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A quantitative asymptotic theorem for contraction semigroups
with countable unitary spectrum

by

CHARLES J. K. BATTY (Oxford), ZDZISLAW BRZEZNIAK (Hull)
and DAVID A, GREENFIELD (Benfleet)

Abstract. Let T be a semigroup of linear contractions on a Banach space X, and let
Xa(T) = {z € X limgouco | T(s)2|| = 0}, Then Xs(T) is the annihilator of the bounded
trajectories of 7. If the unitary spectrum of T' is countable, then X3 (T') is the annihilator
of the unitary eigenvectors of T%, and lim, |T(s)z] = inf{||z —y|} : ¥ € Xs(T)} for each
zin X.

1. Introduction. Let T be a semigroup of linear contractions on a
Banach space X, and suppose that the unitary spectrum of T is countable.
Let

X(T)={ze X: 5I_1_b11010 [|T(s)z] = 0}.

The ABLP Theorem [2], [19], [6], [25] shows that X (T") = X if the adjoint
semigroup 7™ has no unitary eigenvalues.

A variant of the ABLP Theorem [20], [21], [6] shows that X = X (T) &
Xy(T), where T' acts as a group of isometries on Xy(7"), provided that T'
satisfies a suitable ergodic spectral condition (which is automatic if X is
reflexive). It follows easily that, for any z in X,

() lim|[T(s)e] = inf{llo — v y € Xo(T)}.

There are several instances where T is a Cy-semigroup generated by
a differential operator A, and results have been obtained which identify
the space X (7'} or which evaluate lim, ||T(s)z]|, without the conditions
above being satisfied [4], [7], [10], [32]. Typically, X = L*(R™) and A* has
finitely many independent unitary eigenvectors in L*(R™). These results
can usually be obtained by means of some more or less explicit estimates
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on kernel functions, or by using the fact that T' is an analytic semigroup, so
that ||AT(t)|| < ¢/t for some constant c. However, they can also be derived
by applying the ABLP Theorem on a subspace ¥ of X (the pre-annihilator
of all the unitary eigenvectors of A*). ‘

In this paper, we will show that (%) holds for all contraction semigroups
with countable unitary spectrum. The main part of the argument (Section 4)
concerns the special case when X;(T') = {0}, and then the conclusion is that
T is both isometric and invertible (Theorem 4.8). The argument there uses
some techniques from harmonic analysis which were previously exploited by
Esterle, Strouse and Zouakia [12] to give a proof of the ABLP Theorem.

Another variant of the ABLP Theorem {Proposition 5.1) is that X(T) is
the annihilator of the unitary eigenvectors of 7, if the unitary spectrum is
countable. We shall show (Theorem 3.1) that, even if the unitary spectrum
is uncountable, X,(7T) is the annihilator of the bounded trajectories of T™.

A resuli of this type was established by Vi Quéc Phdng [36], under some
additional assumptions.

We are very grateful to Wolfgang Arendt, E. Brian Davies and Jan van
Neerven for helpful discussions and for making preprints available.

2. Preliminaries. The results in this paper are applicable to a con-
traction T and its powers {T™ : n = 0,1,2,...} or to a Cg-semigroup of
contractions {T{t) : t > 0}. We shall give a unified proof by working in
the more general context of representations of abelian semigroups as in [6]
and [5], and we shall adopt the terminology and conventions of those papers
with only minor changes.

Throughout, & will be a locally compact abelian group with dual I', and
S will be a measurable subsemigroup of & with non-empty interior 5% in
G, satisfying § — 5 = G. We shall regard S as being ordered by =, where
§ = tift—s € 8;all limits over s will be with respect to this ordering. We
shall take G to he equipped with Haar measure, and S with the restriction
of that measure, and we shall regard L'(S) as a subspace of L'(&). For f
in LY(G) and ¢ in G, we will let f; be the translate of f: fi(r) = f(v — ).
The Fourier transform on L*(G) and L*(5) is defined by

oo =1 fox@®dt  (xe)

G

The most important examples are:
() G=2Z,I'=T={zeC:|z| =1}, § =7y ={0,1,2,...},
Foo =3 fln)x* (f €£4T), x €Ty

nEZ
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(i) G=R, I'=R, § =R. =[0,0),

Foo =\re™dt (e L'(R), x €R).
i

For a closed subset E of I', we shall let Jg denote the ideal of all functions
in L'(G) which are of spectral synthesis with respect to E, so Jg is the
closure in L1(E) of the set of functions f such that f =0 near E. We shall
also let JE = Jg N LY(S). We say that E is a sel of spectral synthesis if
Jg = {f € I}@): ¥ = 0 on E}. The following proposition recalls two
facts about countable closed subsets of I', the first being well known and
the second having been proved in [15, Théoréme 2] in the case S = Z, and
being {12, Lemme 3.8] for § = Ry. For completeness, we give the proof of
the second resulf.

PROPOSITION 2.1. Let E be a countable closed subset of I'.

(1) E is a set of spectral synthesis.

(2) The map 6 : f+J5 = f+ Jg is an isometric isomorphism of
IMS) /T onto LMG)/JTE-

Proof. (1) This is well known; sce [31, Theorem 7.2.4], for example.

(2) Let 50 € 5%, By taking non-negative functions supported in small
neighbourhoods of sg in S, we can find a net (o) in L*(S) such that | fallL =
1and ||g* fa—gsolls — 0 forall gin LYN@). Let fL(t) = fa(—2) (t € (), and
let 3 € L°(G). Then (¢ * f,) is weak*-convergent to s, for the duality
of L°(@) with L*(G). Hence

[ lloo = l9—sqlloo < Timinf |jth * filloo-

Moreover, 1 * f., is bounded and uniformly continuous.

Suppose that ¥ € J ﬁ"’: the annihilator of Jg in L>°(G). Then the spec-
trum of 4 # f, is contained in the countable set E. A result of Loomis [17]
shows that 9 * £/, is almost periodic and it follows that

p * Fhlloo = 113 Falslloo < H(ls) * Falloo:

Hence
oo < limint 3+ Fhllon < limint [ (B15) * falleo < litlslee

This shows that the map 8% : 9 € Jg = ¥ls € (Jg)* is isometric, so its
image has weak™-cormpact unit ball and is therefore weak*~closed. Since fg
is injective, it follows that g is a surjective isometry. m

A representation of S on a complex Banach space X is a strongly contin-
wous homomorphism T of § into the Banach algebra B(X) of all bounded
linear operators on X, so T'(s +t} = T(s)T(t) (s,t € 5). All our repre-
semtations will be bounded (sup, [ T(s)|| < oc), and usually they will be
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contractive ([|T'(s)|| < 1). There is no great loss of generality in the latter
assumption, since a bounded representation can always be made contractive
by changing to an equivalent norm on X. We shall say that T is asymptoti-
cally stable if T'(s) — 0 in the strong operator topology, or in other words,
if Xs(T") = X, where X,(T') is as in the introduction.
If T is a bounded representation and f € L1(9), then we define J?(T) in
B(X) by
F(T)e = f(s)T(s)z ds,
5

and we let A7 be the norm-closure of {f(T) : F € LM8)} in B(X). The map
fr f(T) is an algebra homomorphism, and A(T') is a commutative Banach
algebra. If s € S°, there is a net (ﬁ,(T)) in Ay such that [,(T') converges
to T(s) in the strong operator topology, and || f.(T)5(T) — T(s)g(T)|f— 0
for all g in L*(S). This is obtained by taking non-negative functions f,, with
llfalli == 1 supported by small neighbourhoads of s in 5.

__ The unitary spectrum Sp,(T) is the set of all x in I' such that [f(x)| <
{lf(T)H for all f in L*(S). Any x in Sp,(T) induces a character ¢, of Az
Y

o (1)) = f(x)-
If each T(s) is an invertible isometry on X, then T' extends to a represen-
tation U of G by isometries on X, and Sp, (T} coincides with the standard
definition of the Arveson spectrum [28] or the finite L-spectrum [18] of U.

A unitary eigenvalue of T is a character y in I" for which there exists a
non-zero unitary eigenvector z for T, so T(s)z == x(s)z for all s. Similarly,
a unitary eigenvalue of the adjoint 7™ is a character ¥ for which there is a
non-zero ¢ in X* such that T'(s)*¢ = x(s)¢ for all s. All unitary eigenvalues
of T and T™ belong to Sp, (7).

Let x € I". Then x € Sp,,(T) if and only if x is an approximate eigenvalue
of T, that is, there is a net (2,) in X such that |z, = 1 and ||T(s)ws ~
x(8)zall —» 0 uniformly on compact subsets of S. Moreover, for any B in
Az, | Bxo — ¢y (B)zo| — 0 [6, Proposition 2.2).

The following result is implicit in [6, Proposition 4.1] and [5, Lemma 4.7).

PROPOSITION 2.2. Let T be a bounded representation of S on X and P
be an idempotent in Ap. LetY = {Pz:2€ X} and K = {z € X : Pz = 0}.
Then
Spu(Tl}’) = {X € Spu(T) : ¢X(P) = 1}’
Spu(T|x) = {x € Spu(T) : ¢5(P) = 0}.

Proof. Suppose that x € Sp,(T) and ¢,.(P) = 1. There is a net (x4) in
X such that Jzo| =1 and || T(s)zs — x{s)#a| ~ 0 uniformly on compact
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subsets of S. Then | Pz,—2za| — 0, 50 [|Pzy|| — L Iy, = ||Pzal| Pz, €
Y, then ||yqof = 1 and [|T]v (s)¥a — x(8)¥a || — 0 uniformly on compact sets.
Thus x € Sp, (T|y).

Conversely, suppase that x € Sp,(7'|y). There is a net (y,) in ¥ such
that {|ye|| = 1 and [[T(s)ya — x(8)¥e!] — 0 uniformly on compact sets. Then
X € 8p(T) and [y — by (Pl = 0, 50 4(P) = 1.

The proof for Sp,(7'|k) is similar. =

Finally, we remark that in the two standard examples of S, Sp,(T") co-
incides with standard notions. A bounded representation of Z is of the
form {I7 : n € Z,.}, where T} is a power-bounded operator on X, and
Sp,(T) = o(T:) N'T. A bounded representation T' of R, is a bounded Cp-
semigroup, and Sp,(T) = {x € R : ix € ¢(A)}, where A is the generator
of T

3. Trajectories and asymptotic stability. Let V : § — B(Z) be a
homomorphism, where 7 is some Banach space. We willsay that z: G — Z
is a trajectory for V if it satisfies

V(s)z(t) =z(s+t) (s€8, teq).

When, in addition, there exists an M such that {|z(¢)] £ M for allt € G
then z will be called a bounded trajectory for V through z(0).

Note that if V is strongly continuous on .5, then any trajectory is norm-
continuous on G. Similarly if Z is a dual space and V' is point-weak*-
continuous, then any trajectory is weak™-continuous on G.

Suppose that T' is a bounded representation of 5 on X which is not
asymptotically stable. Under certain supplementary conditions, Vi Qudc
Phéng [36] showed that T™ has non-zero bounded trajectories. Here, we
show that this holds in general.

THEOREM 3.1. Let T be o bounded representation of § on a Banach
space X, and let M denote the set of ¢ in X* through which there exists a
bounded trajectory for T*. The pre-annihilator M1 of M in X is X (T').

Proof. If ¢ € M, there exists a bounded trajectory ¢ of T, satisfying
$(0) = ¢. Forany ¢ € Xy(T) and s € 5,

[p(2)] = [$(0)z] = |T*(s)¢(—s)z| < Y]leoliT(s)zl| =0  ass— o0,
sox & M.

Let (¥,Q,U) be the limit isometric representation of (X,T), as in 6,
Proposition 3.1). If z € X\ X,(T), then @z # 0. By Douglas’s Theorem [11],
U may be extended to a representation V of G by isometries on a Banach
space Z containing Y. Let £ € Z* be such that £(Qx) = 1, and lef P(t) =
Q*U(4)*¢ (t € G). Then % is a bounded trajectory for 7= and %(0}(z) = 1,
sor & M,. n
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CoROLLARY 3.2. Let T be o bounded representalion of § on X which
is not asymptoticelly stable. Then T* has a non-zero, bounded, uniformly
norm-continuous trajectory.

Proof By Theorem 3.1, M # {0}, so T has a non-zero bounded tra-
jectory ¢. If W is a compact neighbourhood of the identity in & and
1
B(0) = 7 § dls +1)ds
W é,. ’
then 4 is a bounded, uniformly norm-continuous trajectory. If W is suffi-
ciently small, then 4/ is non-zero. m

Remark. It follows from Theorem 3.1 and Corollary 3.2 that the sup-
plementary condition (i) or (ii) can be omitted from various results in [36,
Section 2] and from [37, Theorem 6.3].

EXAMPLE 3.3. Let C_ = {# € C : Rez < 0}. Consider the multiplier
Cp-semigroup on X = Cy{C. ) given by

(T(8)f)(2) =e**f(z}) (seRy, z€C).

The dual of X is the space M{C_) of complex, regular measures on C_.
Given pin M(C..), it is easily seen that there exists a bounded trajectory
through 4 if and only if 4 is supported by iR. On the other hand, given

f€Co(C.), [T(s)f|| converges to zero if and only if f|;z = 0. Theorem 3.1
confirms this fact.

In this example,
tim () = [l Flloe = I + Xo(T)1

for all f. We shall see in Examples 4.1 and 4.2 that such a formula is not true
in general for contractive representations, but we shall see in Theorem 5.3
that it is true when the unitary spectrum is countable.

4. Trivially asymptotically stable representations. A bounded
representation T' of S on X will be called #rivially asymptotically stable
if Xs(T) = {0}. Any representation by isometries is trivially asymptotically
stable, and we now give some examples of non-isometric, trivially asymp-
totically stable representations.

EXaMPLE 4.1. Let § = Z;, X = £P(Z) (1 < p < 00) or X = ¢o(7),
(Tz), = On®n—1,

where o, = 1ifn > 1,0 < o, <lifn<0and o, - 0as n — —o0.
Then HTH =L oT)={z€C: |2 <1}, and {T" : n € Z;} is trivially
asymptotically stable, but T is neither isometric nor invertible.
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ExXAMPLE 4.2. Let S =Ry, X = L*(R) equipped with the norm

1] co
1£lx= | 1f)lds+3 [ 17 ds,
—00 1]

and let

(T(s)F)(8) = ft — s).
Then [T(s)] = 1, o(T(s)) = T, o(4) = iR and Sp,(T) = R, and T is
trivially asymptotically stable and invertible, but not isometric.

Let E be a closed subset of R, and Jg be the ideal of functions in
L}(R) which are of spectral synthesis with respect to E. Then T induces
a trivially asymptotically stable Ch-semigroup Tg of invertible contractions
on Xg := X/Jgp (with the quotient norm arising from || - || x). Moreover,
Tg is isometric with respect to the quotient norm. || - {; arising from the
standard norm on L'(R), Sp,(Ts) = F [5, Theorem 2.3], and

| Te(s)(f + JE)ixs — 211 f + JElli  as s — o0.
Hence Tz is isometric on Xz if and only if

(%) If +Jelxs = 51 f + JEl:
for all § in L}(R).

Now, suppose that E is countable, and let f € L*(R). By Proposition 2.1,
there exists g in L* (R ) such that f +Jg = g+ Jg and, for any ¢ > 0, there
exists h in Jg N LY(R. ) such that

lg —Rlli < llg+ Tl +e={if + Jeli +e

Hence

If + Jellxs = lg + Jelxz < o= hlx = 3llg = Alls < 5(If + JellL + ).
Thus (##) holds if E is countable, so Ty is isometric.

Any isometric representation with countable unitary spectrum is invert-
ible [5, Theorem 5.1]. Our main objective in this section is to show that
any trivially asymptotically stable, contractive representation with count-
able unitary spectrum is isometric and hence invertible (Theorem 4.8). Thus
the case of Example 4.2 when F is countable is one instance of a general
result. Before starting the proof, we first give a general way of construct-
ing trivially asymptotically stable representations which will be useful in
Section 5.

ProprosrTion 4.3. Let T be a contractive representation of S on X, and
T be the representation of S on X/ X (T) {in the quotient norm) induced by
T. Forz in X, _

lim [|T(s)(z + Xs(T)H| = tim || T(s)z]

Hence T is trivially asymptotically stable.:
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Proof Let z € X, and I = lim, ||T(s)(z + X5(T)}|| = lim, | T(s)z +
X (T)||. For £ > 0, there exist y in X,(T) and ¢ in § such that | T(¢)z —y|l <
[4+z Forsin 9,

IT(s + )zl < [T(s + t)z — Tshyll + [T (s)yl| <1 +e+ [T ()l

Hence lim, [|T(s)z|| < I+ € for any ¢ > 0. On the other hand, 1T (s)(m +
X{THI < IT(s)z|| for all s, so the result follows. m

LEMMA 4.4. Let T be a triviolly asymptoticelly stable, contractive rep-
resentation of S on X with unitary spectrum B, and let f € LY(S). Then
IFD < |1+ JZ|- If B is countable, then || f(T)|| < || f + Jzl-

Proof Let g € J§. By [6, Theorem 4.3] (see also Proposition 5.5),
[IT(s)g(T)z|| — 0 for each z in X. Since T is trivially asymptotically stable,
§(T)z = 0. Thus, §{T) = 0. It follows immediately that [|[f{T)] < |f — g|lx
for all g in J3, so ]|]?(T)|] < {if + J&|I. The last statement follows from
Proposition 2.1. =

PROPOSITION 4.5. Let T be a trivially asympiotically stable, conlractive
representation of S whose unitary spectrum E i3 o compact set of spectral
synthesis, and let f € LY(S) with f=1 on E. Then f(T)=1.

Proof. Since (f)2 = ]?011 E and F is a set of spectral synthesis, f * f
—f € Jg, s0 J(T)? = f(T), by Lemma 4.4. Thus F(T)) is an idempotent in
Ar. Let K = ker f(T). By Proposition 2.2,

Spu(Tlx) = {x € B: f{x) = 0} = 0.
By the ABLP Theorem, [T'(s)zi| — 0 for all # € K. Since T is trivially
asymptotically stable, this implies that K = {0},s0 f(T)=1. m

PROPOSITION 4.6. Let T be a trivielly asymptotically stable, contractive
representation of S on X whose unitary spectrum E is countable. There is
a contractive homomorphism 7 : LHG) — Ar such that

—~

(1) =(f) = FT) for all f in LY(S),
(2) m(gs) = T(s)w(g) for all g in LM(G) and s in S,
(3) f G=0 on E, then 7(g) = 0.

Proof. Let g € L}(G). By Proposition 2.1, there exists f in L*(5) such
that g — f € Jg. Define 7(g) = f(T'). By Lemma 4.4, n(g) is independent
of the choice of f, and ||7(g)]| < ||f + J&|| < ||lg]1. It is easily verified that
7 is & homomorphism, and that (1) holds. If § = 0 on F, then g € Jg since
£ is a set of spectral synthesis, so 7{g) = 0.

For s in § we have g, — fs € Jg, s0

m(gs) = fu(T) = T(s) F(T) = T(s)n(g). m
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LeMMA 4.7. Let T be a trivially asymptotically stable, contractive rep-
resentation of 5 on X whose unitary spectrum E is countable, and let 7 be
as in Proposition 4.6. Let K be the set of all f in LY(G) such that f has
compact support and J?L E takes only the values 0 and 1. For f mn Kg, let
Y; be the image of the idempotent 7(f), and let Y = Ui, Yy. Then ¥V

is a linear subspace of X and, for each s in S°, T(s) maps X into Y (the
closure of ¥ in X).

Proof Supposethat zy,z; € X and fi, fo € Kg. Let f = fi+fa—f1*fe.
Then f € Kg and

() (r(fudos + n(fa)as) = 7(f * fr)ar + 7 (f * o)
=w{fi)x1 + ’ﬂ'(_fz)mzz
since 7 is a homomorphism and ]?E = f; on E. Thus VY is a linear subspace.
Let s € 8% and = € X. For any £ > 0, there exists k in L'(9) such
that ||E(T)z — T(s)z| < /2, and there exists g in L!(G) such that § has
compact support and ||k — k= gl < &/(2||z|]} [31, Theorem 2.6.6]. Since £
is countable, supp @ N E is contained in a compact, relatively open subset of
E, 50 there is an open subset V' of I" containing supp gNE such that ENV
is compact. There exists f in L*(G) such that f has compact support, f =1
on BNV and f=0on E\ V. Since §= f.g on E,
mo)k(T)e = n(f)m(g)k(T)z € Y.
Moreover,
Im(@)k(T)s — T(s)z] = |lm(g)m(k)z — T(s)l]
< lm(g * & — k)al| + ||w (k)x — T{s)z|
< gk =kl fzl + [(T)z - T(s)z| <e. w
THEOREM 4.8. Let T be a trivially asymptotically stable, contractive rep-

resentation of S on X whose unitary specirum B is countable. For each s
in 9, T(s) s an invertible isometry.

Proof. First, suppose that E is compact. There exists & in LYG) such
that % = 1 on E. By Proposition 2.1 (or by [5]), there exists h in L*(S) such
that o — k € Jg, so h =1 on E. Define

Ut)y=a(h) (teG),
where h € L1(S), h = 1 on E and 7 is as in Proposition 4.6. If ' € L'(S)
and (A')" =1 on E, then h; — h} € Jg, so U(1) is independent of the choice
of h.
For s,t in G we have hyy, — by = hs € Jg, S0

Ut + 8) = m(hess) = Ty * ha) = w(he)m(he) = UV (s),
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since 7 is a homomorphism. By Proposition 4.5, E(T} =T, 80 U(0) = I. For

sin S, R N
U(s) = he(T) = T(s){T) =T'(s).

Given & > 0, there exists k in L(G) such that k = 1 on F and [|k]; <
1-+¢ [31, Theorem 2.6.8]. Then we may take b in L*(S) such that A—k € Jg.
For tin G,

T = [Jr (Rl < |2 + J]|
= [th+ Jgll = &+ Je| < (k] <1 +e.

This shows that U is a representation of G by isometries on X, extending
T. This establishes the result in the case when F is compact.

Now, consider the general case. We will use the notation and results of
Lemma 4.7. Let f € Kg. By Proposition 2.2, Sp,(Tly;} = {x € F: foo) =
1}, which is compact and countable. By the case previously considered,
T(s)|y, is an invertible isometry of Yy, for each s in §. It follows that T(s)|17
is an invertible isometry of Y.

Let © € X, 89 € 5§, so T(s0)z € Y, by Lemma 4.7. By the previous
paragraph, there exists 2’ in ¥ such that T(sg)z = T(sp)a’. Since T is
trivially asymptotically stable, T'(so) is injective, so & = ' € ¥. Thus,
Y = X, and each T'(s) is an invertible isometry of X. w

5. Some guantitative asymptotic results. In this section, we com-
bine the ideas of the previous two sections to obtain a gquantitative refine-
ment of the ABLP Theorem (Theorem 5.3). The first result is a version of
Thecrem 3.1 for representations with countable unitary spectrum, in which
arbitrary bounded trajectories of T* are replaced by unitary eigenvectors. It
is both a refinement and a corollary of the ABLP Theorem. We are grateful
t0 Wolfgang Arendt for supplying a short proof.

ProposITION 5.1. Let T be a bounded representation of S on X with
countable unitary spectrum, and let N be the linear span of the unitary
etgenvectors of IT™. The pre-annihilator N1 of N in X is X(T).

Proof. It is clear that if |T(s)z|| — 0 and T(s)*
x € I, then ¢(z) = 0.

For the converse, we shall apply the ABLP Theorem to the invari-
ant subspace N.. Any approximate eigenvalue of T|y, is an approximate
eigenvalue of T, so Sp,(T|n, ) is countable. Suppose that ¢ € (N, )* and
(T(s)|w, )" = X(s)qﬁ for all s in S, for some x in I'. Let ¢ be a translation-
invariant bounded linear functional on L°°(S) such that £(1) = 1, and define

¥ by

¢ = x(s)¢ for some

Plz) = E(x()H(T()2)) (z€X).
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Then ¢ € X* and T'(s)*y = x(s)¢, so ¢ € N. But ¢ = v|n, = 0. This
shows that (T'|x,)* has no unitary eigenvalues. By the ABLP Theorem,
lim, |T(s)zi| =0forallzin N,. m

CoroLLARY 5.2, Let T be o bounded representation of § on X with

countable unitary spectrum. The almost periodic trajectories of T are point-
weak*-dense in the space of all bounded trajectories of T*.

Proof. By Theorem 3.1 and Proposition 5.1, M, == N1, so N is weak*-
dense in M,

Let ¢ : @ — X* be a bounded trajectory for I, and let ¢1,...,14, € G
and W be a weak*-neighbourhood of 0 in X*. There exist sy,...,5, in
S such that t; +s; € S (j=1,...,n). Let s = sy +...+ s, € S, and
W' = ﬂ;;l(T(tj—l—s)*)"l(W), a weak*™neighbourhood of 0. Now t — ¢(t—s)
is a bounded trajectory for T*, so ¢(—s) € M. Hence there exists ¢y € N
such that ¢(—s)—1y € W’. Since 1y is a finite linear combination of unitary
eigenvectors, there is an almost periodic trajectory v such that #(—s) =
Now

Blts) — (ty) = T(t; + 5)* ($(—s) — o) € W. m

- THeOREM 5.3. Let T’ be a conlractive representation of S on X with
countable unitary spectrum, ond let N be the weak*-closure of the linear
span of the unitary eigenvectors of T*. For each = in X,

lim (T (s)al = inf{llz — gl : v € Xs(T)} = sup{|¢(z)| : ¢ € N, ||g]| < 1}.

Proof. By Proposition 4.3, T induces a trivially asymptotically stable,
contractive representation T on the quotient space X/X(T), and

lim ||T(s) (@ + Xo(T))| = lim | T(s)e]|
Since |F(D) < [IF(TY, it follows that Spy(T) € Spy(T), so Spu(T) is
countable. By Theorem 4.8, T is isometric, so
lim {|T(s)a| = ||z + Xs(T)]-
The second equality now follows from Proposition 5.1 and the Hahn-Banach
Theorem. =

COROLLARY 5.4. Let T be a bounded representation of S on X with
countable unitary specirum, and let N be the weak*-closure of the linear
span of the unitory eigenvectors of T*. For each z in X,

sup{|¢(z)| : ¢ € X*, {|¢ll < 1} < limsup [T (s)z]

< Msup{|¢ z)|: g € X*, ||l¢f| <1},
where M = sup, |T(s)|].
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Proof. Let |z| = sup, || T(s)z]. Since T is contractive with respect to
|- Iy Theorem 5.3 gives

limsup | T(s)a] = sup(#(z)! : 6 € X", oIl < 1)

Since |z < ||z < M|=| for all z, M~
the result follows. m

Examples 4.1 and 4.2 show that Theorem 5.3 may fail if Sp,(T") is not
countable.

It was shown in [6, Theorem 4.3] (special cases had previously been
given in [16], [12] and [35]) that lim, ||T(s)f(T)|| = 0 when § is a contrac-
tive representation with unitary spectrum E and f € Jp. It follows that
lim, |T(s) F(T)|| < |if + Jg | for all f in L*(S). The following result is a
sharper version of this.

Higll < figl < llgf for all ¢, and

- PROPOSITION B.5. Let T be a contractive representation of 8 on X with
unitary spectrum E, and let f € L(S). Then

(1) lim, J|T(s)]“:(T)mﬂ <\ f + Je|| lim, ||T'(s)z| for ell z in X,

(2) lim, | T(8) A (D) < |17+ Tl

Proof. Let (¥,Q,U) be the limit isometric representation of (X,7),
as in [6, Proposition 3.2]. By Douglas’s Theorem [11], [5, Proposition 2.1],
(Y,U) may be extended to an isometric representation V of G on a Banach
space Z containing Y, with Sp(V) = Sp, (/) C E. For g in Jg we have
g(V}=0,s0

IFONLIFW) = 1FV) =3 < 1] = gl
It follows that
IFO < 1F + Tl

This means that, for each z in X,
b | T(s) F(T)e | = [QFT)z] = lim || AU)Qe]
< N+ JelllQal = IIf + Ji| lim | T(s)z).
The proof of the second statement is modelled on [35, Theorem 3.2]
and (6, Theorem 4.3]. Consider the representation T of S on Ar defined by

T(s)(B) = T(s)B. This is strongly continuous and Spo(T) C 8p,(T) =
(see [6])..By applying (1) to T,

lim | T(s) FATVGT) < 1L + T Nim [T(s)g(T)} < |1 f + Tzl llgll:-

Ta.kmg 50 in 50 and a net (g,) in Ll(.S') such that ||gall1 = 1 and ||(Go(T) ~

SOJ)f(T)H —+ 0, we obtain lim, | T(s + so)f{T)” < |If + Je|, and the
result follows. m
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6. Differential operators on L(R"). Typical examples where our re-
sults may be applied are Cy-sernigroups on L*(R™) generated by suitable
L'-versions A; of elliptic operators A = EISIaISm o (2)D* with bounded,
measurable, real coefficients, and Schrédinger operators A = %A — V. How-
ever, it is not always easy to verify the conditions of our results, and we will
now discuss this question.

Firstly, one has to establish that A; generates a bounded Cy-semigroup
on L'(R™). In the case of a second-order uniformly elliptic operator, this
can usually be established by means of the Beurling—Deny criteria [8, The-
orem 1.3.5], [22, Section IL.2], [26]. Under mild regularity conditions, the
semigroup is given by

T(t)f(z) = E°[f(X3)],
where X, is the solution of a stochastic differential equation associated with
A. Such a semigroup is contractive in L°°-norm, so duality theory may pro-
vide a contraction semigroup on L'(R). For Schridinger semigroups with
absorbing potential ¥V > 0, L'-contractivity follows by comparison. How-
ever, the situation is more complicated for elliptic operators of higher order
(see [10]).

Secondly, one has to show that o(A;) N <R is countable. For an elliptic
operator with constant coefficients, o(A4;) = {Zla!<m aail®lE™ - € € R}
(3], [33, p. 69], so it is possible to verify whether ‘the spectral condition
holds. For some operators with variable coefficients, it is known (see [1], [9])
that the spectrum of A; coincides with the spectrum of the L*-realisation
A, of the operator, which is given by a quadratic form. If the quadratic
form is semidefinite, it follows that o{A;) € (—oc,0]. Second-order elliptic
operators with variable coefficients generate bounded positive holomorphic
semigroups on L*(R™) [30], [27], so a(41) NiR € {0} by a general result in
the theory of positive semigroups [24, Corollary 2.13, p. 304].

Thirdly, one has to identify the unitary eigenvectors of A] in L“"’(IR“
This is a problem in differential equations, and some relevant results may
be found in [29], [14] and other references given in the examples below.

Bach of the following examples has already been examined in the liter-
ature, usually by more explicit methods than ours. We show how they fit
within the scope of our abstract results.

EXAMPLE 6.1 [7, Theorem 3.1]. Consider the following symmetric, purely
second-order, uniformly elliptic operator on R* with bounded measurable

coefficients:
6
A= Z ( 3 Ty )

i,4== 1
Then A; generates a Cp-semigroup of contractions on LY(R™) 8] and o(Ay)
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C {—00,0] (cf. [1]). Moreover, the only solutions in L>(R"™) of Ajg =0 are
constants [23], [13, Appendix, Theorem 3]. Thus Theorem 5.3 shows that

Jim [Tl = | | f(a) da
o

for all f in L'{R™).

EXAMPLE 6.2 [4, Proposition 3.2]. Consider the following Schrédinger
operator on B™;

A= %—A -V,

where V > 0 is measurable. Then A generates a Cp-semigroup of contrac-
tions on L*(R™) [34] and o(4;) = o(42) C (—o0,0] [27]. It was shown in
[4, Proposition 3.2] that the only solutions in L*(R"™) of Alg = 0 are scalar
multiples of

() ofe) = lim (T D(e) = B exp - § V(B(s)) ds)].
0

where B(s) is Brownian motion and E is expectation with respect to Wiener
measure. It is easily seen that either g = 0 or ||g|l = 1, so Theorem 5.3
shows that

Jlim |[Tfl: = | § Fl)g(o)dz
@

for all fin L1(R?).

In this example, %A can be replaced by other symmetric, purely second-
order, elliptic operators, with the probabilistic formula in {f) interpreted
appropriately.

EXAMPLE 6.3 [10, Section 6]. Let n = 1, and

() )

Then A, generates a bounded (non-contractive) Cp-semigroup on L{R)
[10, Lemma 4], and o(A;1) = {~(£* = 1)% : £ € R} = (—o00,0]. The only
independent solutions of Afg = 0 in L®(R) are g(z) = e***, Since

lloe™ + fe™|l 0o = |a| + |81,
Corollary 5.4 shows that

o~

wax{| (1)}, F-DI) < imsup | T8) 1 < Momax(( (1), | F(-1))

for all f in L'(R), where M = sup, |7'(£)|| = 1.373 (cf. [z0]).
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EXAMPLE 6.4 [32]. Let A be a differential operator on R of the form

d du d
tu = (a) 52 )~ L (plauta)
where a(z), b(z) are bounded, smooth and real, and inf, a(z) > 0. Then
A generates a bounded holomorphic semigroup on L'(R) [30, Theorem 2.7,
p. 410}, so ¢(A;1) N iR = {0}. The solutions of the formal equation

arg & 9 dg
0=4A"g= dm_(a(w) d:c) +b(m)dm

are

g{z) = o+ fh(z),
where o, 8 are arbitrary constants and

—w—l—ex —sﬁ s
)= iy (-2 o) oo

0
If
o0 ]
b
S exp(ﬂs—(@«dr) ds = o0,
e o elr)
then the only solutions in L>°(R) are constants, and Theorem 5.3 shows
that
o
Jim |Z)fls = | § £(2)da
It
S exp(—gb—r)dr)ds < oa,
—co 0 GJ(T)
then h(z) is bounded, and Theorem 5.3 gives a new formula
o0

Jim Tl = sup{| | fo)o+ Bh(z))da  [la+ Bhlloe < 1}

3

2{%,, #(z)h(z) dz = h(oo) — h{—) D |

- max (| 1 foyas R(o0) — H(—o0)

References

[1] W. Arendt, Gaussian estimaies and interpolation of the spectrum in LF, Differen-
tial Integral Equations 7 (1894), 1153-1168.

2] W.Arendtand C. J. K. Batty, Tauberion theorms and stability of one-parameter
semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852.

3] E Balslev, The essential spectrum of elliptic differential operators in LF (Ry), ibid.
116 (1965), 193-217.



182

(5]

18]
[14]
(18]
[16]
(7]
18]
[19]

[20]

[21]

[22]
(23]
(24]
[25]

[26]

C. J. K. Batty et al

C.J. K. Batty, Asymptotic stability of Schrédinger semigroups: path integral meth-
ods, Math. Ann. 202 (1992), 457-492.

C.J.K.Batty and D. A. Greenfield, On the invertibility of isometric semigroup
representotions, Studia Math. 110 (1994), 235-250.

C. J. K. Baity and Vii Quéc Phéng, Stability of strongly continuous represen-
tations of abelian semigroups, Math. Z. 209 (1992), 75-88.

Z.Brzesniak and B. Szafirski, Asymptotic behaviour of L norm of solutions to
parabolic equations, Bull. Polish Acad. Sci. Math. 39 (1991), 1-10.

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cam-
bridge, 1989.

—, Uniformly elliptic operators with measuroble cogfficients, J. Funet, Anal. 132
(1995), 141-169.

—, Long time asympiotics of fourth order paraholic equations, J. Anal. Math., to
appear.

R. G. Douglas, On esiending commutative semigroups of operators, Bull. London
Math. Soc. 1 (1969), 157-159.

J. Bsterle, E. Strouse et F. Zouakia, Stabilité asymptotique de certains semi-
groupes d’opérateurs et idéaux primaires de L' (B+), J. Operator Theory 28 (1992),
203-227.

A.Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, En-
glewoed Cliffs, N.J., 1964.

D. Gilbarg and J. Serrin, On isolated singularities of solutions of second order
elliptic differential equations, J. Anal. Math. 4 (1955-56), 309-340.

J-P. Kahane et Y. Katanelson, Sur les algébres de restrictions des séries de
Taylor sbsolument convergentes & un fermé du cercle, ibid. 23 (1970), 185-197.

Y. Katznelson and L. T'zafriri, On power bounded operators, J. Funct. Anal. 68
{1986), 313-328.

L. H. Loomis, The spectral characterization of a cless of almost periodic functions,
Ann. of Math. 72 {1960), 362-368.

Yu. I Lyubich, Introduction to the Theory of Banach Representations of Groups,
Birkbiuser, Basel, 1988.

Yu. L Lyubich and Vi Qubc Phdng, Asymplotic stobility of linear differentiol
equations in Banach spaces, Studia Math. 88 (1988), 37-42.

Yu. I. Lyubich and Vi Quéc Phéng, A spectral criterion for the almost peri-
odicity of one-parameter semigroups, Teor. Funktsii Funktsional. Anal. i Prilozhen.
47 (1987), 36-41 (in Russian).

=~y A spectral eriterion for asymptotic almost periodicity of uniformiy continuous
representations of abelian semigroups, ibid. 50 (1988), 38-43 (in Russian); English
transl.: J. Soviet Math, 49 (1990), 12631266,

Z. M. Ma and M. Raéckner, Ar Introduction io the Theory of Non-Symmetric
Dirichlet Forms, Springer, Berlin, 1992,

J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure
Appl. Math. 14 (1961), 577-501.

R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes
in Math. 1184, Springer, Berlin, 1986.

¥ van Neerven, The Asymptotic Behaviour of o Semigroup of Linear Operators,
Birkhauser, Basel, 1996.

E. M. Ouhabaz, L®-contractivity of semigroups generated by sectorial forms, J.
London Math. Soc. 46 (1992}, 520-542.

icm

A quantitative asymptotic theorem 183

[27] R. Hempel and J. Voigt, The spectrum of a Schrédinger operator in Ly(R") is
p-independent, Comm. Math. Phys. 104 (1986), 243-250.

28] G.K.Pedersen, C*-Algebras and their Automorphism Groups, Academic Press,
London, 1979.

[29] M.H.Protter and H. F. Weinberger, Mazirmum Principles in Differential Eque-
tions, Springer, Berlin, 1984.

[30] D.W.Robinson, Elliptic Operators and Lie Groups, Oxford Univ. Press, Oxford,
1991,

[31] W.Rudin, Fourier Analysis on Groups, Wiley, New York, 1992.

(32] R. Rudnicki, Asymptotic stability in L' of parabolic equations, J. Differential
Equations 102 (1993), 391-401.

[33] M. Schechter, Specira of Partial Differenticl Operators, North-Holland, Amster-
dam, 1971.

[34] B. Simon, Schrédinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526.

[33] Vi Quéc Phéng, Theorems of Katznelson-Teofriri type for semigroups of oper-
ators, J. Funct. Anal. 103 (1992), 74-84.

[36] —, On the spectrum, complete trajectories, and asymptotic stability of linear semi-
dynamical systems, J. Differential Equations 105 (1993), 30-45.

[37]  —, Stability and almost periodicity of trajectories of periodic processes, thid. 115
(1995), 402415,

5t. John's College

Oxford OX1 3JP

England

E-mail: charles batty@sjc.ox.ac.uk

Department of Mathematics

University of Hull

Cottingham Road

Hull HU6 7RX, England

E-mail; z.brzezniak@maths hull.ac.uk
8T Eversley Road

Benfleet
Essex 837 4JT, England

Recetved Januvary 15, 1996 (3596)
Revised version July 15, 1896



