction to 3.4/Step 2. Since p <'d/n is not excluded, we are now forced to
construct atoms with vanishing moments up to a certain order I > 0 (see
Definition 3(ii)).

Let ¢ € S(RX") satisfy (47). For j € Ny we determine coefficients {5}
such that (57) and (58) are satisfied. If we now furnish 2%¢4/ P2 — k)
with vanishing moments up to order L for a fixed L with I, > max{[o, —
(n—d}/p],—1}, where oy, is given by (17), then it becomes an ((n=d)/p,p)-
atom. For that purpose we use a similar construction to one in the proof
of [12, Theorem 3.6], i.e. we put Pun(z) = p(Mx — k) — Py k(x), where
the function 1, € S(R) has a support in a proportional cube related to
2Q.,x via the open set condition and has the property that

S 2P Puk(z) dz = 0,
]Rn

Since the proportional cubes do not intersect I, we have 3, ok = 1

16l < L.
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on I'. Moreover, the construction in [12, 3.6] guarantees that the sequence

{@usk}ieny, hezn is uniformly bounded. Consequently, we may proceed as in
3.4/Step 2.

Step 3. In order to prove (ii) we show that trp By “/P(R?) is in-
dependent of the parameter ¢ and use Fj% 4/P (R™) = BiD/P(RY. Let
0 < g <r < oo The elementary embedding Fi7y “/2(Rr) ¢ F{n-®/7 (R™)
implies the inclusion trp F{% ™9/ (R™) C trp Fn®/P(R™). To show the
reverse inclusion let f ¢ Fp(,?n"d) i (R™) and choose an atomic decomposition

[»v]
F=2"0 Ao with A[ forll ~[If | Findip@my),
v=0keZn
according to Propositir?n 3.~Then we have trr f = 33700 3 hean Avraun| I
We define a sequence \ = {Mk}veng, kezn with

Xuk - {3,,;5 if 20, NI :;é @,

otherwise

(where we tacitly assumed that the atom a,; has a support in 2¢,1). Since
I’ satisfies the open set condition, a similar construction to [12, 3.6] enables
us to extend a,;|7" to an atom T, on B™ with sufficiently many vanishing
moments, i.e,, in particular, to an atom for Féfl_d)/ P(R*). As in Step 2 of
the proof of {12, Theorem 3.5] we verify

X1 ol ~ (32 3 Fon,01) ™ 2ot

v=0kezZm

b

where x. i denotes the characteristic function of a proportional cube related

to 2@, via Definition 4 and X,(,i),i = qvn/ Pxwh,i- This is a consequence of the
vector-valued Hardy-Littlewood maximal inequality. Recall now that the
proportional cubes may be chosen mutually disjoint (see Remark 8). Hence
the parameter ¢ on the right-hand side of the last expression cancels and
may be replaced by r. So we finally obtain

X ] foall < lX | Forll < cllA | Foudl
This shows that
o0
g= Z Z Avkayk
=0 kg

belongs to F,S;"g,‘“")/ P(R™), and, by the construction of A and @,z it satisfies
trp g = trp f. This is the reverse inclusion.
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A quantitative asymptotic theorem for contraction semigroups
with countable unitary spectrum

by

CHARLES J. K. BATTY (Oxford), ZDZISLAW BRZEZNIAK (Hull)
and DAVID A, GREENFIELD (Benfleet)

Abstract. Let T be a semigroup of linear contractions on a Banach space X, and let
Xa(T) = {z € X limgouco | T(s)2|| = 0}, Then Xs(T) is the annihilator of the bounded
trajectories of 7. If the unitary spectrum of T' is countable, then X3 (T') is the annihilator
of the unitary eigenvectors of T%, and lim, |T(s)z] = inf{||z —y|} : ¥ € Xs(T)} for each
zin X.

1. Introduction. Let T be a semigroup of linear contractions on a
Banach space X, and suppose that the unitary spectrum of T is countable.
Let

X(T)={ze X: 5I_1_b11010 [|T(s)z] = 0}.

The ABLP Theorem [2], [19], [6], [25] shows that X (T") = X if the adjoint
semigroup 7™ has no unitary eigenvalues.

A variant of the ABLP Theorem [20], [21], [6] shows that X = X (T) &
Xy(T), where T' acts as a group of isometries on Xy(7"), provided that T'
satisfies a suitable ergodic spectral condition (which is automatic if X is
reflexive). It follows easily that, for any z in X,

() lim|[T(s)e] = inf{llo — v y € Xo(T)}.

There are several instances where T is a Cy-semigroup generated by
a differential operator A, and results have been obtained which identify
the space X (7'} or which evaluate lim, ||T(s)z]|, without the conditions
above being satisfied [4], [7], [10], [32]. Typically, X = L*(R™) and A* has
finitely many independent unitary eigenvectors in L*(R™). These results
can usually be obtained by means of some more or less explicit estimates
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